
Automated Event Detection for Active
Measurement Systems

McGregor A.J. and Braun H-W

Abstract|The utility of active measurement systems, like
NLANR's AMP, is limited because users must poll the sys-
tem. Most potential users of the data collected by measure-

ment systems are too busy to regularly check the measure-
ment system for interesting behaviour. This paper proposes
automatic event detection as a solution to this problem. Al-

gorithms for detecting changes in RTT, jitter and loss are
described and experience with am implementation is pre-

sented, including performance data. The methodology pre-
sented has been re�ned to the point where laboratory tests
of automatic event detection appear to be bearing fruit.

Keywords|Network performance measurement, monitors,

active measurement, event detection.

I. Introduction

It is easy to collect large volumes of data through ac-
tive measurement. The NLANR AMP system [1][2][3], for
example, consists of around 120 active monitors operat-
ing in a full mesh. Each monitor measures the round trip
time to each other monitor every minute and the route to
each other monitor every 10 minutes. The data collected
is transfered to a central site where it is made available to
users as raw data and as web based performance graphs.

A set of graphs is available for each of the approximately
14,000 paths that are measured. While these graphs have
proved useful when a change in the network has been de-
tected they do not often aid in the detection of interesting
network events. There are two reasons for this. First, there
are just too many of them. No human could examine all the
graphs often enough to detect network events in a timely
way. Second, even though most sites have a single AMP
machine and only need to examine the data for their site,
the shortage of networking personnel means that most net-
work administrators are event driven; they do not poll for
work.

The over arching goal of the AMP project, and most
other active measurement projects, is to increase the per-
formance of the network for its users. Supporting the di-
agnosis of network problems after they are detected is a
useful function in this respect. However, the data AMP
collections contain enough information to aid in the dis-
covery of network problems before the users of the network
report them.

A.J. McGregor is with The University of Waikato, Hamilton, New
Zealand and the National Laboratory of Applied Network Research
(NLANR), San Diego Supercomputer Center, University of Califor-
nia, San Diego, La Jolla, USA. Email: tonym@cs.waikato.ac.nz
H-W Braun is with the National Laboratory of Applied Network

Research (NLANR), San Diego Supercomputer Center, University of
California, San Diego, La Jolla, USA Email:hwb@nlanr.net
This work is funded, in part, by NSF Cooperative Agreement No.

ANI-9807479. The U.S. government has certain rights in this mate-
rial.

Making use of the latent capacity of the data to discover
network problems, in a practical way is not trivial. Some
of the diÆculties that must be overcome are:
� There are large volumes of data involved. AMP collects
over 1Gb of data a day and has an incoming data stream of
about 1.5Mbps. Any processing must be able to match this
data rate, and �t in the memory available on inexpensive
equipment. Meeting this need is compounded by the large
number of paths. In some cases all these paths must be
monitored for events of interest.
� There is a lot of natural variation in the data. Paths
di�er in their normal RTT and the amount of variability
in this data. On one path a 10% increase in RTT might be
quite normal, while on another it would indicate an unusual
event.
� When a network event occurs many elements are often
a�ected at the same time. Naive noti�cation of every event
could swamp the system, the network and the support sta�
with error noti�cations at the very time they are all likely
to be under stress.
This paper describes a system for atomic detection of

events in data collected by active measurement. The sys-
tem is self-adjusting to the �t the data being monitored but
is simple enough to be implemented within practical con-
straints. A post-processor sends noti�cations to users who
have requested them. This noti�cation processor limits the
number of noti�cations using a modi�ed exponential back-
o� to group successive noti�cations into a single message.
The heart of the system is divided into three algorithms;

each algorithm is responsible for detecting one class of net-
work event. The �rst of these, the \plateau detector," de-
tects a change in the base RTT between a pair of monitors,
even in the presence of (or absence of) jitter. Figure 10,
below, contains some examples of events detected by the
plateau algorithm. The second algorithm detects a change
in the RTT jitter over a path. The third algorithm detects
excessive packet loss.
The algorithms are based around two "windows" that

advance in time as each new data item is received. The
�rst of these (which is the oldest in time) is used to char-
acterise the normal state of the path. The second window
indicates the current state of the path. Simple statistics
are calculated on these windows and compared to give the
basis of the event detection. An additional bu�er is used
as a �lter; it removes transient outliers from the data so
that they do not cause false triggers.
The rest of the paper is organised as follows. Section II,

