

Particle Physics & Astrophysics

The Reconfigurable Cluster Element
An I/O System On Chip

Cluster Element (CE) User Guide

Document Version: 0.9
Document Issue: 3
Document Edition: English
Document Status: First release to reviewers
Document ID: XXX-TD-xxxxx
Document Date: December 18, 2008

Stanford Linear Accelerator Center (SLAC)
2575 Sandhill Road
Menlo Park California, 94025 USA

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
December 18, 2008 Version/Issue: 0.9/3

page 2 First release to reviewers

This document has been prepared using the Software Documentation Layout Templates that have been
prepared by the IPT Group (Information, Process and Technology), IT Division, CERN (The European
Laboratory for Particle Physics). For more information, go to http://framemaker.cern.ch/.

First release to reviewers page 3

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Abstract Version/Issue: 0.9/3

Abstract

To be written.

Hardware compatibility

This document assumes the following hardware revisions: TBD.

Intended audience

TBW.

Conventions used in this document

Certain special typographical conventions are used in this document. They are documented
here for the convenience of the reader:

• Field names are shown in bold and italics (e.g., respond or parity).

• Acronyms are shown in small caps (e.g., SLAC or CDS).

• Hardware signal or register names are shown in Courier bold (e.g., RIGHT_FIRST or
LAYER_MASK_1)

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
References Version/Issue: 0.9/3

page 4 First release to reviewers

References

1 Preliminary Product Specification of the Xilinx Virtex-4 Family Overview, dated
June 17, 2005

2 Infiniband Architecture Specification Volume 1, Release 1.2. Dated October 2004
(final release).

3 Xilinix Virtex-4 Family Overview, Preliminary Product specification, dated
February 10, 2006

First release to reviewers page 5

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Document Control Sheet Version/Issue: 0.9/3

Document Control Sheet

Table 1 Document Control Sheet

Document Title: The Reconfigurable Cluster Element Cluster Element (CE) User Guide

Version: 0.9

Issue: 3

Edition: English

ID: XXX-TD-xxxxx

Status: First release to reviewers

Created: February 9, 2002

Date: December 18, 2008

Access: Z:\Private\DTK\RCE\UG\V5\frontmatter.fm

Keywords: CSC ROD

Tools DTP System: Adobe FrameMaker Version: 6.0

Layout
Template:

Software Documentation
Layout Templates

Version: V2.0 - 5 July 1999

Content
Template:

-- Version: --

Authorship Coordinator: Michael Huffer, SLAC

Written by: Michael Huffer

Reviewed by: N/A

Approved by: N/A

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Document Status Sheet Version/Issue: 0.9/3

page 6 First release to reviewers

Document Status Sheet

Table 2 Document Status Sheet

Title: The Reconfigurable Cluster Element Cluster Element (CE) User Guide

ID: XXX-TD-xxxxx

Version Issue Date Reason for change

0.1 0 4/16/2009 Initial draft

0.9 3 5/28/2014 Corrected typos and figures 5 and 35. Corrected Table 9.

First release to reviewers page 7

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Table of Contents Version/Issue: 0.9/3

Table of Contents

Abstract . 3

Hardware compatibility . 3

Intended audience . . 3

Conventions used in this document . . 3

References . 4

Document Control Sheet . . 5

Document Status Sheet . 6
. . 11

List of Tables . 13

Chapter 1
Overview . 15

1.1 Introduction . 15
1.2 The CE (Cluster Element) . 16
1.3 Frames . 17

1.3.1 Frame size . 17
1.3.2 Frame header and payload 18
1.3.3 Frame type . 18

1.4 Register Conventions . 18
1.4.1 FIFO access . 19
1.4.2 Fields . 19

1.5 Plugs and Sockets . 20

Chapter 2

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Table of Contents Version/Issue: 0.9/3

page 8 First release to reviewers

The Plug/Socket Interface . 23

2.1 Overview . 23
2.1.1 Outbound Header Transfer Engine 24
2.1.2 Outbound Payload Transfer Engine 25
2.1.3 Outbound Frame Descriptors 26
2.1.4 Inbound Header Transfer Engine 28
2.1.5 Inbound Payload Transfer Engine 28
2.1.6 Inbound Frame Descriptors 30

2.2 Outbound Interface . 31
2.2.1 Transactions . 34

2.2.1.1 Free descriptor . 34
2.2.1.2 Transmit frame with only header 34
2.2.1.3 Transmit frame . 35
2.2.1.4 Transmit and rendezvous frame 37

2.3 Inbound interface . 38
2.3.1 Transactions . 41

2.3.1.1 Free descriptor . 41
2.3.1.2 Flush frame payload 41
2.3.1.3 Receive frame payload 42
2.3.1.4 Receive payload and rendezvous frame 43
2.3.1.5 Rendezvous frame 44

2.4 Management . 45
2.4.1 Transitions . 46

2.4.1.1 Online to offline . 46
2.4.1.2 Offline to online . 46
2.4.1.3 Offline to disabled 46
2.4.1.4 Disabled to offline 46

2.4.2 Operations . 47
2.4.2.1 Plug-in reset . 47
2.4.2.2 Bringing a plug-in online 47
2.4.2.3 Reset a plug-in while online 47

2.5 Registers . 48
2.5.1 Outbound Free-List . 48
2.5.2 Outbound Work-List . 49
2.5.3 Inbound Pending-List . 50
2.5.4 Inbound Work-List . 52
2.5.5 Plug-in Management . 53

2.6 Interrupt Sources . 53

Chapter 3
The Rendezvous Interface . 55

3.1 Overview . 55

First release to reviewers page 9

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Table of Contents Version/Issue: 0.9/3

3.1.1 Rendezvous and extended context 57
3.1.2 Rendezvous and frame transfer-fault 58

3.2 Channel Interface . 59
3.3 Registers . 60

3.3.1 Rendezvous Pending-List 60
3.3.2 Transfer-fault Pending-List 61

3.4 Interrupt Sources . 62

Chapter 4
The Interrupt Interface . 65

4.1 Interrupt Sources . 65
4.1.1 Interrupt Groups . 66
4.1.2 Interrupt Remapping . 66

4.2 Registers . 68
4.2.1 Source remap . 68
4.2.2 Source Group Enables . 68
4.2.3 Source group disables . 69

Chapter 5
The Bootstrap Support Interface . 71

5.1 Overview . 71
5.2 Registers . 72

5.2.1 I2C Signal . 72
5.2.2 Configuration . 72

5.3 Interrupt Sources . 73

Appendix A
Utility Free-list Interface . 75

A.1 Registers . 75
A.1.1 Allocate from Utility Free-List 76
A.1.2 Return to Utility Free-List 77

A.2 Interrupt Sources . 77

Appendix B
Register Map . 79

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Table of Contents Version/Issue: 0.9/3

page 10 First release to reviewers

First release to reviewers page 11

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Version/Issue: 0.9/3

List of Figures

Figure 1 p. 16 RCE block diagram

Figure 2 p. 17 CE block diagram

Figure 3 p. 21 Block diagram of the Plug wrapper

Figure 4 p. 24 Block diagram of the Socket and its interfaces

Figure 5 p. 27 Outbound frame descriptors.

Figure 6 p. 31 Inbound frame descriptors.

Figure 7 p. 33 Outbound descriptors and instructions.

Figure 8 p. 34 Free outbound descriptor (opcode = 0)

Figure 9 p. 35 Transmit outbound frame with only header (opcode = 1)

Figure 10 p. 36 Transmit outbound frame (opcode = 2)

Figure 11 p. 37 Transmit and rendezvous outbound frame (opcode = 3)

Figure 12 p. 40 Inbound descriptors and instructions.

Figure 13 p. 41 Free inbound descriptor (opcode = 0)

Figure 14 p. 42 Flush inbound frame payload (opcode = 1)

Figure 15 p. 42 Receive inbound frame payload (opcode = 2)

Figure 16 p. 43 Receive inbound payload and rendezvous frame (opcode = 6)

Figure 17 p. 44 rendezvous descriptor (opcode = 4)

Figure 18 p. 49 Returned value from outbound free-list.

Figure 19 p. 49 Outbound instruction.

Figure 20 p. 51 Returned value from inbound pending-list.

Figure 21 p. 52 Inbound instruction.

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Version/Issue: 0.9/3

page 12 First release to reviewers

Figure 22 p. 53 Plug-in Management Register

Figure 23 p. 56 Block diagram of the Rendezvous Interface

Figure 24 p. 58 Socket descriptor, rendezvous channel and context

Figure 25 p. 59 Rendezvous with transfer fault

Figure 26 p. 60 Block diagram of the Rendezvous Channel

Figure 27 p. 61 Rendezvous extended context register

Figure 28 p. 61 Transfer fault register

Figure 29 p. 66 Block diagram of an Interrupt Group

Figure 30 p. 67 Block diagram of the Interrupt interface.

Figure 31 p. 68 Source Interrupt remap register

Figure 32 p. 69 Interrupt group enables

Figure 33 p. 70 Interrupt group disables

Figure 34 p. 71 Block diagram of the Boot Support Interface

Figure 35 p. 72 I2C Signal

Figure 36 p. 72 BSI Configuration

Figure A.1 p. 75 The utility Free-list

Figure A.2 p. 76 Value removed from utility free-list.

Figure A.3 p. 77 Value inserted to utility free-list.

First release to reviewers page 13

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
List of Tables Version/Issue: 0.9/3

List of Tables

Table 1 p. 5 Document Control Sheet

Table 2 p. 6 Document Status Sheet

Table 3 p. 32 Outbound opcodes

Table 4 p. 39 Inbound Opcodes

Table 5 p. 45 Plug-in state

Table 6 p. 48 Socket Register Map

Table 7 p. 54 Socket Interrupt Source Map

Table 8 p. 62 Rendezvous Interrupt Source Map

Table 9 p. 65 Interrupt sources

Table 10 p. 67 Interrupt group address and interrupt lines

Table A.1 p. 76 Utility Free-list Register Map

Table A.2 p. 78 Free-list Interrupt Source Map

Table B.1 p. 79 Register Map

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
List of Tables Version/Issue: 0.9/3

page 14 First release to reviewers

First release to reviewers page 15

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 1 Overview Version/Issue: 0.9/3

Chapter 1

Overview

1.1 Introduction

For the purposes of this document a Protocol-Plug-In is defined as simply an arbitrary set of
application specific logic, coresident with an RCE’s FPGA fabric, but which, requires the
exchange of information between it and its corresponding RCE. In turn, that requirement
implies the necessity for a common, abstract communication mechanism between plug-in and
RCE. That abstract model is the Plug and Socket. The Plug is a set of Core IP, provided by the
system to the user which wraps a common communication interface around their specific
plug-in. Once wrapped, that plug-in can subsequently, independent of implementation or
specific function, be “plugged into” one of the four (4) predefined Sockets contained on an RCE,
thus enabling communication between it and its RCE. The relationship between the RCE, its
sockets and plug-ins and their corresponding plugs is illustrated in Figure 1:

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 1 Overview Version/Issue: 0.9/3

page 16 First release to reviewers

TBD

1.2 The CE (Cluster Element)

TBD. The relationship between the CE, its sockets and its plug-ins is illustrated in Figure 2:

Figure 1 RCE block diagram

DKT/FIGURES/RCE_BLOCK-V2

JTAG

BSI (I2C)

Ethernet
Plug-In

Application
Specific

RESET

READY

Partitioned logic

Partitioned logic

CE DDR3
(1 GByte)

Micro-SD
Flash

64 GBytes

Network
Plug-In

Plug-In

Application
Specific

Plug-In

Application
Specific

Plug-In

Application
Specific

Plug-In

Application
Specific

Plug-In

Application
Specific

FPGA Fabric

First release to reviewers page 17

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 1 Overview Version/Issue: 0.9/3

TBD

1.3 Frames

Data are exchanged between CE and plug-in as indivisible units of Frames. A frame is simply a
set of arbitrary data characterized by content, size and type. Frames sent by the CE to a plug-in
for transmission are outbound frames. Frames received by a plug-in and sent to the CE are
inbound frames. Outbound frames are described in Section 2.2 and inbound frames in
Section 2.3.

1.3.1 Frame size

A frame’s size is always specified in units of bytes (8-bits). Frames are allowed to vary in size
from transfer to transfer and/or by specific plug-in. The minimum sized frame, whether
inbound or outbound, is one (1) byte while the maximum sized frame is determined by the
specific plug-in.

