ECAL Optimization (Progress)

Da An (Chi Chi), Christopher Sund

August 6, 2014

Outline

Motivation:

- Each ECAL layer costs > \$2 million
- Want to minimize cost while maintaining current performance
- In this study, we measure performance based on photon resolution

Current progress:

- Calibration Some interesting findings/issues?
 - Angular dependencies in Phi and Theta
- Photon resolution analysis
 - Changing total number of layers
 - Changing ratio of thin and thick layers
 - Want to look for optimal design that gives good resolution

Interesting Calibration Findings

A few things about the current ECAL calibration

- Incorrectly handles events where ECAL staves overlap
 - The particles essentially goes through only thin absorbers, which results in some larger detected raw energy
 - Because of this, resolution is worse by $\sim 0.5-3\%/\sqrt{E}$ as we go from 1-20 GeV photon (compared to the case where we only fire straight into the ECAL at Phi=0); difference is worse as we go to higher energies (Slides 4-5)

- Does not account for changes in Theta angle (Slide 6)
 - \sim 1% energy difference for photon at 10 GeV from Theta=90 to Theta=140
 - \sim 0.1% resolution difference for same thing

Photon Energy Distribution (Theta90, PhiAll)

SLAC

Photon Energy Distribution (Theta90, Phi0)

Theta Dependence

(Fixed thin layers at 2.5mm)

- Total W thickness held fixed at 100mm
- Ratio of (# of thin layers) to (# of thick layers) held fixed at \sim 2:1
- Thin layer thicknesses held fixed at 2.5mm
- Resolution is given by σ_E/E , where σ_E and its error is given from a Gaussian fit

Photon Energy	15 (10+5) $[\%/\sqrt{E}]$	20 (13+7) $[\%/\sqrt{E}]$	25 (17+8) $[\%/\sqrt{E}]$	30 (20+10) $[\%/\sqrt{E}]$
50 GeV	45.1	33.0	24.2	20.0
20 GeV	42.9	30.5	20.9	18.9
10 GeV	42.0	28.2	20.5	18.4
5 GeV	37.4	27.2	19.3	19.1
2 GeV	33.0	24.2	18.8	17.7
Thicknesses (thin, thick) [mm]	(2.5, 15.0)	(2.5, 9.64)	(2.5, 7.18)	(2.5, 5.0)

Resolution degrades by only a couple % from 30 to 25 layers, but degrades significantly for 20 and 15 layers

(Fixed 50mm+50mm thin+thick layers)

- Total W thickness held fixed at 100mm
- Ratio of (# of thin layers) to (# of thick layers) held fixed at \sim 2:1
- Ratio of (total thin layer thickness) to (total thick layer thickness) held fixed at 1:1
- Resolution is given by σ_E/E , where σ_E and its error is given from a Gaussian fit

Photon Energy	15 (10+5) $[\%/\sqrt{E}]$	20 (13+7) $[\%/\sqrt{E}]$	25 (17+8) $[\%/\sqrt{E}]$	$30 \ (20+10) \ [\%/\sqrt{E}]$
50 GeV	28.1	24.5	21.8	19.9
20 GeV	26.4	23.8	21.2	18.8
10 GeV	28.0	24.0	19.1	18.4
5 GeV	27.2	22.9	19.7	19.1
2 GeV	25.6	21.6	18.3	17.7
Thicknesses (thin, thick) [mm]	(5.0, 10.0)	(3.84, 7.14)	(2.90, 6.25)	(2.5, 5.0)

Larger total thin layers thickness than previous slide.

Better resolution for all nLayers than previous slide

(Changing ratio of thin and thick – 30 layers)

- Total W thickness held fixed at 100mm
- Ratio of (# of thin layers) to (# of thick layers) changes 1:1 2:1 5:1
- Thin layer thicknesses held fixed at 2.5mm
- Resolution is given by σ_E/E , where σ_E and its error is given from a Gaussian fit

Photon Energy	30 (15+15) $[\%/\sqrt{E}]$	30 (20+10) $[\%/\sqrt{E}]$	30 (25+5) $[\%/\sqrt{E}]$
50 GeV	20.1	19.9	20.4
20 GeV	21.6	18.9	19.0
10 GeV	19.1	18.4	18.4
5 GeV	18.6	19.1	17.3
2 GeV	19.0	17.6	17.4
Thicknesses (thin, thick) [mm]	(2.5, 4.16)	(2.5, 5.0)	(2.5, 7.5)

Deviation in resolution is small among all three different ratios

(Changing ratio of thin and thick – 25 layers)

- Total W thickness held fixed at 100mm
- Ratio of (# of thin layers) to (# of thick layers) changes 3:2 2:1 4:1
- Thin layer thicknesses held fixed at 2.5mm
- Resolution is given by σ_E/E , where σ_E and its error is given from a Gaussian fit

Photon Energy	25 (15+10) $[\%/\sqrt{E}]$	25 (17+8) $[\%/\sqrt{E}]$	25 (20+5) $[\%/\sqrt{E}]$
50 GeV	24.5	24.2	24.6
20 GeV	23.5	20.9	23.8
10 GeV	22.9	20.4	21.1
5 GeV	21.7	19.3	20.0
2 GeV	20.2	18.8	18.3
Thicknesses (thin, thick) [mm]	(2.5, 6.25)	(2.5, 7.18)	(2.5, 10.0)

Deviation in resolution is more significant, the 2:1 ratio (17+8) gives the optimal resolution.

Summary

Calibration

- Relevance of angular effects in calibration are unclear
- Maybe look further into how this affects other simulation studies
- Maybe try to correct for these dependencies

Photon resolution analysis

- Thin gives good resolution, Thick gives bad resolution
 - As the average thickness of each layer decreases, the resolution gets worse (in this current study, we keep the total thickness of W at 100mm, so this statement is analogous to saying "as the number of layers decreases, the resolution gets worse")
- · Ratio of total Thin thickness to total Thick thickness near 1:1 gives smallest resolution range
 - As the difference between Thin and Thick layer thicknesses increases, the resolution range increases; this is because of the previous point
 - Example: Thin at 50mm + Thick at 50mm gives $\sim 2\%/\sqrt{E}$ range; while Thin at 25mm + Thick at 75mm gives $\sim 10\%/\sqrt{E}$ range
- Ratio of # Thin layers to # Thick layers near 1:1 gives smallest resolution range
- So, ideally, we want the entire ECAL to have 2.5mm layers (thinnest mechanically sound)
 - But this would cost too much...

Future Work

What still needs to be done:

- Current summary of results is qualitative, is there a quantitative representation?
- Study of multiple photons (thinner layers will probably give better performance)
- Visualization of detector cross section (to check for overlaps and such)
- Implementing PandoraPFA, which will allow for:
 - More accurate calibration i.e. sampling fractions
 - Extension of analysis to jets

Linearity of Detected Energy Vs MC Energy

Shown is just the difference plot of detected energy and MC energy for the current sidloi3 20+10 layer ECAL.

This only takes into account the hits from the EcalBarrel. If we add in the hits to the HcalBarrel, the linearity is improved from ~1% to ~0.1%

Example Photon Distributions after Calibration

SLAC

Additional Points for Resolution Evolution

SLAC

Fixed thin at 2.5mm

50mm+50mm total thickness of thin+thick

Additional Points for Resolution Evolution