Active Measurement and section III, The Visualisation
Alternative, present background information about active
measurement systems which provides the context for the

event detector. Section IV, Architecture, gives an overview
of the event detection system and the way it interacts with
other components of AMP. The algorithms that make up
the core of the system are described in detail in section V,
Algorithms. This abstract description of the algorithms is
supported with a practical example in section VI. As de-
scribed above, meeting the performance goals is an integral
part of the problem. Section VII, Performance, describes
an ad hoc performance test which give an indication of the
system resources required to run the event detector. The
paper concludes with section VIII, Implementation Status,
and section IX, Conclusions.

II. The AMP System

The event detection system described in this paper was
designed to meet the needs of event detection in the
NLANR AMP system. AMP is NLANR's active measure-
ment project and is part of the NAI, network analysis in-
frastructure[4][5]. AMP's focus is making site to site mea-
surements of round trip time (RTT), packet loss, topology
and throughput across the National Science Foundation
(NSF) approved HPC networks. At the time of writing
around 120 monitors are deployed at NSF HPC awardee
sites. This number is currently increasing by a few each
month.

Types of Measurement

Each of these monitors sends a single, 64 byte, ICMP
packet to each of the others every minute and records the
time until a reply is received, or a loss if no reply is received.
In addition, every 10 minutes, the route to each other mon-
itor is recorded using traceroute. These round trip times
(RTTs) are the core of the system and the focus of event
detection. Throughput tests can also be run between any
pair of the monitors using a web based throughput test re-
quest. (Throughput tests are only run on demand because
of the high cost, in terms of network traÆc, of running
these tests.) The following throughput tests are available:

� Bulk TCP data transfer
� Bulk UDP data transfer
� ping -F
� treno

AMP Architecture

AMP machines independently make measurements to
one another. The data collected is sent to the central AMP
site, at the San Diego Supercomputer Center, for process-
ing and publication via the WWW. To improve robustness,
two central machines are used. The data is sent to each
central machine independently by each monitors. This ar-
rangement is shown in �gure 1. The two central machines
have a common domain name (watt.nlanr.net) and share
the web serving and analysis workload.

The Active Mirror

Because AMP measurements are continuous there is no
natural end time at which to send the collected data from

Active
Monitor

Active
Monitor

Active
Monitor

Other
target

Cichlid

Web
browser

Analysis
machine

Analysis
machine

test traffic

Test Results

Fig. 1. Amp Architecture

mirror
master

event
detector

mirror
slave

Central SystemEvent Detection
System

monitor

HPC Network

Fig. 2. Active Mirror

the measurement machines to the central servers. In addi-
tion we want the system to have a near to real time nature
with the data in the web pages for today being current to
within a few minutes. This is important if the system is
to be used as a diagnosis tool. To achieve these ends we
have developed an active mirror system. See �gure 2. This
operates much like the daily mirror used on many FTP
sites except that �le changes are re
ected on the mirror
site more quickly. When a monitor is started it opens a
TCP connection to each of the central machines. It then
watches the last-modi�ed date on the �les in its directory
tree where the measurement results are stored. When a �le
is updated the changes to the �le are sent to each of the
central machines. The process is fault tolerant so that if
a central machine or a monitor fails, when it recovers all
machines will be brought up to date. In addition to keep-
ing the central sites current, this approach avoids a peaky
transfer load that could overwhelm the central servers or
disturb the measurements being taken by the monitors.

As part of the event detection project a real time data

interface was added to the data mirroring process. The
slave process (on the central machine) listens for TCP con-
nections on a known port number. If a connection is es-
tablished to this port a copy of the data received from the
monitors is made and, after formatting, is sent to this real
time data port. This mechanism allows the event detector
(or other user of the real time data) to be on the same,
or a di�erent machine, to the active mirror, depending on
its processing requirements. Currently the two reside to-
gether, although we expect to move the event detection to
a separate machine if event triggers become popular with
our users.
The data on the central web servers can be accessed from

a web page that lists the monitor sites as hyperlinks. When
a link is selected a table of the RTT and loss from that site
to all the other sites is supplied. Again the site names are
hyperlinks. If a site from the table is selected, RTT and
loss data for that pair of sites is displayed as a year-to-
date graph and a set of weekly graphs for all weeks this
year. Further hyperlinks allow selection of a detailed dis-
play of any day, including the RTT by time of day and as
a frequency distribution. The route data can be displayed
in a tabular form (like the output of traceroute) or as a
graphical plot using the Otter tool from CAIDA[6]. These
displays are best understood by visiting the AMP web site,
which is linked o� the NLANR home page[3].