Figure 2 CE block diagram

DKT/FIGURES/CE_BLOCK-V2

JTAG

SD
Controller

DDR3
1 Gbyte

Memory
Controller

Network
Plugin

BSI

Ethernet

INTERCONNCT

Micro-SD
Flash

64 Gbytes

Processor
Dual-Core

CORTEX A-9

application specific plug-ins

Application Specific Plugins

interrupt

ACP

ACP Frame
Inbound

Interface

Interrupt
Management

Interface

Frame
Outbound

Interface

AXI

AXI

AXI

AXI

RESET

Configuration
Bootstrap

READY MIO

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 1 Overview Version/Issue: 0.9/3

page 18 First release to reviewers

1.3.2 Frame header and payload

TBD

1.3.3 Frame type

A frame’s Type is a small1 enumeration assigned to a frame. The enumeration for an outbound
frame would be assigned (typically) by plug-in specific software in the CE, while for an
inbound frame that assignment is the responsibility of the plug-in. Enumerations classify a
frame’s contents and in turn that classification may be used to vector a frame to its
appropriate content specific processing. For an inbound frame that processor is within the
plug-in, while for an outbound frame that processor is (typically) plug-in specific software in
the CE.

For example, assume a plug-in that requires configuration information from the CE before it
may transfer frames. To satisfy that requirement the appropriate configuration information
could be built and sent to the plug-in packaged as an outbound frame. The plug-in would
differentiate configuration frames from transmission frames by assigning a different
enumeration to each type. Or, as a further example, assume the same plug-in accumulates
state information as it transfers frames, for example, the number of frames it has transmitted
or received. The CE wishes to sample those counters. In such a case the CE builds and sends to
the plug-in an outbound frame requesting the current value of that counter. The plug-in
responds by sampling that counter, saving that sample within an inbound frame and sending
that frame back to the CE. Plug-in specific software on the CE would differentiate that frame
from frames received by the plug-in through different enumeration values.

1.4 Register Conventions

The firmware interface to the CE consists of registers mapped to the processor’s GPO AXI bus
(see Appendix B, "Register Map"). Registers on this bus are all thirty-two (32) bits wide.
Registers are accessed through either load or store instructions whose target is the address
of the specified register. Load instructions are used to read a register and Store instructions
are used to write a register. Although all of I/O space is nominally marked read/writable, side
effects may occur to a accessed register which is naturally read or write only. Specifically for
write-only registers load instructions will return an indeterminate value and for read-only
registers store instructions will fail and the value to be written is silently discarded.

1. Contained in a 4-bit field.

First release to reviewers page 19

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 1 Overview Version/Issue: 0.9/3

1.4.1 FIFO access

Many registers are in fact mapped to FIFOS. Side effects to these types of registers may occur
depending on access type and whether the FIFO’s read or write port is mapped to the bus.
Specifically, for a register mapped to a FIFO’s write port:

— The FIFO is treated as a Write-Only register.

— Store instructions to a non-empty FIFO insert one, 32-bit entry onto the FIFO.

— Store instructions to a full FIFO fail. The state of the FIFO is unchanged and the value
to be written is silently discarded.

— Load instructions return an indeterminate value. The state of the FIFO is unchanged.

And for a register mapped to a FIFO’s read port:

— The FIFO is treated as a Read-Only register.

— Load instructions to a non-empty FIFO remove one entry from the FIFO and return that
entry as a single, 32-bit value. The low-order bit of the returned value is always zero
(0).

— Load instructions to a empty FIFO return a single, 32-bit value. The low-order bit of the
returned value is always one (1). The remaining high-order 31 bits are unspecified,
but should be zero (0). The state of the FIFO is unchanged.

— Store instructions fail. The state of the FIFO is unchanged and the value written is
silently discarded.

1.4.2 Fields

Many, if not most of the registers described in this document are further broken down into
fields, where a field is specified as a bit offset and length (in number of bits). Any field used as
a boolean has a width of one (1) bit. A value of one (1) is used to indicate its set or true sense
and a value of zero (0) to indicate its clear or false sense. Field numbering (bit offsets) for
registers are such that zero (0) corresponds to a register’s Least-Significant-Bit (LSB) and
thirty-one (31) corresponds to a register’s Most-Significant-Bit (MSB). Bit offsets are always
specified in decimal, unless otherwise noted. There are four types of generic fields:

Not defined: Undefined fields are identified as Must Be Zero (MBZ) and are illustrated blued
out. MBZ fields will:

— read back as zero

— ignore writes

— reset to zero

Read/Write: Read/Write fields will, on Reset, be set to zero.

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 1 Overview Version/Issue: 0.9/3

page 20 First release to reviewers

Selective Set and Clear (SSC): SSC fields are used where it is necessary to change one or more
fields of a register and leave the remaining fields unchanged1. These fields will
always have a complementing Enable field. This field will have the same width as
its corresponding SSC field. The Enable field for any arbitrary SSC field is
computed by shifting the field’s offset left by 16 bits (decimal). An Enable field is
illustrated lightly blued-out. It satisfies the following conventions:

— may only be set, clearing the field is ignored

— reads back as zero

SSC fields will:

— ignore writes, unless their corresponding field enables are also asserted

— reset to zero, unless otherwise documented

Read-Only: Read-only fields are illustrated lightly blued-out with their value. Read-Only fields
will:

— ignore writes

— reset to zero, unless otherwise documented

1.5 Plugs and Sockets

The RCE specifies a common framework for the exchange of information between application
specific logic and the CE. That framework is based on a Plug and Socket model. In that model
the Plug is a set of common Core IP provided by the framework which an application uses to
wrap their specific logic. Any logic so wrapped is called Plug-Specific-Logic (PSL) while the
combination of plug wrapper and PSL is called a Plug-in.

In turn, the CE contains a set of predefined Sockets. A socket has two functions, it:

— Provides a site to connect a plug-in to the CE

— Defines an I/O model for software resident on the CE’s processor to send and receive
arbitrary data from a connected plug-in.

Once wrapped, all PSLs, independent of their logic, appear and function the same to the CE.
That is, they all share a common interface which allows their logic to “plug in” to any one of
the CE’s four available sockets. Once plugged in, that logic is able to transparently exchange
information between it and the CE.

The relationship between the CE with its sockets and the plug-in with its plug and application
specific logic is illustrated in Figure 3:

1. Sometimes referred to as indivisible read/modify/write.

First release to reviewers page 21

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 1 Overview Version/Issue: 0.9/3

TBD

Figure 3 Block diagram of the Plug wrapper

DKT/FIGURES/RCE/UG/PLUG/INTERFACE

Plugin Specific Logic

CE

SocketnPortn
Plug

wrapper
InterconnectProcessor

Interface

PlugIn

External
I/O

PLUG_OB_LINE[71:0]

PLUG_OB_PENDING
PLUG_OB_LINE_RD

PLUG_IB_LINE[71:0]

PLUG_IB_NRDY

PLUG_IB_LINE_WRT

PLUG_OB_CLK

PLUG_IB_CLK

PLUG_IB_HEADER

PLUG_ONLINE

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 1 Overview Version/Issue: 0.9/3

page 22 First release to reviewers

First release to reviewers page 23

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

Chapter 2

The Plug/Socket Interface

2.1 Overview

The socket is the firmware interface responsible for mediating frame transfer between
processor software and plug-in. Figure 4 below is a block diagram illustrating the relationship
between processor code, socket and plug-in:

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 24 First release to reviewers

Inside the socket are four engines, two to manage outbound frame transfers and two to
manage inbound transfers. Each engine operates completely independently, allowing for
concurrent inbound and outbound transfers. Each of the four engines is briefly summarized
below.

2.1.1 Outbound Header Transfer Engine

In conjunction with the outbound payload transfer engine described in Section 2.1.2 below,
the outbound header transfer engine moves outbound frames from processor to plug-in for
transmission. Its principal responsibility is to transfer a frame header from descriptor to
plug-in.

Both outbound header transfer engine and outbound payload transfer engine coordinate their
operation though their socket’s outbound pending-list. The pending-list is a 512 entry FIFO with
its write port connected to this engine and its read port connected to the payload engine.
Entries in this list correspond to the contents of an outbound descriptor’s header (see
Section 2.1.3).

Figure 4 Block diagram of the Socket and its interfaces

DKT/FIGURES/RCE/UG/SOCKET/BLOCK

Plugin

AXI
GPO

write

write

Work
List

OB

AXI
GPO

AXI
GPO read

write

write

read

Work
List

IB

Pending
IB

List

read

Socket

NE

Online

IB frame headers

read

Free
OB

List

AE

Socket
Abstraction

Services

Plugin
Abstraction

Services
Application

AXI
GPO

Processor software

Inbound

Transfer
Engine

Payload

Inbound

Transfer
Engine

Header

Free
List

IB

write

read

IB frame payloads

Pending
List

OB

write

read

Outbound

Transfer
Engine

Header

Outbound

Transfer
Engine

Payload

OB frame header

OB frame payload

AXI
GPO

Plugin Management

Enable

WF

WF

To interrupt interface To rendezvous router

read

read

write

write

Rendezvous

OB

Pending

List

Rendezvous

IB

Pending

List

First release to reviewers page 25

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

A transfer is initiated by scheduling an outbound instruction to the engine. An instruction
contains both opcode and operand. The instruction’s opcode determines the specific operation
required of the engine. The set of operations the engine supports is enumerated within Table 3
on page 32.

The operand describes the frame to transmit. That description is contained in a small, fixed
size buffer called an outbound frame descriptor and is described in Section 2.1.3. Descriptors are
allocated from the socket’s free-list. The free-list is a 512 entry FIFO with its write port
connected to the engine and its read port mapped to a GPO AXI register. Reading from this
register allocates a descriptor.

Once allocated and initialized outbound instructions are queued to the engine’s work-list for
execution. The work-list is also a 512 entry FIFO. However, unlike the socket’s free-list its write
port is mapped to a GPO AXI register and its read port is connected to the engine. Writing this
register inserts an entry on the FIFO and consequently queues an instruction. Note that as the
work-list is a FIFO, instructions are always executed in the order they were queued.

The engine executes one instruction at a time. Execution is initiated when three conditions are
met:

— The engine is idle.

— The socket’s outbound pending-list is not full.

— The socket’s outbound work-list is not empty.

When those conditions are met, the engine removes from its work-list an entry containing the
instruction to execute. The instruction is both decoded and executed. Execution involves
inserting the header of the instruction’s descriptor onto the socket’s pending-list and copying
its body to the socket’s plug-in. After execution the engine deallocates the descriptor by
inserting it onto the socket’s free-list and returns to idle.

Note, the free and work lists allow processor software to issue transfer requests concurrently
with respect to their processing. The segregation of header and payload provides separation
of protocol processing from its content without the need to partition these functions into
either separate tasks or processes.

The outbound interface is described in further detail in Section 2.2.

2.1.2 Outbound Payload Transfer Engine

In conjunction with the outbound header engine described in Section 2.1.1 above, the
outbound payload transfer engine moves outbound frames from processor to plug-in for
transmission. Its principal responsibility is to transfer a frame’s payload from processor
memory to plug-in.

Both outbound payload transfer engine and outbound header transfer engine coordinate their
operation though their socket’s outbound pending-list. The pending-list is a 512 entry FIFO with

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 26 First release to reviewers

its read port connected to this engine and its write port connected to the header engine. Entries
in this list correspond to the contents of an outbound descriptor’s header (see Section 2.1.3).

The engine processes one header at a time. Processing is initiated when four conditions are
met:

— The engine is idle.

— The socket’s outbound pending-list is not empty.

— The socket’s plug-in is not full.

— The socket’s outbound rendezvous-pending-list is not full.

When those conditions are met, the engine removes an entry from the socket’s pending-list.
That entry contains the header contents to process. It specifies at a minimum, a reference to a
buffer containing a payload to be moved to the plug-in for transmission. First the payload is
processed. After payload processing completes, the engine will:

— Based on header, conditionally inserts a rendezvous message on the socket’s
outbound rendezvous-pending-list. This signals a rendezvous (see Section 3.1.1).

— Based on payload processing status, conditionally inserts a frame transfer-fault
message on the socket’s outbound rendezvous-pending-list. This signals a frame
transfer-fault (see Section 3.1.2).

— Returns to idle.

2.1.3 Outbound Frame Descriptors

A frame’s transmission state is maintained by the outbound frame descriptor. Its principal
function is to specify an outbound frame’s header and payload1. Descriptors are fixed size
buffers containing an integral number of quadwords2. They must also be quadword aligned
and located within the processor’s 256 KBytes of On-Chip-Memory (OCM). The socket interface
communicates descriptors through its interface by reference. A reference is expressed as a byte
offset from the starting location of the OCM. Note that location and quadword alignment
dictate that a reference is an 18-bit quantity whose low-order four (4) bits are always zero (0).

Each socket manages an ensemble of descriptors whose members are all the same size.
However for that ensemble, while their size is fixed, their number varies as a function of
socket as determined by software at processor boot time. Descriptor management is
orchestrated through a free-list held by the socket. Software allocates from this free-list and the
socket’s transfer engine returns descriptors to this free-list. See Section 2.5.1 for a discussion of
that free-list.