III. The Visualisation Alternative

There are a large number of AMP monitors and conse-
quently a very large number of pairs of monitors. Data
is collected on the path between every pair of monitors
and there are web pages for each pair. As described ear-
lier this creates problems for people looking for interesting
events in the data. While this paper focuses on event de-
tection the Cichlid visualisation tool[2] can be used as a
di�erent approach this problem. The Cichlid tool (named
after the species of �sh with the same name, some of which
change colour) was developed at NLANR to allow visual-
isation of a wide range of network data. In brief, Cichlid
is a distributed, animated, display tool for bar charts and
`vertex/edge' graphs. It is known for its colourful moving
images. We have used Cichlid to produce a number of visu-
alisations, including the network `terrain' shown in �gure 3.
Again, this is best viewed interactively at the Cichlid web
site[7].

IV. Architecture

The event detection system is shown in �gure IV. The
following sections describe this diagram.

Real Time Data Interface

As mentioned in section II a real time data feed has
been added to the data transfer mechanism between the
monitors and the central AMP servers. The data the feed
is formatted as shown in �gure 5.
The timestamp is a Unix style timestamp; seconds from

midnight UTC 1 Jan 1970. The source and destination
addresses are null terminated strings. The data type is a

Fig. 3. Cichlid Network \Terrain"

Detector
Loss

Detector
Variance

Detector
Plateau

User
Processing

Active
Mirror
Slave

Email

events

RTT for a specific path

User Interface

delete detectors
crate and

email

RTTs

RTT from
monitors

persistant
user
data

Fig. 4. System Architecture

short integer, specifying the type of data being transfered.
Currently only 0 (for RTT data) and 1 (for path data) are
de�ned. The �nal �eld is a 16 bit integer giving the number
of milliseconds RTT in the case of RTT data.
There are about 20 million RTT records transfered each

day. Consideration was given to reducing the data trans-
fered, and making the transfer record a �xed sized, by en-
coding the source and destination values as short integers.
This would save around 300Mb of data transfer per day.
However, it was decided to use the string format because
the central machines (that are doing the data mirroring)
are heavily used and the CPU cycles and memory required
to convert the data from the string format to an index are
likely to exceed those required to transfer the data. The
additional network resources required are unlikely to cause
problems because the machines are physically close and can

Unix
Time

Source
monitor

Destination
monitor

Data
Type Value

Fig. 5. Real Time Data Interface

Count Accumulation Period

1 Immediate
2 5 minutes
3 15 minutes
4 30 minutes
5 1 hour
6 2 hours
7 4 hours
8 8 hours

� 8 1 day

TABLE I

Back off Times

have a dedicated LAN.

Event Detectors

The system contains three types of event detector:
plateau, jitter and loss. There is an instance of each detec-
tor for each path for which a user has requested that type
of watch be maintained.

Detectors have parameters that modify their function.
The plateau detector, for example, includes a sensitivity
parameter that changes the level of change at which a trig-
ger will be generated. Although there are defaults, users
may set these parameters to change the level of noti�cation
they receive from the system.
We expect there to be thousands of instances of the de-

tectors because most users are interested in many paths.
Some users may be interested in all the paths to a partic-
ular site. If two users request a watch on the same path,
with the same parameters, they share a detector instance.
If the parameters vary, di�erent detector instances are cre-
ated. We plan to include parameter pro�les into the user
interface to encourage reuse of the same parameters, and
thereby reduce the number of instances.

User Processing

The main role of the user processing component is to
limit noti�cation emails. If every event detected gener-
ated a noti�cation, some network events, especially those
that a�ect all paths to a site, would cause hundreds or
thousands of noti�cations to a single user. Apart from the
inconvenience this would cause it adds additional load to
the network, and personnel who may have the responsibil-
ity of �xing the network, at a time when they are already
overloaded. To reduce this e�ect the user processor uses a
modi�ed exponential back o�. After the �rst message, fur-
ther triggers are accumulated for 5 minutes and delivered
in a single email message. If messages keep arriving they
are accumulated for longer times, as shown in table I.
The user processor also has a maintenance role. Each

instance of the user processor maintains a persistent data
structure of information about users, including the paths
that they are watching. When required new detector in-
stances are created by the user processor. When users no

?

gap
data

variant

Summary

?