Descriptors contain a quadword header followed by a fixed size body. Body size is equal to the
MOH (Maximum-Outbound-Header) of a socket’s plug-in (see Section 1.3.2). A frame’s header is
always contained by value in a descriptor’s body and its payload, if present by reference in its

1. When present.

2. Sixteen (16) bytes or 128 bits

First release to reviewers page 27

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

header. Figure 5 on page 27 illustrates a hypothetical descriptor as first allocated and then
subsequently initialized and deallocated:

The figure shows that descriptor size is the sum of header and body and its body size is equal
to a plug-in’s MOH. Each allocated descriptor corresponds to a frame to be transmitted. After
allocation the descriptor is initialized. The header data for a frame is copied to the descriptor’s
body and its header contains the reference to its payload. Once initialized, the descriptor is
used to build and queue an instruction to the transfer engine for execution.

Figure 5 Outbound frame descriptors.

DKT/FIGURES/RCE/UG/SOCKET/OB/FRAME

transmitted payload data

032

03264

MOH

032 Outbound Frame

size

transmitted header data

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

032 Outbound Instruction

2 descriptor

descriptor

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 28 First release to reviewers

2.1.4 Inbound Header Transfer Engine

In conjunction with the inbound payload engine described in Section 2.1.5 below, the inbound
header transfer engine transfers received inbound frames from plug-in to processor. Its
principal responsibility is to transfer a frame’s header from plug-in to descriptor.

Both inbound header transfer engine and inbound payload transfer engine coordinate their
operation though their socket’s inbound pending-list. The free-list is a 512 entry FIFO with its
read port connected to this engine and its write port connected to the payload engine. Entries
in this list are a reference to an inbound frame descriptor. The descriptor is a small, fixed size
buffer described in Section 2.1.6. Removing from this list allocates a descriptor and inserting
onto this list frees a descriptor.

The engine processes frames one at a time. Processing is initiated when four conditions are
met:

— The engine is idle.

— The socket’s free-list is not empty.

— The engine’s pending-list is not full (see below).

— The socket’s plug-in has at least one frame to transfer.

When those conditions are met the engine allocates a descriptor from the socket’s free-list.
Once allocated, the engine moves the frame’s header from plug-in to the descriptor’s body.
and concludes by inserting a reference to the descriptor on the socket’s pending-list. The
pending-list is also a 512 entry FIFO however, its write port is connected to the engine and its
read port is mapped to a GPO AXI register. Note that as the pending-list is a FIFO, descriptors
are always received in the order they arrive at the plug-in.

To initiate processing of an inbound frame processor software reads the socket’s pending-list
register. Reading this register removes a descriptor reference from the socket’s pending-list.
Note that the pending-list FIFO has its Not-Empty flag connected to a processor interrupt.

The inbound interface is described in further detail in Section 2.3.

2.1.5 Inbound Payload Transfer Engine

In conjunction with the inbound header engine described in Section 2.1.4 above, the inbound
payload transfer engine transfers received inbound frames from plug-in to processor. Its
principal responsibility is to move a frame’s payload.

Both inbound payload transfer engine and inbound header transfer engine coordinate their
operation though their socket’s inbound free-list. The free-list is a 512 entry FIFO with its write
port connected to this engine and its read port connected to the header engine. Entries in this
list are a reference to an inbound frame descriptor. The descriptor is a small, fixed size buffer
described in Section 2.1.6. Removing from this list allocates a descriptor and inserting onto this
list frees a descriptor.

First release to reviewers page 29

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

A transfer is initiated by processor software by scheduling an inbound instruction to the
engine. An instruction contains both opcode and operand. Its opcode specifies the operation
required of the engine. The set of operations supported by an inbound engine is enumerated
in Table 4 on page 39.

The operand describes where to place in memory a received payload. That description is
contained in a small, fixed size structure called an inbound frame descriptor that is described in
Section 2.1.6. Descriptors were returned by reading from the inbound pending-list (see
Section 2.1.4).

Once allocated and initialized work instructions are queued to the engine’s work-list for
execution. The work-list is also a 512 entry FIFO. However, unlike the socket’s free-list its write
port is mapped to a GPO AXI register and its read port is connected to the engine. Writing this
register inserts an entry on the FIFO and consequently schedules an instruction. Note that as
the work-list is a FIFO, instructions are always executed in the order they were queued.

The engine executes one instructions at a time. Execution is initiated when four conditions are
met:

— The engine is idle.

— The socket’s inbound free-list is not full.

— The socket’s inbound rendezvous-pending-list is not full.

— The socket’s inbound work-list is not empty.

When those conditions are met, the engine removes from its work-list an entry containing the
instruction to execute. The instruction is decoded and executed. Execution first involves,
conditionally processing the plug-in’s payload by either transfer to memory or discard. After
payload processing the engine:

— Based on instruction, conditionally inserts a rendezvous message on the socket’s
inbound rendezvous-pending-list. This signals a rendezvous (see Section 3.1.1).

— Based on payload processing status, conditionally inserts a frame transfer-fault
message on the socket’s inbound rendezvous-pending-list. This signals a frame
transfer-fault (see Section 3.1.2).

— Based on instruction, inserts the descriptor it on the socket’s inbound free-list. This
deallocates the descriptor.

— Returns to idle.

Note, the pending and work lists allow processor software to build transfer requests
concurrently with respect to their processing. The segregation of header and payload
provides separation of protocol processing from its content without the need to partition these
functions into either separate tasks or processes.

The inbound interface is described in further detail in Section 2.3.

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 30 First release to reviewers

2.1.6 Inbound Frame Descriptors

A frame’s reception state is maintained by the inbound frame descriptor. Its principal function is
to specify an inbound frame’s header and payload1. Descriptors are fixed size buffers
containing an integral number of quadwords2. They must also be quadword aligned and
located within the processor’s 256 KBytes of On-Chip-Memory (OCM). The socket interface
communicates descriptors through its interface by reference. A reference is expressed as a byte
offset from the starting location of the OCM. Note that location and quadword alignment
dictate that a reference is an 18-bit quantity whose low-order four (4) bits are always zero (0).

Each socket manages an ensemble of descriptors whose members are all the same size.
However for that ensemble, while their size is fixed, their number varies as a function of
socket and is determined by software at processor boot time. Descriptor management is
orchestrated through a free-list held by the socket. Software allocates from this free-list and the
socket’s transfer engine returns descriptors to this free-list. See Section 2.5.1 for a discussion of
that free-list.

Descriptors contain a quadword header followed by a fixed size body. Body size is equal to the
MIH (Maximum-Inbound-Header) of a socket’s plug-in (see Section 1.3.2). A frame’s header is
always contained by value in a descriptor’s body and its payload, if present by reference in its
header. Figure 6 on page 31 illustrates a hypothetical descriptor as retrieved from the socket’s
pending-list and then subsequently initialized and deallocated:

1. When present.

2. Sixteen (16) bytes or 128 bits

First release to reviewers page 31

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

The figure shows that descriptor size is the sum of its header and body and its body size is
equal to a plug-in’s MIH. Each descriptor returned from the pending-list corresponds to one
received inbound frame and its header is contained in the descriptor’s body.

In this example the received frame contains a payload. After reception the header is decoded
to resolve the placement of the frame’s payload and once resolved a reference to the receive
buffer is copied to the descriptor’s header. The initialized descriptor is used to build the
instruction to queue to the transfer engine for execution.

2.2 Outbound Interface

As described in Section 2.1.1 a socket’s outbound interface employs its outbound work and free
list FIFOs. Consequently, its corresponding processor interface consists simply of two GPO AXI
registers (see Appendix B, "Register Map"). The read port of the free-list FIFO is mapped to a
read-only register while the write port of the work-list FIFO is mapped to a write-only register.

Figure 6 Inbound frame descriptors.

DKT/FIGURES/RCE/UG/SOCKET/IB/FRAME

received payload data

032

03264

MIH

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

size received header data
032 Inbound frame

1 descriptor

032 Inbound instruction

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

descriptor2

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 32 First release to reviewers

Therefore, for each socket the interface provides processor software with two operations:
Removal from its free-list and insertion onto its work-list. Section 1.4.1 describes the access
policy for FIFOs mapped to registers.

An entry inserted on a socket’s work-list is an outbound instruction. An instruction serves two
purposes: First, it specifies a potential transmit function. That function is encoded as an opcode
and operand. The opcode specifies the type of transfer required of the engine and the operand
is a reference to an outbound descriptor (see Section 2.1.3) containing the frame to transfer.
Second, the instruction directs the engine, once transfer is complete to return its
corresponding descriptor back to the transfer engine’s free-list. Table 3 on page 32 enumerates
the allowed transfer functions along with their associated encoding, while Section 2.5.2
defines the structure of an instruction.

Figure 7 on page 33 expresses the relationship between instruction and descriptor:

TABLE 3 Outbound opcodes

Opcode Description and transfer engine action See:

0 The instruction’s descriptor defines neither a frame nor
rendezvous. The entire contents of the instruction’s
descriptor are ignored and the engine returns the
descriptor to its free-list.

Section 2.2.1.1

1 The instruction’s descriptor specifies a frame containing
only a header. The engine transfers the frame to its corre-
sponding plug-in for transmission. On completion the
engine returns the descriptor to its free-list.

Section 2.2.1.2

2 The instruction’s descriptor specifies a frame containing
both header and payload. The engine gathers the frame
and transfers it to its corresponding plug-in for transmis-
sion. On completion the engine returns the descriptor to
its free-list.

Section 2.2.1.3

3 The instruction’s descriptor specifies a frame containing
both header and payload as well as rendezvous. The
engine gathers the frame and transfers it to its corre-
sponding plug-in for transmission. On completion, it
inserts the specified rendezvous context onto the speci-
fied rendezvous channel and returns the descriptor to its
outbound free-list.

Section 2.2.1.4

First release to reviewers page 33

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

This example illustrates an instruction to transmit a frame containing both header and
payload. This corresponds to an opcode two (2) instruction with the instructions’s descriptor
containing the frame’s header in its body and pointing to its payload in its header. Note, for this
example, the length of the frame’s header is equal to the plug-in’s MOH.

A socket’s outbound free-list is initially populated by posting opcode zero (0) instructions to
its work-list. Each instruction adds one descriptor to the socket’s free-list. Once populated,
frame transmission is a straightforward three step process:

— Allocate a descriptor by removing from the socket’s outbound free-list. The returned
value is a reference to a descriptor used to specify the frame transmitted. The
structure of a value returned from a free-list is described in Section 2.5.1.

— Convert the descriptor reference to an address. Initialize that descriptor with the
frame to be transmitted. Note that a descriptor always contains, if present, the
frame’s header by value and if present, its payload by reference. Section 2.2.1 specifies
proper construction of a descriptor’s header for each type of instruction.

— Build an outbound instruction using the initialized descriptor. Post the instruction to
the transfer engine by inserting it on the engine’s outbound work-list (see
Section 2.5.2).

Note that although the socket’s outbound transfer engine processes only one outbound
instruction at a time and always in the order requested this does not imply the processor is
necessarily blocked waiting on the transfer engine to complete. Instead, the socket’s pending
FIFO allows for an asynchronous I/O model in which instructions are queued while the engine

Figure 7 Outbound descriptors and instructions.

DKT/FIGURES/RCE/UG/SOCKET/OB/TRANSACTIONS/EXAMPLE

03264

MOH

032 Outbound Instruction

transmitted header data

size

transmitted payload data

032

2

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 34 First release to reviewers

is busy processing a transaction. The maximum number of outstanding transactions
permitted determined by the initial population of the socket’s free-list.

2.2.1 Transactions

2.2.1.1 Free descriptor

Figure 8 illustrates an instruction which does not transmit a frame and only frees a previously
allocated descriptor buffer. The instruction contains a reference to a valid outbound descriptor
(see Section 2.1.3) and an opcode (see Table 3 on page 32) with a value of zero (o). The
descriptor reference was acquired from a socket’s free-list as described in Section 2.5.1.

Note that for this type of instruction both Length and Frame Type fields are ignored by the
transfer engine, but should be zero (0). Note also that the contents of the descriptor’s header
and body are ignored by the transfer engine. This instruction serves two purposes:

— To initially populate a socket’s outbound free-list after a reset (see Section 2.2).

— To handle an error in descriptor construction which must abort transmission.

2.2.1.2 Transmit frame with only header

Figure 9 illustrates an instruction which transmits an outbound frame. However that frame is
wholly contained in the instruction’s descriptor body. The instruction contains a reference to a
valid outbound descriptor (see Section 2.1.3) and an opcode (see Table 3 on page 32) with a
value of one (1). The descriptor reference was acquired from a socket’s free-list as described in
Section 2.5.1.

Figure 8 Free outbound descriptor (opcode = 0)

DKT/FIGURES/RCE/UG/SOCKET/OB/TRANSACTIONS/FREE

064

MOH 032 Outbound Instruction

size 0

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

don’t care

First release to reviewers page 35

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

For this type of instruction both Length and Frame Type fields must contain valid values. The
Length field must:

— be expressed in units of quadwords.

— be equal to the size of the transmitted frame’s header.

— not be zero (0).

— not exceed the plug-in’s MOH (see Section 2.2).

If any of these constraints are violated the socket’s resulting behaviour is undefined.

The behaviour of a plug-in processing a frame whose type it does not support is unspecified.

2.2.1.3 Transmit frame

Figure 10 illustrates an instruction which transmits an outbound frame. That frame contains
both header and payload. The instruction contains a reference to a valid outbound descriptor
(see Section 2.1.3) and an opcode (see Table 3 on page 32) with a value of two (2). The
descriptor reference was acquired from a socket’s free-list as described in Section 2.5.1.

Figure 9 Transmit outbound frame with only header (opcode = 1)

DKT/FIGURES/RCE/UG/SOCKET/OB/TRANSACTIONS/XMT-HEADER

064

transmitted header data

MOH
032 Outbound Instruction

size

1

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 36 First release to reviewers

For this type of instruction both Length and Frame Type fields must contain valid values. The
Length field must:

— be expressed in units of quadwords.

— be equal to the size of the transmitted frame’s header.

— not exceed the plug-in’s MOH (see Section 2.2).

If any of these constraints are violated the socket’s resulting behaviour is undefined.

The behaviour of a plug-in processing a frame whose type it does not support is unspecified.

As is the case for the transmission of any outbound frame, header data is contained within the
body of the instruction’s descriptor. However, unlike an opcode 1 instruction (see
Section 2.2.1.2), zero is a valid length. If its Length field has a zero (0) value the transmitted
frame contains only payload.

The descriptor’s header contains a valid payload reference. That reference occupies the header’s
first quadword and contains two 32-bit (word) fields whose interpretation is as follows:

Payload buffer: This field contains a physical address pointing to a buffer containing the
frame’s payload. No restrictions are placed on its alignment. The transfer engine
assumes the buffer has either previously been flushed or is located in uncached
memory. Transfer behaviour is undefined if neither constraint is met. A buffer’s
length is determined by the field below.

Figure 10 Transmit outbound frame (opcode = 2)

DKT/FIGURES/RCE/UG/SOCKET/OB/TRANSACTIONS/XMT-PAYLOAD

03264

MOH

032 Outbound Instruction

transmitted header data
size

transmitted payload data

032

2

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

First release to reviewers page 37

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

Payload length: This field contains the length of the payload whose data are pointed to by the
field above. Lengths are expressed in units of bytes (8-bits) and range from a value
of zero (0) to the MOF of the plug-in associated with the socket (see Section 1.3.2).
A value of zero is allowed, but will not incur a transfer. The behaviour of a
transfer which exceeds MOF is undefined, as is the behaviour of a transfer
exceeding the processor’s physical address space.

The contents of the rendezvous reference in the descriptor’s header are ignored by the transfer
engine and need not be initialized to any known value.

2.2.1.4 Transmit and rendezvous frame

Figure 11 illustrates an instruction which transmits an outbound frame. That frame contains
both header and payload. However, once its transfer is complete the transfer engine arranges
and starts a rendezvous (see Chapter 3). The instruction contains a reference to a valid
outbound descriptor (see Section 2.1.3) and an opcode (see Table 3 on page 32) with a value of
three (3).

For this type of instruction both Length and Frame Type fields must contain valid values. The
Length field must:

— be expressed in units of quadwords.

— be equal to the size of the transmitted frame’s header.

— not exceed the plug-in’s MOH (see Section 2.2).

If any of these constraints are violated the socket’s resulting behaviour is undefined.

Figure 11 Transmit and rendezvous outbound frame (opcode = 3)

DKT/FIGURES/RCE/UG/SOCKET/OB/TRANSACTIONS/XMT-PAYLOAD-RENDEZVOUS

03264

MOH

032 Outbound Instruction

transmitted header data
size

transmitted payload data

032

3

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 38 First release to reviewers

The behaviour of a plug-in processing a frame whose type it does not support is unspecified.

As is the case for the transmission of any outbound frame, header data is contained within the
body of the instruction’s descriptor. However, unlike an opcode 1 instruction (see
Section 2.2.1.2), zero is a valid length. If its Length field has a zero (0) value the transmitted
frame contains only payload.

The descriptor’s header contains a valid payload reference. That reference occupies the header’s
first quadword and contains two 32-bit (word) fields whose interpretation is as follows:

Payload buffer: This field contains a physical address pointing to a buffer containing the
frame’s payload. No restrictions are placed on its alignment. The transfer engine
assumes the buffer has either previously been flushed or is located in uncached
memory. Transfer behaviour is undefined if neither constraint is met. A buffer’s
length is determined by the field below.

Payload length: This field contains the length of the payload whose data are pointed to by the
field above. Lengths are expressed in units of bytes (8-bits) and range from a value
of zero (0) to the MOF of the plug-in associated with the socket (see Section 1.3.2).
A value of zero is allowed, but will not incur a transfer. The behaviour of a
transfer which exceeds MOF is undefined, as is the behaviour of a transfer
exceeding the processor’s physical address space.

The descriptor’s header also contains a valid rendezvous reference. A rendezvous is described in
Chapter 3. A rendezvous reference occupies the header’s second quadword and contains two
32-bit (word) fields. Section 3.1.1 describes these two fields as well as their interpretation.

2.3 Inbound interface

As described in Section 2.1 a socket’s inbound interface employs its inbound pending and free
list FIFOs. Consequently its corresponding processor interface consists simply of two GPO AXI
registers (see Appendix B, "Register Map"). The read port of a pending-list FIFO is mapped to a
read-only register while the write port of a free-list FIFO is mapped to a write-only register.
Therefore, for each socket the interface provides processor software with two operations:
Removal from its pending-list and insertion onto its work-list. Section 1.4.1 describes the access
policy for FIFOs mapped to registers.

For each frame received from a socket’s plug-in its corresponding inbound header transfer
engine allocates a descriptor from the socket’s free-list, moves the frame’s header to the body
of the descriptor and inserts the constructed descriptor onto the engine’s pending-list.

Frames are received by removal from the engines’s pending-list. Each removed entry
corresponds to a single inbound frame. Once removed, the frame’s payload must be disposed
by the engine and the frame’s descriptor returned to the socket’s free-list. To dispose a
payload the engine can be instructed to either move it or discard it. If moved, its destination in
memory is specified as a parameter to the engine.

First release to reviewers page 39

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

Payload and descriptor disposal are bound together in a single operation by inserting an
inbound instruction onto the engine’s work-list. That instruction includes not only the
descriptor to deallocate but also an opcode specifying the engine’s disposal instructions.
Table 4 on page 39 enumerates the allowed opcodes while Section 2.5.3 defines the structure
of an instruction.

Figure 12 on page 40 expresses the relationship between instruction and descriptor:

TABLE 4 Inbound Opcodes

Opcode Description and transfer engine action See:

0 The descriptor contains neither payload nor rendezvous
information. Conditionally return the descriptor to its
socket’s free-list.

Section 2.3.1.1

1 The descriptor specifies neither receive buffer nor rendez-
vous. The engine discards (flushes) the payload of the
socket’s oldest pending inbound frame. Conditionally,
return the descriptor to its socket’s free-list.

Section 2.3.1.2

2 The descriptor specifies a receive buffer. The engine
moves the payload of its oldest pending inbound frame
to the specified receive buffer. If that payload is larger
than the receive buffer the payload is silently truncated.
Conditionally, return the descriptor to its socket’s
free-list.

Section 2.3.1.3

3 Reserved. The descriptor contains neither payload nor ren-
dezvous information. Conditionally the engine returns
the descriptor to the socket’s free-list.

N/A

4 The descriptor does not specify a receive buffer, but does
specify a rendezvous. On completion, insert the rendez-
vous context onto the rendezvous channel. Conditionally
return the descriptor to its socket’s free-list.

Section 2.3.1.5

5 Reserved. The descriptor contains neither payload nor ren-
dezvous information. Conditionally return the descrip-
tor to its socket’s free-list.

N/A

6 The descriptor specifies both a receive buffer and rendez-
vous. The engine moves the payload of its oldest pend-
ing inbound frame to the receive buffer. If the payload is
larger than the receive buffer the payload is truncated.
On completion, insert the rendezvous context onto the
rendezvous channel. Conditionally return the descriptor
to its socket’s free-list.

Section 2.3.1.4

7 Reserved. The descriptor contains neither payload nor ren-
dezvous information. Conditionally, return the descrip-
tor to its socket’s free-list.

N/A

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 40 First release to reviewers

This example illustrates the reception of a frame containing both header and payload. For this
example the length of the frame’s header is equal to the plug-in’s Maximum-Inbound-Header
(MIH).

The inbound free-list is initially populated by posting instruction zero (0) entries to the
socket’s inbound free-list. Once its free-list is populated frame reception is a straightforward
three step process:

— Wait for an inbound frame by removing an entry from a socket’s inbound
pending-list. The structure of an entry on this list is specified in Section . If the list is
not empty the returned value contains a reference to an inbound frame descriptor. It
also contains a flag indicating whether or not the frame has a payload. For this
example, that flag is assumed true.

— Convert the descriptor reference to an address. The descriptor body contains the
frame’s header. Decode the header to determine where to place the frame’s payload.
Initialize the descriptor with a reference to a buffer to receive the payload.

— Construct an instruction using the initialized descriptor. Post the instruction to the
socket’s payload transfer engine by inserting the instruction on its inbound free-list
(see Section 2.5.4).

Note that although the socket processes only a single inbound instruction at a time and
always in the order received this does not imply the processor is necessarily blocked waiting
on the transfer engine to complete. Instead, the socket’s pending FIFO allows for an
asynchronous I/O model in which transfer instructions are queued while the engine is busy
processing a transaction. The maximum number of outstanding transactions permitted
determined by the initial population of the socket’s free-list.

Figure 12 Inbound descriptors and instructions.

DKT/FIGURES/RCE/UG/SOCKET/IB/TRANSACTIONS/EXAMPLE

03264

032 Inbound Instruction

received payload data

032

MIH

size

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

received header data

2

First release to reviewers page 41

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

2.3.1 Transactions

2.3.1.1 Free descriptor

Figure 13 illustrates an instruction which does not consume an inbound payload and
conditionally frees a previously allocated inbound descriptor. The instruction contains a
reference to a valid inbound descriptor (see Section 2.1.6) and an opcode (see Table 4 on
page 39) with a value of zero (0). The descriptor reference was acquired from a socket’s
pending-list as described in Section .

Note that the contents of the descriptor’s header and body are ignored by the transfer engine.
This instruction serves two purposes:

— To initially populate a socket’s inbound free-list after a reset (see Section 2.3).

— To free a received frame which only contains a header.

2.3.1.2 Flush frame payload

Figure 14 illustrates an instruction which discards an inbound payload and conditionally frees a
previously allocated inbound descriptor.The instruction contains a reference to a valid
inbound descriptor (see Section 2.1.6) and an opcode (see Table 4 on page 39) with a value of
one (1). The descriptor reference was acquired from a socket’s pending-list as described in
Section .

Figure 13 Free inbound descriptor (opcode = 0)

Rendezvous channelRendezvous context

Payload buffer length Payload buffer

DKT/FIGURES/RCE/UG/SOCKET/IB/TRANSACTIONS/FREE

03264

MIH

032 Inbound Instructionsize

0

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 42 First release to reviewers

Note that the contents of the descriptor’s header and body are ignored by the transfer engine.

2.3.1.3 Receive frame payload

Figure 15 illustrates an instruction which receives an inbound frame’s payload and
conditionally frees a previously allocated inbound descriptor. The instruction contains a
reference to a valid inbound descriptor (see Section 2.1.6) and an opcode (see Table 4 on
page 39) with a value of two (2). The descriptor reference was acquired from a socket’s
pending-list as described in Section .

The descriptor’s header contains a valid payload reference. That reference occupies the header’s
first quadword and contains two 32-bit (word) fields whose interpretation is as follows:

Figure 14 Flush inbound frame payload (opcode = 1)

Rendezvous channelRendezvous context

Payload buffer length Payload buffer

DKT/FIGURES/RCE/UG/SOCKET/IB/TRANSACTIONS/FLUSH

03264

MIH

032 Inbound Instructionsize

1

Figure 15 Receive inbound frame payload (opcode = 2)

DKT/FIGURES/RCE/UG/SOCKET/IB/TRANSACTIONS/RCV

received payload data

032

032 Inbound Instruction

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

2

MIH

size

03264

First release to reviewers page 43

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

Payload buffer: This field contains a physical address pointing to a receive buffer to contain the
frame’s payload. No restrictions are placed on its alignment. The transfer engine
assumes the buffer has either previously been flushed or is located in uncached
memory. Transfer behaviour is undefined if neither constraint is met. A buffer’s
length is determined by the field below.

Payload length: This field contains the length of the receive buffer described by the field
above. Lengths are expressed in units of bytes (8-bits) and range from a value of
zero (0) to the MIF of the plug-in associated with the socket (see Section 1.3.2). A
value of zero is permitted, but will discard the entire payload. If such behaviour is
required, see Section 2.3.1.2. The behaviour of a transfer which exceeds MIF is
undefined, as is the behaviour of a transfer exceeding the processor’s physical
address space.