Sample

selector

Trigger Sample

statistics

events

trigmger
elevation

parameters

x y z

trigger

statistics

RTT Sample

trigger

cancel

trigger
counterQuarantine

Fig. 6. Plateau Detector

longer watch a path, the appropriate detector is informed
and it will, if necessary, deallocate itself.

V. Algorithms

The core of the system is the event detection algorithms
and the main algorithm is the plateau detector. The
plateau detector watches a path for signi�cant changes in
the base RTT. By base RTT we mean a change in most
of the RTT values measured. Transient spikes do not con-
tribute to a change in the base RTT unless they occur
frequently.
By signi�cant we mean a change that is large enough to

be of interest. Signi�cance is, in part, determined by the
nature of the data. Changes which occur frequently are
not of interest. Signi�cance is also determined by the user
of the event detection system who chooses parameters that
control the degree of variation from normal that is needed
to cause a trigger.

A. Plateau Detector

The plateau detector gets its name from a common ex-
ample of a signi�cant change in the base RTT where a step
in the RTT occurs at a particular time. All values after that

time are based on the new, higher, level. Figure 10 has an
example of a short plateau at about midnight 8/9 January.
A plateau does not have to return to the original value to
be detected by the plateau detector. Further, although the
detector takes its name from this common example, a well
de�ned step is not necessary for an event to be detected.
Any signi�cant change in the RTT is satisfactory. For ex-
ample the change that occurs on Saturday 13th January in
�gure 10 is also detected by the plateau detector.
The plateau detector algorithm has several mechanisms

that interact. A precise discussion of all these mechanisms
simultaneously would be unnecessarily clumsy. Instead we
begin with an overview of the main elements, omitting
some of the details for clarity. These details will be added
as re�nements later in the discussion. Of necessity, some
of the descriptions at the beginning of this discussion are
simpli�cations and may not reveal the complete situation.
The plateau detector is based around two windows, the

summary window and the sample window. The summary
window is used to characterise the normal state of the path.
Samples for the previous period are stored in the summary
window. The number of samples stored in the summary
window is determined by a user set parameter. A small
number of days is common. The mean and variance of the
summary window are used by the trigger selector to decide
how an incoming sample should be treated.
As samples arrive they are passed into the summary win-

dow unless it appears that the sample might form part of
a trigger. In this case, the sample is stored in the sample
window. The decision if a sample potentially forms part
of a trigger is made by the trigger selector. The selector
makes this decision on the value of the sample, the mean
and variance of the summary window, and on parameters
that the user has chosen. To be chosen as a potential trig-
ger a sample must exceed the mean plus the variance times
the user selected sensitivity.

RTT > samplemean + (samplevariance � sensitivty) (1)

As we noted above, a plateau trigger requires a change
in the base RTT; a single measurement is not suÆcient
to cause a trigger. Instead, a trigger is generated when
a number of samples that meet equation (1) are received.
The required number of samples is another user parameter.
Each time a sample that ful�ls (1) is received a counter is
incremented. If this counter is non-zero and a sample that
does not meet (1) is received the counter is decremented. If
the counter reaches the user parameter trigger duration a
trigger is generated. If the counter returns to zero the trig-
ger is aborted. In either case, data in the sample window
is passed to the summary window.

Missing Samples

Sometimes a RTT can't be measured. This could be
because there is no functioning path between the monitor,
or because the monitor is not operating. This creates gaps
in the data set like the one on Saturday 20 Jan in the
dataset in �gure 10.

When a gap occurs the algorithm compresses time so
that the gap is covered over. In e�ect that period of time
is ignored and processing continues as if it did not exist.

Outliers

In summary, as we have described it so far, a trigger
is generated when there are enough samples that exceed
statistics generated from the summary window. This ap-
proach works well in many situations but some sequences
of input cause undesirable triggers, or cause desired trigger
to be missed. We introduce re�nements to deal with these
in the following paragraphs.
The mean and variance are susceptible to extreme out-

liers. If a very large sample arrives it contributes a lot of
weight to the mean and variance of the summary window,
in
ating these values and causing triggers to be less likely.
One solution to this problem is to use a di�erent statis-

tic than the mean. In particular, the median is much more
stable in the presence of modest numbers of outliers. We
have not adopted this approach for two reasons. Firstly,
calculating the median requires signi�cantly more machine
resources than the mean because a sorted list of the sam-
ples must be maintained. Secondly, there is no equivalent
statistic for the variance.
Given the nature of plateau detection it is appropriate

to discard outliers. Outliers are identi�ed as samples that
exceed twice the trigger value contained in (1).

RTT > samplemean+(samplevariance�sensitivty�2) (2)

The algorithm can not simply discard samples that
meet (2) because they might be the beginning of a new,
much higher base RTT. To deal with outliers, the sample
window contains two sub-components which bu�er di�er-
ent types of trigger samples. The �rst bu�er (the trigger

sample bu�er) stores measurements that meet (1) but not
(2). These samples will eventually be passed to the sum-
mary window. The second bu�er (the quarantine) stores
samples that meet (2). These are counted as part of the
trigger but will only be passed to the summary bu�er if
the trigger is successful. If the trigger fails samples stored
in the quarantine are discarded.

Low Variation Prohibition

HPC networks are intended to give good performance.
To this end, their capacity normally exceeds the load they
carry by a large margin. This is a design feature (not an
indication of under use) and the implication can be see
clearly in delay plots like that in �gure 7. Indeed, some
paths show less that 1ms RTT variation for days at a time.
Long periods of stable behaviour intermixed with occa-

sional variation in RTT introduces a new, but similar prob-
lem to outliers in the data. After a long stable period even
large variations in the RTT have little impact on the mean
and variance. To avoid this problem only samples that vary
signi�cantly from the current mean contribute to the new
mean and variance.

Fig. 7. Friday, 12 Jan

As each sample is inserted into the summary window it
is checked to see if it lies within � 20% of the mean. If it
does it is not included into the summary statistics. Unlike
samples missing from the original data set, the sample still
occupies a space within the window and is passed along
with the rest of the data, eventually being removed when
it has been in the summary window for the time set by the
user as the window size.
When a trigger is active (i.e. when the sample window

is not empty) this mechanism is inhibited, and all samples
are passed to one or other of the summary window bu�ers.
So, in summary, new data is compared against the mean

and variance of data (in the summary window) that shows
variation from the norm. We believe that a human looking
at the RTT graphs does much the same thing, subcon-
sciously ignoring the stable periods and focusing on those
that vary from the norm. Without this re�nement the de-
tector triggers much more frequently in situations that ap-
pear to be little di�erent to the surrounding data.

Minimum Trigger Level

If the mean is very stable, and small (say < 20ms), it is
possible that a trigger could represent just a few millisec-
onds variation. The low variation prohibition, described
above does not prohibit these events because it is based on
a percentage variation from the mean. When the mean is
small, small variations are permitted.
Such events are unlikely to be of interest and we �lter

them out, after the main trigger mechanism has occurred.

Trigger Elevation

Once an event has been triggered the data that caused
the event is transfered from the sample window bu�ers to
the summary window. However, the summary window is
normally 3 orders of magnitude bigger than the sample
window and this new data has little immediate e�ect. If
the change in base RTT is a long term one, eventually the
summary window will adjust to the new data. In the mean
time new triggers will be repeatedly generated.
This is an undesirable behaviour, because the user has

already been noti�ed of this new RTT level. To inhibit
these subsequent triggers the trigger threshold is temporar-
ily raised to the largest value in the samples that caused
the current trigger, plus 20%. Although there might be an
outliers in the trigger it is not of concern here. It is ex-
pected that the user will investigate the path that caused
the trigger and will be aware of the RTTs, including the

maximum, even if it is much larger than the other RTTs
that caused the trigger.
The raised trigger lasts for one full summary window

duration after which time it is removed. Further triggers
during this time (which can only result from the base RTT
increasing beyond the raised trigger threshold) raise the
trigger threshold further and start a new timeout period.