The contents of the rendezvous reference in the descriptor’s header are ignored by the transfer
engine and need not be initialized to any known value.

2.3.1.4 Receive payload and rendezvous frame

Figure 16 illustrates an instruction which receives an inbound frame’s payload and
conditionally frees a previously allocated inbound descriptor. However, additionally, once
transfer is complete the instruction arranges and starts a rendezvous (see Chapter 3). The
instruction contains a reference to a valid inbound descriptor (see Section 2.1.6) and an opcode
(see Table 4 on page 39) with a value of six (6). The descriptor reference was acquired from a
socket’s pending-list as described in Section .

The descriptor’s header contains a valid payload reference. That reference occupies the header’s
first quadword and contains two 32-bit (word) fields whose interpretation is as follows:

Figure 16 Receive inbound payload and rendezvous frame (opcode = 6)

DKT/FIGURES/RCE/UG/SOCKET/IB/TRANSACTIONS/RCV-RENDEZVOUS

received payload data

032

032 Inbound Instruction

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

6

MIH

size

03264

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 44 First release to reviewers

Payload buffer: This field contains a physical address pointing to a receive buffer to contain the
frame’s payload. No restrictions are placed on its alignment. The transfer engine
assumes the buffer has either previously been flushed or is located in uncached
memory. Transfer behaviour is undefined if neither constraint is met. A buffer’s
length is determined by the field below.

Payload length: This field contains the length of the receive buffer described by the field
above. Lengths are expressed in units of bytes (8-bits) and range from a value of
zero (0) to the MIF of the plug-in associated with the socket (see Section 1.3.2). A
value of zero is permitted, but will discard the entire payload. If such behaviour is
required, see Section 2.3.1.2. The behaviour of a transfer which exceeds MIF is
undefined, as is the behaviour of a transfer exceeding the processor’s physical
address space.

The descriptor’s header also contains a valid rendezvous reference. A rendezvous is described in
Chapter 3. A rendezvous reference occupies the header’s second quadword and contains two
32-bit (word) fields. Section 3.1.1 describes these two fields as well as their interpretation.

2.3.1.5 Rendezvous frame

Figure 17 illustrates an instruction which arranges and begins a rendezvous (see Chapter 3)
and conditionally frees a previously allocated inbound descriptor. The instruction contains a
reference to a valid inbound descriptor (see Section 2.1.6) and an opcode (see Table 4 on
page 39) with a value of four (4). The descriptor reference was acquired from a socket’s
pending-list as described in Section .

The contents of the payload reference in the descriptor’s header are ignored by the transfer
engine and need not be initialized to any known value. However, the descriptor’s header does
contains a valid rendezvous reference. A rendezvous is described in Chapter 3. A rendezvous
reference occupies the header’s second quadword and contains two 32-bit (word) fields.
Section 3.1.1 describes these two fields as well as their interpretation.

Figure 17 rendezvous descriptor (opcode = 4)

DKT/FIGURES/RCE/UG/SOCKET/IB/TRANSACTIONS/RENDEZVOUS

032 Inbound Instruction

Payload bufferPayload buffer length

Rendezvous channelRendezvous context

4

MIH

size

03264

First release to reviewers page 45

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

2.4 Management

The socket interface provides the capability to reset a plug-in as well as conditionally mask off
its inbound data. Those capabilities are expressed by modelling plug-in behaviour as an
abstract Finite State Machine with three states. Those states are:

Online: This is a plug-in’s nominal state. In this state a plug-in receives inbound data and
transmits outbound data. The plug-in may not be reset from this state.

Offline: This is a plug-in’s setup state. In this state a plug-in ignores inbound data,
however continues to receive and process outbound frames. While in this state
inbound frames solicited through an outbound frame may be posted to the socket.
A plug-in may be reset only from this state. This state is used to resolve two race
conditions: First, the race between the setup of a plug-in with its use and second,
the race between a plug-in reset and its subsequent use.

Disabled: This is a transitory state. In this state the plug-in ignores both inbound and
outbound data. A plug-in is reset from this state. Note: this is a plug-in’s initial
state. It is brought to this state after POR1 and connection to its corresponding
socket.

The Plug-in Management register of a socket’s interface is used to manage its corresponding
plug-in. The register contains two, single-bit fields. Setting and clearing these fields drives the
plug-in through its various states, while reading the register returns the plug-in’s current
state. Table 5 on page 45 enumerates the correspondence between register fields and state,
while the register itself is specified and described in Section 2.4.1.

Note that a state which has the plug-in online, but not enabled is prohibited. As well, only
four transitions are allowed between the three states. These transitions are enumerated and
described in Section 2.4.1. The socket interface enforces the allowed states and their
corresponding transitions. Any transaction which would set register fields to an invalid state
is silently rejected with the plug-in remaining in its current state.

1. Power-On-Reset

TABLE 5 Plug-in state

Register Fields

Corresponding StateEnabled Online

False False Disabled

True False Offline

False True N/A

True True Online

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 46 First release to reviewers

The three canonical operations necessary to successfully manage a plug-in are implemented
through a combination of sequencing state and transition. Those operations are described in
Section 2.4.2.

2.4.1 Transitions

2.4.1.1 Online to offline

The plug-in is in its online state (see Table 5 on page 45). To transit the plug-in to offline:

— Clear the Online field of a socket’s plug-in register. Clearing this field will cause the
plug-in to emit an inbound marker frame. The format and structure of this frame is
plug-in specific.

— Wait for the plug-in’s inbound marker frame. This operation is plug-in specific. Once
a marker is received the plug-in’s inbound pipeline is drained and will not emit
further frames until the plug-in is brought online.

— Exit.

2.4.1.2 Offline to online

The plug-in is in its offline state (see Table 5 on page 45). To transit the plug-in to online:

— Set the Online field of a socket’s plug-in register.

— Exit.

2.4.1.3 Offline to disabled

The plug-in is in its offline state (see Table 5 on page 45). To transit the plug-in to disabled:

— Clear the Enabled field of a socket’s plug-in register. Clearing this field holds the
plug-in within reset, where it ignores inbound data as well as outbound frames.

— Exit.

2.4.1.4 Disabled to offline

The plug-in is in its disabled state (see Table 5 on page 45). To transit the plug-in to offline:

— Set the Enabled field of a socket’s plug-in register. Setting this field removes the
plug-in from being held in reset, triggering its plug-in specific reset logic.

— Exit.

First release to reviewers page 47

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

2.4.2 Operations

2.4.2.1 Plug-in reset

A plug-in must be offline in order to be reset. To reset:

— Transit the plug-in to disabled (see Section 2.4.1.3).

— Transit back to offline (see Section 2.4.1.4).

— Return the plug-in’s reset status (this operation is plug-in specific) and exit.

2.4.2.2 Bringing a plug-in online

The plug-in begins its life disabled with its inbound pipeline drained. To bring the socket and
its corresponding plug-in online:

— Transit the plug-in to offline (see Section 2.4.1.4). This transition will reset the plug-in.

— Initialize the plug-in’s corresponding socket.

— If the plug-in did not reset, transit back to disabled (see Section 2.4.1.3) and exit.

— Initialize the plug-in as appropriate (this operation is plug-in specific).

— If the plug-in did not initialize, transit back to disabled (see Section 2.4.1.3) and exit.

— Transit the plug-in to online (see Section 2.4.1.2).

— Exit.

2.4.2.3 Reset a plug-in while online

The plug-in begins in its online state. To reset:

— Transit the plug-in to offline (see Section 2.4.1.1).

— Reset the plug-in (see Section 2.4.2.1).

— If the plug-in did not reset, exit.

— Reinitialize the plug-in as appropriate (this operation is plug-in specific).

— If the plug-in did not initialize, exit.

— Transit the plug-in to online (see Section 2.4.1.2).

— Exit.

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 48 First release to reviewers

2.5 Registers

The interface defines four (4) sockets. Each socket is accessed through five registers located in
the processor’s GPO AXI space. Appendix B specifies the base address for each of the four
sockets. Table 6 on page 48 enumerates the relative address of the five registers with respect to
any one of the four bases.

2.5.1 Outbound Free-List

The interface for a socket’s outbound free-list is a single, read/only I/O register bound to the read
port of the OB-Free-List FIFO described in Figure 4. Access to this interface is through a Load
instruction whose target is the physical address of this register. Table 6 on page 48 specifies
the relative address of this register and using Appendix B, its absolute address. The access
policy for a FIFO mapped to a read/only register is described in Section 1.4.1. Note that the
register’s associated FIFO is mapped to an interrupt source as discussed in Section 2.6.

If, when read, the free-list was not empty, one entry is removed and its value returned. That
value will always have its low-order bit clear (0). If clear the returned value is a reference to a
descriptor to be used as the operand for an outbound instruction (see Section 2.5.2).
Conversely, if, when read, the free-list was empty, the low-order bit of the returned value is set
(1).

The structure of a returned value is illustrated in Figure 18 below:

TABLE 6 Socket Register Map

Offset1

1. In (decimal) bytes

Description Access See:

00 Outbound Free-List Read/Only Section 2.5.1

04 Outbound Work-List Write/Only Section 2.5.2

08 Inbound Pending-List Read/Only Section 2.5.3

12 Inbound Work-List Write/Only Section 2.5.4

16 Reserved N/A N/A

20 Reserved N/A N/A

24 Reserved N/A N/A

28 Plug-in Management Read/Write Section 2.5.5

First release to reviewers page 49

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

Where:

Empty: This field is a single bit flag indicating whether or not the list was empty when
read. If the flag is false (clear), the list was not empty and the Descriptor field
described below contains a valid offset. If this flag is true (set) the list was empty.
In such a eventuality the Descriptor field will be zero (0).

Descriptor: If the Empty flag described above is false, this field contains a reference to a buffer
to be used as an instruction descriptor (see Section 2.2). A reference is expressed as a
byte offset from the beginning of the OCM. For example, this field would have a
value of zero (0) for a buffer located at the OCM’s first address. Note that as all
descriptors are quadword aligned the low-order four bits of this field will be zero. If
the Empty flag described above is true, this field will be zero (0).

2.5.2 Outbound Work-List

The interface for a socket’s outbound work-list is a single, write/only I/O register bound to the
write port of the OB-Work-List FIFO described in Figure 4. Access to this interface is through a
Store instruction whose target is the physical address of this register. Table 6 on page 48
specifies the register’s relative address and using Appendix B, its absolute address. The access
policy for a FIFO mapped to a write/only register is described in Section 1.4.1. Note that the
register’s associated FIFO is mapped to an interrupt source as discussed in Section 2.6.

The value written to this register is an outbound instruction. Outbound instructions are
described in Section 2.2 and their structure illustrated in Figure 19 below:

Where:

Figure 18 Returned value from outbound free-list.

Descriptor

0432 18

DKT/FIGURES/RCE/UG/SOCKET/OB/REGISTERS/FREELIST

MBZMBZ

1

Empty

Figure 19 Outbound instruction.

Frame Type
Opcode

Descriptor
Length

0432 26 1830

DKT/FIGURES/RCE/UG/SOCKET/OB/REGISTERS/INSTRUCTION

MBZ

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 50 First release to reviewers

Descriptor: This field contains a reference to the instruction’s descriptor (see Section 2.2). A
reference is expressed as a byte offset from the beginning of the OCM. For example,
this field would have a value of zero (0) for a reference to a descriptor located at
the OCM’s first address. Note that as all descriptors are quadword aligned the
low-order four bits of this field must be zero. A descriptor’s structure is expected
to be consistent with the Opcode field described below. If not the case the result is
unpredictable.

Length: This field contains the length of the outbound header data within the descriptor
whose reference is contained in the Descriptor field described above. Lengths are
expressed in units of quadwords (64-bits) and range from a minimum of zero (0) to
a maximum equal to the MOH of the socket’s corresponding plug-in (see
Section 2.2). A length of zero indicates the frame consists of only payload. If the
Opcode field is zero, the value of this field is ignored, but should be set to zero (0).

Frame Type: This field contains the type (see Section 1.3.3) of the frame contained within the
instruction’s corresponding descriptor. A frame’s type is expressed as a small
enumeration ranging from zero (0) to fifteen (15). The permissible enumerations as
well as their interpretation are entirely determined by the socket’s corresponding
plug-in. If the Opcode field is zero, the value of this field is ignored, but should be
zero (0).

Opcode: This field specifies the operation requested of the socket’s outbound transfer
engine. The descriptor referenced by the Descriptor field above is assumed
formatted appropriately for the operation. The opcode is a small enumeration
ranging from zero (0) to three (3). The mapping between enumeration and
operation is specified in Table 3 on page 32.

2.5.3 Inbound Pending-List

The interface for a socket’s inbound pending-list is a single, read/only I/O register bound to the
read port of the IB-Pending-List FIFO described in Figure 4. Access to this interface is through a
Load instruction whose target is the physical address of this register. Table 6 on page 48
specifies the relative address of this register and using Appendix B, its absolute address. The
access policy for a FIFO mapped to a read/only register is described in Section 1.4.1. Note that
the register’s associated FIFO is mapped to an interrupt source as discussed in Section 2.6.