Estimated Running Statistics

Although the mean and variance do not require a lot
of resources to calculate for a particular data set doing so
over a moving window requires storage of the data for the
duration of the window. The AMP system collects more
than 1Gb of new data a day. Roughly half of that is RTT
data. If many paths are watched a lot of memory will
be used. We expect some users to be interested in the
overall health of the system. Such a user might select all
paths but with a low sensitivity and long summary window
(say 7 days) so that only most unusual events are reported.
Storing all the samples in memory would require several
gigabytes of RAM, for this one user. Because this memory
is divided into many small data sets, and each data set is
changed each minute as new samples arrive and old ones
are removed, these RAM requires are not easily mutable
into disk storage.
To reduce memory usage the data that makes up the

windows is not stored. Instead estimates of the window's
mean and variance are used. These estimates are:

Mean:.

if(n < windowSize) n = n+ 1

else
P�

x =
P�

x�

P
�

x

n

P�
x =
P�+x

�x� = total

n

(3)

Variance:.

if(n < windowSize) n = n+ 1

else
P�

x =
P�

x�

P
�

x

n
P�

x2 =

P
�

x
2

n

P�
x2 =

P�
x2 + x2

�2� = fsum�

x

2

�
P�2

n(n� 1)

(4)

Calculation of these estimates is complicated by the pres-
ence of omitted samples as described in V-A. When we
described the sample window earlier we described it con-
ceptually with samples arriving at one end and being elim-
inated from the other. Some of these samples are omitted
from the mean and variance. When they enter and leave
the summary window there is no change to the statistics
or the components used to calculate the statistics. This is
easy to emulate with the approximations described above
when a sample enters the window. However, there is no
way to tell when an omitted sample leaves the window.

The information needed to determine when an omitted
sample leaves the summary window is maintained in a dou-
bly linked list of tuples. The �rst member of the tuple indi-
cates whether this tuple describes a set of omitted samples
or samples that contributed to the mean. The other mem-
ber is a count that gives the number of entries of that type
at this point in the sequence.

When a new sample is inserted into the summary window
the tuple at the head of the list is checked. If its type
(`omitted' or `included') matches that of the new sample
the tuple's counter is incremented. If it doesn't match a
new tuple is created and linked into the list.

The reverse process occurs when a sample is to be re-
moved from the window. The tuple at the tail of the list
is checked. If the type is `included' the summary statistics
are updated. If the type is `omitted' then the summary
statistics are not updated. In either case the counter is
decremented and, if it becomes zero, the tuple is removed
from the list.

The need to keep a list of this type works against the
motivation for introducing estimated running statistics, i.e.
to reduce the memory usage of the system. However, the
worst case memory usage of the algorithm described here is
about the same as keeping all summary data (one slightly
larger node per sample). In most cases there are long runs
of omitted or included sample and the memory use of the
list will be quite small.

A.1 Parameters

There are three parameters that the user can select.
These are:

1. Sensitivity: The variance multiplier.
2. Trigger Duration: The number of samples that must
exceed the threshold.
3. Adaptability: The size of the summary window.

In the following paragraphs we describe the impact each
of these has on the operation of the algorithm and give
some hints for setting the parameter.

A.1.a Sensitivity. Sensitivity sets how big the change has
to be for a trigger to occur. The sensitivity is multiplied
by the variance (the square of the standard deviation) and
added to the mean to generate the basic trigger threshold.
A small number (say 1 or 2) is a good place to start with
this parameter.

A.1.b Trigger Duration. Trigger duration controls how
long the RTT needs to have changed before a trigger is sig-
nalled. Larger values are more conservative about report-
ing an event. Shorter values report events more quickly,
but may be a�ected by noise. Because samples that don't
exceed the threshold reduce this count quite small values
can be used. 5 { 10 samples is a good starting place.

A.1.c Adaptability. There are two opposing factors in
choosing the size of the sample window. A very short sam-
ple window will mean that regular variations (such as the
diurnal variations that are common on commodity Inter-
net connections) will cause frequent triggers. On the other

differentiator

?

gap
data

variant

Summary

?

Sample

selector

Trigger Sample

statistics

events

trigmger
elevation

parameters

x y z

trigger

statistics

RTT Sample

trigger

cancel

triggercounterQuarantine

data
RTT

notification
event

abs(dRTT/dt)

Fig. 8. Example Path

hand a very long trigger will take a long time to adjust to
a change in the base RTT.
If the data being monitored exhibits diurnal character-

istics then at least 1 1
2
days should be used. If the week-

end/weekday behaviour is di�erent at least 3 days is rec-
ommended. It is possible that values in excess of 7 days
could be useful if the data shows high loads on particular
days of the week as might be the case if there are weekly
backups, although we have not experienced this. For con-
nections with no noticeable diurnal behaviour smaller val-
ues of adaptability will allow the system to adjust more
quickly.

B. Jitter Detector

The jitter detector is based on the plateau detector with
a pre-processor that numerically di�erentiates the data be-
fore passing it to the plateau detector. After the data has
been di�erentiated the sign is discarded and the resulting
absolute values are passed into the plateau detector. The
procedure is shown in �gure 8. An example of the di�erent
stages of transformation is is shown in �gure 11.

C. Loss Detector

The loss detector is simpler that the other detectors be-
cause the acceptable state for loss varies less than for RTT
and jitter. The architecture of the loss detector is shown
in �gure 9. Data indicating the RTT or a loss is feed into
the system. This is converted into 0 for a successful RTT
measurement and 1 for a loss. An estimated running mean,
similar to equation (3), is maintained as an estimate of the
loss. When the loss exceeds the threshold indicated by the
user a trigger occurs and the trigger level is elevated, as
described in the plateau algorithm.

VI. Example

This section shows an example of the plateau algorithm
in operation. It also gives an example of how the data
is modi�ed by the variance algorithm before being passed
into the plateau detector.
Figure 10 shows the RTT for the path between the Star-

tap and Virginia Polytechnic Institute AMP monitors dur-

?x y

parameters

triggers

loss window

approximate
running mean

RTT Sample

parameters

Fig. 9. Loss Architecture

ing January 2001. This data was chosen for the example
because it contains a number of interesting characteristics
that demonstrate features of the event detection system,
not because it is typical of an HPC path. It is actually
very unusual; most HPC paths show very little variation.
Routing errors account for some of the variation in this
data.

The results of running the plateau detector on this data
with the following parameters are included below.

� Sensitivity = 1 variance
� Trigger Duration = 10 samples
� Adaptability 3 days

The events that were detected are marked with arrows
in �gure 10 and are also shown in tabular form below.

Trigger

Number Time

1 Jan 4 14:21:03
2 Jan 8 23:44:02
3 Jan 13 13:02:08
4 Jan 13 17:59:09
5 Jan 14 17:05:08
6 Jan 14 18:55:15
7 Jan 18 19:55:12
8 Jan 22 16:25:08
9 Jan 26 12:13:02
10 Jan 30 19:41:03

Note that the same plateau algorithm parameters are
used through out the example. The �rst and second tigers
di�er greatly. The �rst trigger has picked out an event that
is only a little greater than the surrounding variation while
the second is vastly di�erent. The �rst could be suppressed
by decreasing the sensitivity (increasing the number of vari-
ances). The second is likely to be detected whatever the
value of sensitivity and adaptability. A very long trigger
duration could suppress it because it is a relatively short
event.

Fig. 10. Example Path

Event 3 occurs at a much lower RTT than event 2,
demonstrating the adaption of the algorithm. The second
trigger on Saturday 13 Jan (event 4) occurs because the
base RTT continues to grow beyond the raised threshold
created when the �rst event that day (trigger 3) occurred.
This is appropriate because the user needs to be noti�ed
that the RTT has increased signi�cantly since the previous
noti�cation.

Events 5 and 6 are similar to 3 and 4 and event 7 is
similar to event 3. Event 8 mirrors event 1.

The second to last event (event 9 on Friday 26 Jan) is
unusual. It appears to be lower than the peaks of the pre-
vious day. In part this is because of the summary nature
of the graphs. Careful examination of the data revealed
that the peaks on Jan 25 are indeed higher but they are

Fig. 11. Jitter Processing

short spikes, while those on Jan 26 are longer. The Jan 25
peaks are not quite long enough to cause a trigger and are
treated as transients. While lower sensitivity would remove
this trigger it is interesting to re
ect on the binary nature
of the trigger mechanism. When the data is such that the
trigger is near it operation point the presence or absence of
a trigger is arbitrary. This is inherent in the nature of noti-
�cation. It would be possible to generate a trigger strength
that indicating how close to the trigger operating point the
trigger was generated. Trigger 1 would have a small value
while trigger 2 would have a large one. However, eventually
a user must either be noti�ed or not noti�ed.

Jitter

Figure 11 shows the transformations on data in the vari-
ance detector before it is fed to the embedded plateau de-
tector. Note that periods of little change have been trans-
formed to low values while periods of change have higher
values. For a particularly salient example look at the ele-
vated RTT period between 16:00 and 18:00 which becomes
close to zero after the transformation because it is a period
of little change.