If, when read, the pending-list was not empty, one entry is removed and its value returned.
That value will always have its low-order bit clear (0). If clear the returned value is a description
of an inbound frame (see Section 2.3). Conversely, if, when read, the pending-list was empty,
the low-order bit of the returned value is set (1).

The structure of a returned value is illustrated in Figure 20 below:

First release to reviewers page 51

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

Where:

Empty: This field is a single bit flag indicating whether or not the list was empty when
read. If the flag is false (clear), the list is not empty and the Descriptor field
described below contains the offset to a buffer containing header data for an
incoming frame. If this flag is true (set) the list is empty. In such a case all other
fields described below will be zero (0).

Descriptor: If the Empty flag described above is false, this field contains a reference to a
descriptor. That descriptor contains the header of an inbound frame (see
Section 2.3). A reference is expressed as a byte offset from the beginning of the
OCM. For example, this field would have a value of zero (0) for a buffer located at
the OCM’s first address. Note that as all descriptors are quadword aligned the
low-order four bits of this field will be zero. If the Empty flag described above is
true, this field will be zero (0).

Frame Type: This field contains the type (see Section 1.3.3) of the frame associated with the
header whose reference is contained in the Descriptor field described above. A
frame’s type is expressed as a small enumeration ranging from zero (0) to fifteen
(15). The permissible enumerations as well as their interpretation are entirely
determined by the socket’s corresponding plug-in. If the Empty field is true, the
value of this field will be zero (0).

Error: This field contains a single bit flag signalling whether or not the received header
data are in error. If this flag is False (clear), header data were received error free. If
this flag is True (set), header data were received in error. In such a case the
header’s structure may vary from its error free form. For example, the header
data could contain further information on the cause of the error. Note: the value
of this flag does not effect the Payload flag described below. A frame with an
header in error may still contain a payload. If the Empty field is true, the value of
this field will be zero (0).

Figure 20 Returned value from inbound pending-list.

Descriptor

0432 18

DKT/FIGURES/RCE/UG/SOCKET/IB/REGISTERS/FRAME

MBZMBZ

1

Empty

Error
Payload

Frame Type

3031 26

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 52 First release to reviewers

Payload: This field contains a single bit flag specifying whether the frame whose header
data were returned in the buffer referenced by the Descriptor field described above
has an associated payload. If this flag is False (clear), the header data contained in
the header buffer is the entire frame. If this flag is True (set), the frame contains
both header and payload. The data for that payload is obtained as described in
Section 2.3. If the Empty field is true, the value of this field will be zero (0).

2.5.4 Inbound Work-List

The interface for a socket’s inbound work-list is a single, write/only I/O register bound to the
write port of the IB-Work-List FIFO described in Figure 4. Access to this interface is through a
Store instruction whose target is the physical address of this register. Table 6 on page 48
specifies the relative address of this register and using Appendix B, its absolute address. The
access policy for a FIFO mapped to a write/only register is described in Section 1.4.1. Note that
the register’s associated FIFO is mapped to an interrupt source as discussed in Section 2.6.

The value written to this register is an inbound instruction. Inbound instructions are described
in Section 2.3 and their structure illustrated in Figure 21 below:

Where:

Descriptor: This field contains a reference to the instruction’s descriptor (see Section 2.2). A
reference is expressed as a byte offset from the beginning of the OCM. For example,
this field would have a value of zero (0) for a reference to a descriptor located at
the OCM’s first address. Note that as all descriptors are quadword aligned the
low-order four bits of this field must be zero. A descriptor’s structure is expected
to be consistent with the Opcode field described below. If not the case the result is
unpredictable.

Opcode: This field specifies the operation requested of the socket’s inbound transfer
engine. The descriptor referenced by the Descriptor field described above is
assumed formatted appropriately for the operation. The opcode is a small
enumeration ranging from zero (0) to seven (7). The mapping between
enumeration and operation is specified in Table 4 on page 39.

Keep: This field contains a single bit flag specifying whether the descriptor referenced
by the Descriptor field described above should be returned to its free-list. If this
flag is False (clear), the descriptor is returned to its free-list. If this flag is True (set),
the descriptor is not returned to its free-list.

Figure 21 Inbound instruction.

Descriptor
Opcode

0432 28 1831

DKT/FIGURES/RCE/UG/SOCKET/IB/REGISTERS/INSTRUCTION

MBZMBZ

Keep

First release to reviewers page 53

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

2.5.5 Plug-in Management

The interface to manage a socket’s plug-in is a single, read/write I/O register. Access to this
interface is through either a Load or Store instruction whose target is the physical address of
this register. Table 6 on page 48 specifies the relative address of this register and using
Appendix B, its absolute address. The access policy for a read/write register is described in
Section 1.4.1. The structure of this register is illustrated in Figure 22 below:

Where:

Enabled: This field is a single bit flag indicating whether or not the plug-in is enabled. If the
flag is true (set), the plug-in is enabled. If this flag is false (clear) the plug-in is
disabled. Table 5 on page 45 enumerates how the value of this field effects plug-in
state.

Online: This field is a single bit flag indicating whether or not the plug-in is online. If the
flag is true (set), the plug-in is online. If this flag is false (clear) the plug-in is offline.
Table 5 on page 45 enumerates how the value of this field effects plug-in state.

2.6 Interrupt Sources

The interface defines four (4) sockets and in turn, each socket defines four (4) different interrupt
sources. An interrupt source is a firmware signal which, while asserted and not masked may
trigger a processor interrupt. Each source is uniquely identified by its source address. Table 9
on page 65 specifies the base source address for each of the four sockets. Table 7 on page 54
enumerates the relative address of a source with respect to any one of the four bases. See
Chapter 4 for a discussion of the interrupt interface.

Figure 22 Plug-in Management Register

Online

0232

DKT/FIGURES/RCE/UG/SOCKET/STATE/PLUGIN

MBZ

1

Enabled

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 2 The Plug/Socket Interface Version/Issue: 0.9/3

page 54 First release to reviewers

TABLE 7 Socket Interrupt Source Map

Offset Description of signal
Associated

register

0 Outbound Free-List is Almost-Empty Section 2.5.1

1 Outbound Work-List is Full. This corresponds
to the Write-Fault (WRERR) flag of the FIFO.

Section 2.5.2

2 Inbound Pending-List is Not-Empty Section 2.5.3

3 Inbound Work-List is Full. This corresponds to
the Write-Fault (WRERR) flag of the FIFO.

Section 2.5.4

First release to reviewers page 55

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 3 The Rendezvous Interface Version/Issue: 0.9/3

Chapter 3

The Rendezvous Interface

3.1 Overview

The rendezvous interface allows an entity receiving or transmitting a frame to coordinate the
completion of its transfer with either itself or another entity. Such coordination is a frame
rendezvous. The entity receiving or transmitting a frame is said to arrange the rendezvous and
the entity waiting on the frame’s completion is said to attend the rendezvous. Associated with
each declared rendezvous is a 30-bit message called rendezvous context. Context is used to
uniquely tag or identify a specific rendezvous. Context is established by an arranger and
delivered to an attendee when a rendezvous’s corresponding frame transfer is complete.

For example, a buffer is allocated for an outbound frame to transmit. Only when the frame is
completely transferred can its associated buffer be safely deallocated. In such a case, a
rendezvous could be used to coordinate the end of transmission with the buffer’s
deallocation, with the rendezvous context containing the frame buffer’s address.

The interface supports up to thirty-two (32) concurrent rendezvous. Each independent
rendezvous is associated with a rendezvous channel. Channels are numbered and addressed
from zero (0) to thirty-one (31). The channel number is used to coordinate rendezvous between
arranger and attendee.

As a rendezvous is associated with a frame transfer the socket interface described in Chapter 2
is used by the arranger to establish and initiate a rendezvous, while the channel interface
described in Section 3.2 is used by the attendee to wait for context at a rendezvous. The first
thirty-one (31) rendezvous channels are available for generic rendezvous as outlined in
Section 3.1.1, while the last channel1 is reserved for transfer faults as outlined in Section 3.3.2.

In using the rendezvous interface two cases must be considered. In the first and dominant
case, the socket is able to successfully complete the frame transfer associated with the
rendezvous. This case is discussed in Section 3.1.1. In the second case, for various pathological

1. Numbered thirty-one (31).

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 3 The Rendezvous Interface Version/Issue: 0.9/3

page 56 First release to reviewers

reasons likely outside the arranger’s control a socket cannot successfully transfer a frame.
This results in a transfer fault. For example, a DMA error occurs in moving a frame from
memory to plug-in or from plug-in to memory. Transfer faults are discussed in Section 3.3.2.

A block diagram of the interface is illustrated in Figure 23:

The interface connects the four sockets to thirty-two rendezvous channels through a router.
The router itself serves only the implementation and has no public interface. It functions to
both route and transfer rendezvous context from its socket to its appropriate rendezvous
channel. A socket contains two 512 entry FIFOs, each independently buffering a socket’s
in-flight inbound and outbound rendezvous requests. Each entry on a FIFO contains the
context and destination information for a single rendezveous.The read port of each FIFO is
connected directly to the router. Each channel also contains a 512 entry FIFO, but whose write
rather than read port is directly connected to the router. Entries in its FIFO contains only
rendezvous context.

Therefore, the router must respond fairly to up to eight asynchronous input sources and
distribute their context to up to thirty-two destinations. To do so, arbitration is conducted in a
round-robin fashion using a priority sorted queue whose entries correspond to its eight
sources. A destination is considered ready while its FIFO is not-full. A source is considered ready
while its FIFO is not-empty and the destination pointed to by the entry at its FIFO’s head is also
ready. The Both engines communicate though a socket’s inbound free-list. router performs one
transfer at a time. It initiates a transfer when two conditions are met: First, the router is idle
and second, one or more of its sources are ready. When these conditions are met the router will:

Figure 23 Block diagram of the Rendezvous Interface

DKT/FIGURES/RCE/UG/RUNDOWN/BLOCK

Router

IB

To interrupt interface

Socket0

Socket1

Socket2

Socket3

Channel0

Channel1

Channel2

Channel3

Channel4

Channel27

Channel28

Channel29

Channel30

Channel31`

OB

AXI
GPO

AXI
GPO

AXI
GPO

AXI
GPO

AXI
GPO

AXI
GPO

AXI
GPO

AXI
GPO

AXI
GPO

AXI
GPO

IB

OB

IB

OB

IB

OB

First release to reviewers page 57

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 3 The Rendezvous Interface Version/Issue: 0.9/3

— Remove the highest priority, ready source from its priority queue.

— Remove an entry from the source’s FIFO.

— Determine from the entry the rendezvous destination.

— Determine from the entry the rendezvous context.

— Insert rendezvous context on destination’s FIFO.

— Re-insert the removed source at the tail of its priority queue.

3.1.1 Rendezvous and extended context

Rendezvous are arranged through either the outbound socket interface described in Section 2.2
or the inbound socket interface described in Section 2.3. Independent of transfer direction
however, a rendezvous is always attended through the channel interface discussed in
Section 3.2 below. To execute a rendezvous both arranger and attendee must a-priori agree on
usage of a rendezvous channel. How that agreement is reached is beyond the scope of the
rendezvous interface; however, once in agreement an arranger will reference the channel
through its number and an attendee through its context register as described in Section 3.3.1.

Arranger and attendee must also agree on rendezvous context. Context is always established
(written) by the arranger and always acquired (read) by the attendee. Specifically, context is
written using the socket interface and read using the channel interface.

To arrange a rendezvous requires either an outbound or inbound descriptor (see Sections 2.1.3
and 2.1.6) as well as a channel number. With descriptor and channel allocated a rendezvous is
established by simply writing the rendezvous channel number and necessary context into the
descriptor. Figure 24 illustrates the relationship between descriptor, rendezvous channel and
context:

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 3 The Rendezvous Interface Version/Issue: 0.9/3

page 58 First release to reviewers

Note that for any given descriptor the channel number is written starting at the zeroth-bit
offset of its third word and the context is written starting at the second-bit offset of its fourth
word. Any unused field of either word is set to zero (0). Once established a rendezvous begins
by posting the descriptor to its appropriate inbound or outbound work-list. When the work
associated with the descriptor completes the socket delivers both context and status to the
specified rendezvous channel. The attendee waits for the rendezvous context by reading the
context register of a rendezvous channel. That channel corresponds to the channel number
written to the descriptor (see Section 3.3.1). The extended context returned by reading this
register contains two fields:

— The 30-bit rendezvous context written into the descriptor by its arranger.

— A error flag indicating whether the socket used with the rendezvous failed to transfer
its associated frame. The flag is set if either the socket’s plug-in or its transfer engine
fails to transfer. In addition, if a transfer engine failed a fault message is generated
and sent by the socket to the fault channel as described below in Section 3.1.2.