VII. Performance

To test the performance of our initial implementation
we created a system with 14400 event detectors and fed
it with 5 days data for one path (Jan 1 to Jan 5 of the
Startap/Virginia Polytechnic Institute trace shown in �g-
ure 10. The data was read from a �le and, within the test
program, was replicated and fed to all 14400 detectors.

The parameters were set to the same values as the ex-
ample above, i.e.
� Sensitivity = 1 variance
� Trigger Duration = 10 samples
� Adaptability 3 days
This creates a situation similar to monitoring all paths

with a single set of parameters. The program took 2m:28s
to run. Memory use stabilised after 3 days data was pro-
cessed at 209Mb. These results are pleasing and suggest
that while high memory use is an issue CPU use is not. It
is hard to say if the memory required might become a limit
in a practical system. A suitable machine might have 2Gb
of memory allowing 10 complete sets of detectors on the
data. This seems likely to be adequate, although spending
e�ort reducing the memory usage might be valuable.

VIII. Implementation Status

Achieving automatic event detection has proved to be
an elusive goal in practice. The system described in this
paper has been arrived at through experimentation and
is based, in part, on four previous implementations all of
which had limitations. These implementations were based
on di�erentiation, process charts and a similar approach to
the current system.
Versions of all the components of the system described

here have existed in at lease one of these systems. The cur-
rent implementation is still under construction and, at the
time of writing, consisted of the plateau detector (which
was used to produce the results described in sections VI
and VII) and most of the user processing module, but not
the external user interface (the persistent data store is im-
plemented). The real time data interface is also complete.
The plateau detector is the most complex part of the

system and its operation is hard to understand without an
implementation. Having completed this component we do
not expect any major problems implementing the rest of
the system.

IX. Conclusions

A practical automatic event detection would greatly en-
hance active measurement systems by allowing them to
change their mode of operation from user polling to mea-
surement system generated alerts.
After several unsuccessful attempts we have re�ned our

methodology to the point where laboratory tests of auto-
matic event detection appear to be bearing fruit. While
the system has a design philosophy, based around compar-
ing the statistics in a sample and a summary window, re-
�nements were required to make the system robust. These
were developed, in part, through experimentation with real
data sets which highlighted limitations.
Although there is still implementation work remaining,

we are reasonably con�dent that this will not present any
unexpected challenges. It seems much more likely that,
once the system is deployed, practical use of it will raise
new issues.
In this paper have focused on the AMP active measure-

ment system but it is likely that other active measurement

systems would also bene�t from a similar system. Before
deploying a similar event detector on an active measure-
ment system thought needs to be given to the load gener-
ated by the system. The critical parameters are the num-
ber of paths and the likely pro�le of paths being selected
for event detection because these in
uence memory usage.
The performance of the existing implementation suggests
that total data set size is of less importance. As far as
we know, AMP is the largest system of its type so having
developed the detector for AMP it seems likely that it will
handle the workload of other active measurement systems.

Acknowledgements

The authors would like to acknowledge the work of
Pieter van Dijk, an undergraduate student at the Univer-
sity of Waikato, who implemented a previous algorithm for
event detection, including the window concept.

References

[1] A.J. McGregor and H-W. Braun, \Balancing cost and utility in
active monitoring: The AMP example.," INET 2000, July 2000,
also at http://byerley.cs.waikato.ac.nz/ tonym/papers/inet2000.

[2] J.A. Brown, A.J. McGregor, and H-W. Braun, \Network perfor-
mance visualisation: Insight through animation," PAM2000 Pas-
sive and Active Measurement Workshop, pp. 33{41, Apr. 2000,
also at http://byerley.cs.waikato.ac.nz/ tonym/papers/pam2000-
cichlid.PS.

[3] http://moat.nlanr.net/AMP/.
[4] A.J. McGregor, H-W. Braun, and J.A. Brown, \The NLANR net-

work analysis infrastructure," IEEE Communications Magazine
special issue on network measurement, pp. 122{128, May 2000,
also at http://byerley.cs.waikato.ac.nz/ tonym/papers/ieee-
comms.PS.

[5] http://moat.nlanr.net/.
[6] http://www.caida.org/.
[7] http://moat.nlanr.net/Software/Cichlid.