3.1.2 Rendezvous and frame transfer-fault

As a transfer fault, if present, occurs after a rendezvous begins, a rendezvous which results in
a fault is arranged and handled by its attendee no differently then any normal rendezvous as
described above in Section 3.1.1. The only difference is the returned extended context, where
in this case its Error field (see Section 3.3.1) will always be set.

Figure 24 Socket descriptor, rendezvous channel and context

DKT/FIGURES/RCE/UG/SOCKET/RENDEZVOUS/EXAMPLE

0

5

Payload bufferPayload buffer length

socket

0

3264

02

Error
Context

post

complete

read032 12

descriptor

extended context

Context

rendezvous channel [0:30]

First release to reviewers page 59

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 3 The Rendezvous Interface Version/Issue: 0.9/3

However, a socket engine incurring a fault has one additional responsibility. In such a case,
the engine must, in addition to its normal rendezvous handling, also generate and send a
second message to the rendezvous interface. This message is used to characterize the fault.
Unlike a normal rendezvous initiated by the arranger this message is always sent,
independent of engine or socket to a fixed, well known rendezvous channel, which in this
case is the last channel or number thirty-one (31). This process is illustrated in Figure 25:

An attendee waits on a fault message in a fashion no different then any other rendezvous. The
only difference is the rendezvous channel which is always thirty-one. Note that the fault
message specifies the engine and socket which incurred the fault as well as the reason. or
syndrome.The structure of a fault message is described in Section 3.3.2.

3.2 Channel Interface

TBD.

Figure 26 is a block diagram illustrating the channel interface:

Figure 25 Rendezvous with transfer fault

DKT/FIGURES/RCE/UG/SOCKET/RENDEZVOUS/EXAMPLE-FAULT

0

5

Payload bufferPayload buffer length

socket

0

3264

02

rendezvous channel [0:30]

Engine
Socket

post

complete

read
032 12

descriptor

extended context

Context

fault

1

rendezvous channel [31]
read

Syndrome

032 1246

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 3 The Rendezvous Interface Version/Issue: 0.9/3

page 60 First release to reviewers

TBD

3.3 Registers

As discussed in Section 3.2 the rendezvous interface defines thirty-two (32) channels. Each
channel is accessed through a single, read/only I/O register located in the processor’s GPO AXI
space and bound to the read port of the pending-list FIFO described in Figure 26. Access to this
interface is through a Load instruction whose target is the physical address of this register. The
access policy for a FIFO mapped to a read/only register is described in Section 1.4.1. Note that
this FIFO is mapped to an interrupt source as discussed in Section 3.4.

If, when read, a pending-list was not empty, one entry is removed and its value returned. That
value will always have its low-order bit clear (0). Conversely, if, when read, a pending-list was
empty, the low-order bit of the returned value is set (1).

The interface’s set of thirty-two registers is organized as a thirty-two element vector. For
example, the vector’s fourth element contains the pending-list for Channel3.

Vector elements zero through thirty (0 - 30), when read return a value whose structure is
described in Section 3.3.1, while element thirty-one (31), when read returns the value described
in Section 3.3.2. Appendix B specifies the base address for the vector.

3.3.1 Rendezvous Pending-List

When read, the register associated with Rendezvous channels zero (0) through thirty (30)
returns a rendezvous’s extended context as described in Section 3.1.1. The returned value is
described in Figure 27 described below:

Figure 26 Block diagram of the Rendezvous Channel

DKT/FIGURES/RCE/UG/RENDEZVOUS/CHANNEL

AXI
GPO read

write

NE

To interrupt interface

From rendezvous router

List
Pending

First release to reviewers page 61

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 3 The Rendezvous Interface Version/Issue: 0.9/3

Where:

Empty: This field is a single bit flag indicating whether or not the list was empty when
read. If the flag is false (clear), the list is not empty and the Context and Error fields
described below are valid. If this flag is true (set) the list is empty. In such a case all
fields described below will also be zero (0).

Error: This field contains a single bit flag signalling whether or not the work associated
with the rendezvous completed successfully. This flag is False (clear) if that work
completed successfully and True (set) if that work failed. Note that independent
of error the Context field described below is always valid. If the Empty field is true,
this field will be zero (0).

Context: If the Empty flag described above is false, this field contains the context defined by
the arranger of the corresponding rendezvous. See Section 3.1.1 for a discussion
of meaning and usage of this field. If the Empty flag described above is true, this
field will be zero (0).

3.3.2 Transfer-fault Pending-List

When read, the register associated with Rendezvous channel thirty-one (30) returns a
rendezvous’s transfer-fault as described in Section 3.1.2. The returned value is described in
Figure 28 described below:

Where:

Figure 27 Rendezvous extended context register

Error

0232

DKT/FIGURES/RCE/UG/RENDEZVOUS/REGISTERS/ CONTEXT

1

Empty

Context

Figure 28 Transfer fault register

Engine

0632

DKT/FIGURES/RCE/UG/RENDEZVOUS/REGISTERS/FAULT

1

Empty

Socket

2

Syndrome

4

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 3 The Rendezvous Interface Version/Issue: 0.9/3

page 62 First release to reviewers

Empty: This field is a single bit flag indicating whether or not the list was empty when
read. If the flag is false (clear), the list is not empty and all fields described below
are valid. If this flag is true (set) the list is empty. In such a case all the fields
described below will be zero (0).

Engine: If the Empty flag described above is false, this field specifies whether the fault
occurred with either a socket’s inbound or outbound engine. This field is Clear (0)
if the fault occurred with the Inbound engine and Set (1) if the fault occurred with
the Outbound engine. If the Empty field is true, this field will be zero (0).

Socket: If the Empty flag described above is false, this field contains an enumeration which
identifies the socket in which the fault occurred. If the Empty field is true, this field
will be zero (0).

Syndrome: If the Empty flag described above is false, this field contains an enumeration of the
corresponding fault. If the Empty flag described above is true, this field will be zero
(0).

3.4 Interrupt Sources

The rendezvous interface defines thirty-two (32) channels (see Section 3.2). In turn, each
channel defines one (1) interrupt source. An interrupt source is a firmware signal which, while
asserted and not masked may trigger a processor interrupt. Each source is uniquely identified
by its source address. Table 8 on page 62 specifies the base address for the interrupt sources
defined by the thirty-two channels. Table 9 on page 65 enumerates the relative address of any
one source with respect to its base. See Chapter 4 for a discussion of the interrupt interface.

TABLE 8 Rendezvous Interrupt Source Map

Offset Description See:

0 Rendezvous Pending-List is Not-Empty (Channel0) Section 3.3.1

1 Rendezvous Pending-List is Not-Empty (Channel1) Section 3.3.1

2 Rendezvous Pending-List is Not-Empty (Channel2) Section 3.3.1

3 Rendezvous Pending-List is Not-Empty (Channel3) Section 3.3.1

4 Rendezvous Pending-List is Not-Empty (Channel4) Section 3.3.1

5 Rendezvous Pending-List is Not-Empty (Channel5) Section 3.3.1

6 Rendezvous Pending-List is Not-Empty (Channel6) Section 3.3.1

7 Rendezvous Pending-List is Not-Empty (Channel7) Section 3.3.1

8 Rendezvous Pending-List is Not-Empty (Channel8) Section 3.3.1

9 Rendezvous Pending-List is Not-Empty (Channel9) Section 3.3.1

First release to reviewers page 63

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 3 The Rendezvous Interface Version/Issue: 0.9/3

10 Rendezvous Pending-List is Not-Empty (Channel10) Section 3.3.1

11 Rendezvous Pending-List is Not-Empty (Channel11) Section 3.3.1

12 Rendezvous Pending-List is Not-Empty (Channel12) Section 3.3.1

13 Rendezvous Pending-List is Not-Empty (Channel13) Section 3.3.1

14 Rendezvous Pending-List is Not-Empty (Channel14) Section 3.3.1

15 Rendezvous Pending-List is Not-Empty (Channel15) Section 3.3.1

16 Rendezvous Pending-List is Not-Empty (Channel16) Section 3.3.1

17 Rendezvous Pending-List is Not-Empty (Channel17) Section 3.3.1

18 Rendezvous Pending-List is Not-Empty (Channel18) Section 3.3.1

19 Rendezvous Pending-List is Not-Empty (Channel19) Section 3.3.1

20 Rendezvous Pending-List is Not-Empty (Channel20) Section 3.3.1

21 Rendezvous Pending-List is Not-Empty (Channel21) Section 3.3.1

22 Rendezvous Pending-List is Not-Empty (Channel22) Section 3.3.1

23 Rendezvous Pending-List is Not-Empty (Channel23) Section 3.3.1

24 Rendezvous Pending-List is Not-Empty (Channel24) Section 3.3.1

25 Rendezvous Pending-List is Not-Empty (Channel25) Section 3.3.1

26 Rendezvous Pending-List is Not-Empty (Channel26) Section 3.3.1

27 Rendezvous Pending-List is Not-Empty (Channel27) Section 3.3.1

28 Rendezvous Pending-List is Not-Empty (Channel28) Section 3.3.1

29 Rendezvous Pending-List is Not-Empty (Channel29) Section 3.3.1

30 Rendezvous Pending-List is Not-Empty (Channel30) Section 3.3.1

31 Transfer-Fault Pending-List is Not-Empty (Channel31) Section 3.3.2

TABLE 8 Rendezvous Interrupt Source Map

Offset Description See:

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 3 The Rendezvous Interface Version/Issue: 0.9/3

page 64 First release to reviewers

First release to reviewers page 65

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 4 The Interrupt Interface Version/Issue: 0.9/3

Chapter 4

The Interrupt Interface

4.1 Interrupt Sources

The interrupt interface is designed to manage up to 512 independent interrupt sources, where
a source is defined as any one firmware block capable of the interrupting a processor core.
Each source is uniquely assigned and identified by a source address ranging from zero (0) to
five-hundred-eleven (511). Table 9 on page 65 summarizes assignment of source address to
firmware block.

TBD.

TABLE 9 Interrupt sources

 Offset Length Description See:

0 4 Socket0 Section 2.6

4 4 Socket1 Section 2.6

8 4 Socket2 Section 2.6

12 4 Socket3 Section 2.6

16 48 Reserved N/A

64 32 Rendezvous Pending-Lists Section 3.4

96 32 Reserved N/A

128 4 Utility Free-Lists Appendix A.2

132 60 Reserved N/A

192 1 BSI Pending-Change-List Section 5.3

193 63 Reserved N/A

256 256 User defined N/A

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 4 The Interrupt Interface Version/Issue: 0.9/3

page 66 First release to reviewers

4.1.1 Interrupt Groups

The ARM Interrupt Controller supports up to sixteen (16) interrupts from the FPGA fabric.
Clearly, this does not allow for a direct map between interrupt and source. Therefore, some
sort of source aggregation must be provided by the interface. A unit of aggregation is called a
Group and Figure 29 illustrates a group’s block diagram:

One group sums up to thirty-two (32) individual sources to form a single interrupt. To handle
the up to 512 potential sources requires sixteen groups. The interrupt from each group is
connected to one of the sixteen lines from the processor interrupt controller. Each group is
numbered and addressed from zero (0) to fifteen (15) and within a group its thirty-two sources
are addressed relative to that group and numbered from zero (0) to thirty-one (31).

For any one group the interface provides for each of its thirty-two sources to be individually
masked either on or off. The register interface to manage masking for a group is described in
Section 4.2.2 and Section 4.2.3.

4.1.2 Interrupt Remapping

Figure 30 is a block diagram illustrating the entire interrupt architecture:

Figure 29 Block diagram of an Interrupt Group

DKT/FIGURES/RCE/UG/SOCKET/INTERRUPT/GROUP
DISABLE

SOURCE1

SOURCE27

SOURCE0

SOURCE2

SOURCE29
SOURCE30
SOURCE31

SOURCE28

INTERRUPT

AXI
GPO

AXI
GPO

ENABLE

First release to reviewers page 67

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 4 The Interrupt Interface Version/Issue: 0.9/3

Note the mapping between groups and interrupt controller lines is fixed. That mapping is
enumerated in Table 10 below:

Between source and group is the Remap Table. This table allows the set of 512 sources to be
arbitrarily mapped to the set of the 16 groups. It contains 512 entries, one for each source. An
entry specifies whether or not the source is mapped and if so, to which group and within that
group to which source offset. The register interface used to configure this mapping is
described in Section 4.2.1.

Figure 30 Block diagram of the Interrupt interface.

TABLE 10 Interrupt group address and interrupt lines

 Group address Interrupt line Group address Interrupt line

0 IRQF2P[0] 1 IRQF2P[1]

2 IRQF2P[2] 3 IRQF2P[3]

4 IRQF2P[4] 5 IRQF2P[5]

6 IRQF2P[6] 7 IRQF2P[7]

8 IRQF2P[8] 9 IRQF2P[9]

10 IRQF2P[10] 11 IRQF2P[11]

12 IRQF2P[12] 13 IRQF2P[13]

14 IRQF2P[14] 15 IRQF2P[15]

DKT/FIGURES/RCE/UG/INTERRUPT/BLOCK

INTERRUPT SOURCES

x 32
Group0

Group1

Group2

Group13

Group14

Group15

Remap Table
ARM

Interrupt
Controller

x 32

x 32

x 32

x 32

x 32

x 512

IRQF2P[0]

IRQF2P[1]

IRQF2P[2]

IRQF2P[13]

IRQF2P[14]

IRQF2P[15]

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 4 The Interrupt Interface Version/Issue: 0.9/3

page 68 First release to reviewers

4.2 Registers

4.2.1 Source remap

As described in Section 4.1.2 the interface allows each of its potential 512 interrupt sources to
be remapped. Each source is accessed through a single register located in the processor’s GPO
AXI space. The set of 512 registers is organized as a 512 element vector. Each element of the
vector corresponds to the remap directions for one source. For example, the vector’s second
element contains the remap specification for Source1. Appendix B specifies the base address
for the vector. An element may be either read or written. Processor access is though either a
Load or Store instruction whose target is an address corresponding to one element of the
vector. Section 1.4.1 describes the access policy for read/write registers.

Each element specifies whether or not its corresponding source shall be mapped and if
mapped, to which of the interface’s sixteen groups (see Section 4.1.1). Figure 31 below
illustrates the structure of one element:

Where:

Source: This field specifies where in the group, as determined by the Group field described
below the source is represented. This field is only valid if the Map field described
above is set. If not the case, this field will be zero (0).

Group: This field specifies which of the sixteen groups (see Section 4.1.1) manages the
corresponding source. This field is only valid if the Map field described above is
set. If not the case, this field will be zero (0).

Map: This one-bit field is a flag determining whether the source is mapped. If this field
is set, the source is mapped. In such a case, its corresponding interrupt is
managed by the group enumerated by the Group field below and the Source field
determines where in that group the source is represented. If this field is clear, the
source is not mapped and cannot generate an interrupt. In such a case, both Group
and Source fields will be zero (0).

4.2.2 Source Group Enables

As described in Section 4.1.1 the interface defines sixteen (16) group enables. Each group is
accessed through a single register located in the processor’s GPO AXI space. The set of sixteen

Figure 31 Source Interrupt remap register

Group

0532

DKT/FIGURES/RCE/UG/SOCKET/INTERRUPT/REGISTER/REMAP

MBZ

9

Source

10

Map

First release to reviewers page 69

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 4 The Interrupt Interface Version/Issue: 0.9/3

registers is organized as a sixteen element vector. Each element of the vector corresponds to
one group. For example, the vector’s third element contains the Group2 Enables. Appendix B
specifies the base address for the vector. An element may be either read or written. Processor
access is though either a Load or Store instruction whose target is an address corresponding to
one element of the vector. Section 1.4.1 describes the access policy for read/write registers.

One group represents thirty-two (32) interrupt sources. Therefore, one register manges the
enables for thirty-two individual sources. Each source is represented as a one-bit field whose bit
offset corresponds to its source number. Field value interpretation is dependent on whether
the register is either read or written. When a field is written, its value determines whether or
not its corresponding source is enabled. If a field is set, the source, if currently disabled will be
enabled. If the field is clear, the corresponding source is ignored and its state, whether enabled
or disabled remains unchanged. When read, the returned value determines whether or not the
corresponding source was enabled. If the field is set, the source was enabled. If clear, the source
was disabled.

Note: this vector manages only group enables. To manage group disables see the vector
described in Section 4.2.3. Figure 32, below illustrates the structure of one element of the
group enable vector:

4.2.3 Source group disables

As described in Section 4.1.1 the interface defines sixteen (16) group disables. Each group is
accessed through a single register located in the processor’s GPO AXI space. The set of sixteen
registers is organized as a sixteen element vector. Each element of the vector corresponds to
one group. For example, the vector’s third element contains the Group2 Disables. Appendix B
specifies the base address for the vector. An element may be either read or written. Processor
access is though either a Load or Store instruction whose target is an address corresponding to
one element of the vector.

One group represents thirty-two (32) interrupt sources. Therefore, one register manges the
disables for thirty-two individual sources. Each source is represented as a one-bit field whose
bit offset corresponds to its source number. Field value interpretation is dependent on whether
the register is either read or written. When a field is written, its value determines whether or
not its corresponding source is disabled. If a field is set, the source, if currently enabled will be
disabled. If the field is clear, the corresponding source is ignored and its state, whether enabled
or disabled remains unchanged.

Figure 32 Interrupt group enables

032

DKT/FIGURES/RCE/UG/SOCKET/INTERRUPT/REGISTER/ENABLE-DISABLE
Source0-31

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 4 The Interrupt Interface Version/Issue: 0.9/3

page 70 First release to reviewers

Reading a field triggers an internal read-modify-write and consequently is destructive. This type
of access is intended to facilitate interrupt service code and may result in unintended
side-effects if used elsewhere. See Section 4.2.2 for a non-destructive read. When read, a field
will, if set, become clear. The returned value specifies a field’s value immediately before it was
modified. If set, the corresponding source was enabled and is now disabled. If clear, the source
was disabled and remains disabled.

Note: this vector manages only group disables. To manage group enables see the vector
described in Section 4.2.2. Figure 33, below illustrates the structure of one element of the
group enable vector:

Figure 33 Interrupt group disables

032

DKT/FIGURES/RCE/UG/SOCKET/INTERRUPT/REGISTER/ENABLE-DISABLE
Source0-31

First release to reviewers page 71

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 5 The Bootstrap Support Interface Version/Issue: 0.9/3

Chapter 5

The Bootstrap Support Interface

5.1 Overview

TBD.

TBD

Figure 34 Block diagram of the Boot Support Interface

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 5 The Bootstrap Support Interface Version/Issue: 0.9/3

page 72 First release to reviewers

5.2 Registers

TBD

5.2.1 I2C Signal

The structure for xxx is illustrated in Figure 35:

Where:

Empty: This field is a single bit flag indicating whether or not the list was empty when
read. If the flag is false (clear), the list was not empty and the Address field
described below contains a valid offset. If this flag is true (set) the list was empty.
In such a eventuality the Address field will be zero (0).

Address: If the Empty flag described above is false, this field contains a xxx. If the Empty flag
described above is true, this field will be zero (0).

5.2.2 Configuration

The structure for xxx is illustrated in Figure 36:

Where:

XXX: TBD.

XXX: TBD.

XXX: TBD.

Figure 35 I2C Signal

Address

032

DKT/FIGURES/RCE/UG/SOCKET/BSI/REGISTERS/I2C

1

Empty

12

MBZ

Figure 36 BSI Configuration

First release to reviewers page 73

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 5 The Bootstrap Support Interface Version/Issue: 0.9/3

5.3 Interrupt Sources

TBD

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Chapter 5 The Bootstrap Support Interface Version/Issue: 0.9/3

page 74 First release to reviewers

First release to reviewers page 75

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Appendix A Utility Free-list Interface Version/Issue: 0.9/3

Appendix A

Utility Free-list Interface

This interface is reserved for the implementation of the Socket-Abstraction-Services (see xxx).
However, it is documented here for completeness. The interface contains four (4) Free-lists.
Where a free-list is simply a 512-entry FIFO whose read and write ports are connected to a
single read-write I/O register located in the processor’s GPO AXI space. A block diagram of one
of four free-lists is illustrated in Figure A.1 below:

A.1 Registers

The interface defines four (4) free-lists. Each free-list is accessed through two (2) registers
located in the processor’s GPO AXI space. Appendix B specifies the base address for the set of
eight registers. Table A.1 on page 76 enumerates their relative address with respect to their
base.

Figure A.1 The utility Free-list

write

read

Free
List

NE

AXI
GPO

To interrupt interface
DKT/FIGURES/RCE/UG/FREELIST/BLOCK

AE

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Appendix A Utility Free-list Interface Version/Issue: 0.9/3

page 76 First release to reviewers

A.1.1 Allocate from Utility Free-List

The interface for allocating from a socket’s utility free-list is a single, read/only I/O register
bound to the read port of the FIFO described in Figure A.1. Access to this interface is through a
Load instruction whose target is the physical address of this register. Table A.1 on page 76
specifies the relative address of this register and using Appendix B, its absolute address. The
access policy for a FIFO mapped to a read/only register is described in Section 1.4.1. Note that
the register’s associated FIFO is mapped to an interrupt source as discussed in Section 4.1.

If, when read, the free-list was not empty, one entry is removed and its value returned. That
value will always have its low-order bit clear (0). Conversely, if, when read, the free-list was
empty, the low-order bit of the returned value is set (1). The structure of a returned value is
illustrated in Figure A.2 below:

Where:

Table A.1 Utility Free-list Register Map

Offset1

1. In (decimal) bytes

Description Access See:

00 Allocate from Utility Free-List0 Read/Only A.1.1

04 Deallocate to Utility Free-List0 Write/Only A.1.2

08 Allocate from Utility Free-List1 Read/Only A.1.1

12 Deallocate to Utility Free-List1 Write/Only A.1.2

16 Allocate from Utility Free-List2 Read/Only A.1.1

20 Deallocate to Utility Free-List2 Write/Only A.1.2

24 Allocate from Utility Free-List3 Read/Only A.1.1

28 Deallocate to Utility Free-List3 Write/Only A.1.2

Figure A.2 Value removed from utility free-list.

Value

032

DKT/FIGURES/RCE/UG/SOCKET/FREELIST/REGISTERS/OUT-VALUE

1

Empty

First release to reviewers page 77

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Appendix A Utility Free-list Interface Version/Issue: 0.9/3

Empty: This field is a single bit flag indicating whether or not the list was empty when
read. If the flag is false (clear), the list was not empty and the Value field described
below is valid. If this flag is true (set) the list was empty. In such a eventuality the
Value field will be zero (0).

Value: If the Empty flag described above is false, this field contains the returned value r If
the Empty flag described above is true, this field will be zero (0).

A.1.2 Return to Utility Free-List

The interface for de-allocation to a socket’s utility free-list is a single, write/only I/O register
bound to the write port of the FIFO described in Figure A.1. Access to this interface is through
a Store instruction whose target is the physical address of this register. Table A.1 on page 76
specifies the relative address of this register and using Appendix B, its absolute address. The
access policy for a FIFO mapped to a write/only register is described in Section 1.4.1. Note that
the register’s associated FIFO is mapped to an interrupt source as discussed in Section 4.1.

The low-order bit of the value written to this register is ignored, but should set to zero (0) as
illustrated in Figure A.3 below:

A.2 Interrupt Sources

The interface defines four (4) free-lists and in turn each free-list defines two (2) interrupt sources.
An interrupt source is a firmware signal which, while asserted and not masked may trigger a
processor interrupt. Each source is uniquely identified by its source address. Table 9 on page 65
specifies the base address for the set of eight sources. Table A.2 on page 78 enumerates the
relative address of a source with respect to its base. See Chapter 4 for a discussion of the
interrupt interface.

Figure A.3 Value inserted to utility free-list.

Value

032

DKT/FIGURES/RCE/UG/SOCKET/FREELIST/REGISTERS/IN-VALUE

1

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Appendix A Utility Free-list Interface Version/Issue: 0.9/3

page 78 First release to reviewers

Table A.2 Free-list Interrupt Source Map

Offset Description of signal
Associated

register

0 Free-List0 is Almost-Empty Section A.1.1

1 Free-List0 is Not-Empty Section A.1.1

2 Free-List1 is Almost-Empty Section A.1.1

3 Free-List1 is Not-Empty Section A.1.1

4 Free-List2 is Almost-Empty Section A.1.1

5 Free-List2 is Not-Empty Section A.1.1

6 Free-List3 is Almost-Empty Section A.1.1

7 Free-List3 is Not-Empty Section A.1.1

First release to reviewers page 79

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Appendix B Register Map Version/Issue: 0.9/3

Appendix B

Register Map

TBD

Table B.1 Register Map

Offset1 Description Length2 See:

00000 Version 32 Section 2.1

00032 Reserved 992 N/A

01024 BSI Configuration 4096 Section 5.2.2

05120 Interrupt source remap table 2048 Section 4.2.1

07168 Interrupt group Enables 64 Section 4.2.2

07232 Interrupt group Disables 64 Section 4.2.3

07296 Socket0 32 Section 2.5

07328 Socket1 32 Section 2.5

07360 Socket2 32 Section 2.5

07392 Socket3 32 Section 2.5

07424 Reserved 256 N/A

07680 Utility free-lists 16 Section A.1

07696 Reserved 496 N/A

08192 Rendezvous pending vector 128 Section 3.3

The Reconfigurable Cluster Element Cluster Element (CE) User Guide
Appendix B Register Map Version/Issue: 0.9/3

page 80 First release to reviewers

08320 Reserved 380 N/A

08700 BSI I2C Signal 4 Section 5.2.1

08704 Reserved 7680 N/A

16384 User defined 16384 N/A

1. In (decimal) bytes

2. In (decimal) bytes

Table B.1 Register Map

Offset1 Description Length2 See:

