
Analysis and Implementation of Relational Archive

Site for PingER and CBG Integration with TULIP

BY

Ghulam Nabi 2007-NUST-BIT-108

 M. Farhan Maqsood 2007-NUST-BIT-35

Bilal Naseer 2007-NUST-BIT-107

A Project report submitted in partial fulfillment

Of the requirement for the degree of

Bachelors of Information Technology

NUST School of Electrical Engineering & Computer Science National

University of Sciences & Technology

Islamabad, Pakistan

2011

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 2

Certificate

It is certified that the contents and form of thesis entitled “Analysis and

Implementation of Relational Archive Site for PingER and CBG

Integration with TULIP” submitted by Ghulam Nabi, Farhan Maqsood and

Bilal Naseer has been found satisfactory for the requirement of the degree.

Advisor: ___________________________

 Dr. Anjum Naveed

Co-Advisor: ___________________________

 Dr. Zahid Anwar

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 3

Dedication

We dedicate this work to our parents, who always prayed tirelessly for

our success, encouraged us and always gave more than what we

deserved!

Surely they are the pillars of strength in our lives.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 4

Acknowledgements

First and foremost, we are immensely thankful to Almighty Allah for letting us

pursue and fulfill our dreams. Nothing could have been possible without His blessings.

We would like to thank our families’ for their support throughout our educational

career, especially in the last year our degree. They have always supported and

encouraged to do our best in all matters of life.

We would also like to thank Mr. Zafar Gilani who was always there to support

and guide us at every stage. He always motivated us. We also thank Mr. Faisal Zahid

and Imran Ashraf as well to provide us all the prerequisites and technical support.

Finally, this project would not have been possible without the expert guidance

of our advisor, Dr. Anjum Naveed, who has been a great s source of inspiration for us

during this project. We would also like to thank Dr. Zahid Anwar the co-Advisor of

this project.

 Despite all the assistance provided by Dr. Anjum Naveed and others, I alone

remain responsible for any errors or omissions which may unwittingly remain.

Ghulam Nabi

 Farhan Maqsood

 Bilal Naseer

 June, 2011

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 5

ABSTRACT

PingER is an internet performance monitoring tool being jointly managed by SEECS-

NUST and SLAC, USA. Different PingER nodes worldwide are sent ping messages

from each other and data is collected first at node level and then at a central location.

Almost 1000 remote and monitoring nodes allow PingER to measure the performance

of 99% of the world wide network deployment. Currently PingER infrastructure is

based on flat-files. With the passage of time as data increases, difficulty in searching

and management of data increases therefore there is a need to change this architecture

from flat-files to Relational Database architecture so that it becomes easy to manage

data and it also helps in calculation of results from data in tables instead of flat-files.

First part of this project is to convert the entire data storage and analysis system

architecture from flat files to Relational Database driven architecture. This should

result in decrease in analysis time and improve scalability of PingER.

Second part of the project is to integrate the Constraint Based Geo location technique

(CBG) with TULIP, a GEO location tool already deployed at SEECS and SLAC. The

objective of the project is to use extensive infrastructure of PingER and multiple

techniques to get more accurate location results.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 6

Table of Contents

I. Part I: Analysis and Implementation of Relational Archive Site For PingER 13

1 INTRODUCTION AND BACKGROUND .. 14

1.1 PingER MECHANISM ... 14

1.2 PingER ADVANTAGES
 [2]

 .. 15

1.2.1 Comparisons with Economic and Development Indicators 15

1.2.2 Calculating International Bandwidth .. 16

1.3 PingER INFRASTRUCUTURE ... 16

1.3.1 Remote Sites: .. 16

1.3.2 Monitoring Sites: .. 16

1.3.3 Archive Sites: .. 17

1.4 MOTIVATION: .. 17

1.4.1 Reasons for Moving From Flat File to Database Approach
[3]

 19

2 LITRATURE REVIEW .. 20

2.1 ARCHITECTURE OF PingER:.. 20

2.2 MONITORING SITE FUNCTIONALITY: ... 21

2.3 ARCHIVE SITE FUNCTIONAALITY: .. 23

2.4 NODEDETAILS DATABASE
 [4]

 ... 23

3 METHODOLOGY ... 26

3.1 1
st
 LEVEL NORMALIZED SCHEMA: ... 26

3.1.1 Nodes Table .. 26

3.1.2 Ping_Data Table .. 27

3.1.3 Analysis Table .. 27

3.2 3
rd

 LEVEL NORMALIZED SCHEMA: ... 28

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 7

3.2.1 Nodes Table .. 29

3.2.2 End Points Table ... 29

3.2.3 Data Level 0 Table .. 29

3.2.4 Data Level 1 Table .. 29

3.2.5 Analysis Table .. 29

3.3 STRESS TESTING PROCEDURE: ... 31

3.4 STRESS TESTING RESULTS: ... 31

3.5 IMPLEMENTATION: .. 34

3.5.1 Flat-files Based Architecture: ... 35

3.5.2 Relational Database Architecture: .. 36

3.6 ADDING MOS AND ALPHA: .. 45

3.6.1 Mean Opinion Score (MOS): .. 46

3.6.2 ALPHA: .. 47

4 RESULTS ... 50

5 DISCUSSION AND RECOMMENDATION .. 55

5.1 DISSCUSSION ... 55

5.2 RECOMMENDATIONS: ... 55

6 CONCLUSION: .. 56

II. Part II: CBG Integration with TULIP .. 57

7 INTRODUCTION AND BACKGROUND .. 58

7.1 GEOLOCATION
 [9]

 .. 58

7.2 IMPORTANCE OF GEOLOCATION ... 58

7.3 TYPES OF GEOLOCATION ... 59

7.3.1 CBG .. 59

7.3.2 GeoIP .. 59

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 8

7.3.3 Domain Name Services ... 60

7.3.4 Autonomous system .. 60

7.4 TULIP
 [7]

 .. 60

7.4.1 Reflecter.cgi .. 60

7.4.2 Land marks .. 60

7.4.3 Sites.xml.. 61

7.5 MOTIVATION FOR INTEGRATION .. 62

7.6 PROBLEM STATEMENT ... 62

8 LITERATURE REVIEW ... 64

8.1 CONSTRAINT BASED GEOLOCATION .. 64

9 METHODOLOGY ... 69

9.1 ARCHITECTURE OF INTEGRATION .. 69

9.2 TOOLS USED .. 71

9.3 TULIP CONFIGURATION AT SEECS .. 71

9.3.1 Software and Services ... 72

3.1.1 Running Procedure .. 72

9.4 MATLAB SERVER CONFIGURATION AT SEECS .. 72

9.5 INTEGRATION METHODOLOGY WITH TULIP .. 73

9.6 MULTITHREADING ... 74

9.7 TULIP VISUALIZATION
 [11]

... 75

10 RESULTS AND PERFORMANCE EVALUATION .. 78

10.1 RESULTS ... 78

10.1.1 Comparison of Lat/Lon ... 78

10.1.2 Ideal Case .. 79

10.2 ACCURACY OF DIFFERENT CONTINENTS .. 80

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 9

10.2.1 Accuracy of Asia ... 80

10.2.2 Accuracy of Europe .. 82

10.2.3 Accuracy in Africa .. 84

10.2.4 Accuracy in North America .. 85

10.2.5 Average distance error comparison w.r.t continents ... 87

10.2.6 Average distance error comparison w.r.t countries ... 87

11 DISCUSSION ... 90

12 CONCLUSION ... 91

13 FUTURE WORK .. 93

13.1 USING BESTLINE APPROACH .. 93

13.2 LANDMARK TIERING ANALYSIS .. 94

14 REFERENCES ... 95

15 APPENDICIES ... 96

15.1 CHANGES IN NODE.PL ... 96

15.2 CHANGE IN GETDATA.PL ... 96

15.3 CHANGES IN ANALYZE HOURLY ... 96

15.4 CHANGES IN ANALYZE-DAILY.PL ... 97

15.5 CHANGES IN ANALYZE-MONTHLY.PL .. 98

15.6 CHANGES IN PINGTABLE.PL .. 98

15.7 CHANGES IN CBG2.M ... 108

15.8 CHANGES IN CBG_SOI.M .. 108

15.9 CHANGES IN AUTOMATETEST.JAVA .. 108

15.10 CHANGES IN GetPingDataPL.java ... 110

15.11 SERVER_TULIP.PL .. 110

15.12 SERVER_CBG.PL ... 110

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 10

LIST OF FIGURES

Analysis and Implementation of Relational Archive Site for PingER

Figure 1: Ping Mechanism 15

Figure 2: PingER nodes worldwide 17

Figure 3: PingER Architecture 21

Figure 4: 1
st
 level normalized schema 28

Figure 5: 3
rd

 Level Normalized Schema ERD Diagram 30

Figure 6 : Flat Files Based Architecture 35

Figure 7: Relational Database Architecture 36

Figure 8: NODE DETAILS Table Data 37

Figure 9: Data Servers in NODEDETAILS 38

Figure 10: List of Monitoring Sites 38

Figure 11: Remote Sites 38

Figure 12: Metadata of Node_Details Table 39

Figure 13: Data Format in file 40

Figure 14: Metadata of pingdata 42

Figure 15: Metadata of Analysis Table 44

Figure 16: Result Output 51

Figure 17: Node_Details table 52

Figure 18: Pingdata Table 53

Figure 19: Analysis Table 54

CBG Integration with TULIP

Figure 20:Sites.xml 61

Figure 21: CBG Mechanism 65

Figure 22: CBG Flow Diagram 68

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 11

Figure 23: TULIP CBG Integration 71

Figure 24: TULIP Interface before CBG Integration 76

Figure 25: TULIP Interface after Integrating CBG 77

Figure 26: Results Table 78

Figure 27: Without Landmarks 79

Figure 28: Accuracy in Asia graph 82

Figure 29: Accuracy in Europe graph 83

Figure 30: Accuracy in Africa graph 85

Figure 31: Accuracy in North America 86

Figure 32: Average distance error w.r.t to continents 87

Figure 33: Average distance comparison world wide 89

List of Tables

Table 1: Node Details table... 23

Table 2: 1
st
 level Normalized Schema Stress Testing ... 31

Table 3: 3
rd

 Level Normalized Schema Stress Testing Results 32

Table 4: Flat Files Stress Testing Results ... 33

Table 5: Ideal Case.. 80

Table 6: Accuracy in Asia ... 80

Table 7: Accuracy in Europe .. 82

Table 8: Accuracy in Africa .. 84

Table 9: Accuracy in North America .. 85

Table 10: Average distance error comparison w.r.t to world wide 87

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 12

List of Abbreviations

PingER Ping End-to-end Reporting

IEPM Internet End to end performance Monitoring

RTT Round Trip Time

ITU International Telecommunication Union

UN United Nation

PERN Pakistan Educational and Research Network

HTTP Hypertext Transfer Protocol

NOMN Number of Monitoring Nodes in nodes.cf

NOMT Number of Matrices

IQR

ERD Entity Relationship Diagram

MOS Mean Opinion Score

PerfSonar PERFormance Service Oriented Network monitoring

ARchitecture.

SQL Structure Query Language

RTD Round Trip Distance

GPS Global Positioning Systems

SLAC Stanford Linear accelerator center

TULIP Trilateration Utility for Locating IP hosts

CBG Constraint Based Geolocation

VPNS Virtual Private Network Systems

DNS Domain Name Services

AS Autonomous Systems

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 13

I. Part I

Analysis and Implementation

Of

 Relational Archive Site

 For

PingER

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 14

Chapter 1

1 INTRODUCTION AND BACKGROUND

PingER is an Internet Performance Measurement utility to monitor end-to-end

performance of Internet links, developed by the IEPM group at the Stanford Linear

Accelerator Center (SLAC). The network performance of more than 950 hosts is

monitored worldwide. This covers 99% of the internet population of the world.

PingER provides insight into a multitude of network activity. To summarize the

results, it is necessary to aggregate the measurements by regions and to divide them

into measurements of long-term trends and of short-term glitches. PingER also helps

in providing the better expectation of network performance between the sites that are

monitored worldwide.

1.1 PingER MECHANISM

PingER uses the ubiquitous ping facility that works on Internet Control

Message Protocol (ICMP) echo mechanism. Ping facility allows you to send a packet

of a user selected length to a remote node and have it echoed back. Nowadays it is

available as a pre-installed facility on all platforms. So it can be used directly by the

pingER application that runs on high priority (usually on kernel of Linux). Running

PingER as root process helps in measuring performance more accurately. Another

advantage of using ping is that it provides low intrusiveness (~100 bits per second per

monitoring-remote-host-pair).
[1]

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 15

Figure 1: Ping Mechanism

1.2 PingER ADVANTAGES
 [2]

PingER calculates different matrices e.g. RTT, packet loss, jitter, IQR, ping

unreachability, out of order packets etc. to evaluate the performance of the network

links between the nodes which are being monitored. The calculated and aggregated

values of these matrices help in identifying those sites which have bad network

performance. For example if packet loss is 4-6% then video conferencing becomes

irritating, occurrence of long delays of 4 seconds or more at a frequency of 4-5% or

more is also irritating for interactive activities such as telnet and X windows. We can

use this data to identify sites to be upgraded, identify last miles problems, setting

expectations for collaborations where large data is transferred. This can also be used

for choosing routes with small RTT and minimum packet loss, setting expectations for

VoIP and quantifying the digital divide.

 Comparisons with Economic and Development Indicators 1.2.1

The various organizations like ITU, UN and World Bank have setup different

indices e.g. life expectancy, GDP, literacy, phone lines, Internet penetration etc. to

measure the development in countries. Many of these matrices require a lot of time

and cost for measurement. So they have become outdated in some cases. One of the

most important factors determining the economic development of a country in today’s

information age is its Internet connectivity. The economic development and internet

connectivity are strongly correlated to each other. PingER’s Internet measurements

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 16

can help in characterizing a country’s development is due to the fact that PingER’s

data is current (up-to date) and covers most of the countries of the world.

 Calculating International Bandwidth 1.2.2

As PingER’s infrastructure covers huge part of internet’s population, the

matrices calculated by PingER help in calculating the international bandwidth capacity

according to some w.r.t countries. Now let’s see some interesting case studies related

to the use of PingER.

1.3 PingER INFRASTRUCUTURE

PingER has a large infrastructure working worldwide. Whole functionality is

controlled with the help of different types of nodes that exist in different regions of

world.

There are three types of nodes in PingER architecture.

 Remote Sites: 1.3.1

These are simple passive nodes that are discoverable and can reply to a ping

via network. There are approximately 900 remote sites so far, that exist in different

regions of the world.

 Monitoring Sites: 1.3.2

Monitoring Sites ping the remote and other monitoring sites to measure RTTs.

These nodes have been installed with PingER monitoring tools. The data collected by

monitoring sites is stored and is also made available to archive site for analysis. Some

of these monitoring sites that show regular and consistent online behavior and also

provide complete data for analysis are called Beacon sites. As of May 2011 there are

87 monitoring (including Beacons) sites are active and this number is increasing every

year.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 17

 Archive Sites: 1.3.3

The archive sites gather the information, by using HTTP, from the monitor

sites at regular intervals and archive it. In PingER architecture there should be at least

one Archive site. PingER has currently more than one working archive sites. Archive

site provide the archived data to the analysis site(s) that in turn provide reports that are

available to users via the Web. Archive site and Analysis site can be on the same

machine or server.

Figure 2: PingER nodes worldwide

1.4 MOTIVATION:

PingER archive site was first constructed a decade ago. It was based upon flat

files to store archive data and analysis reports. Using flat file system was feasible at

that time because data was not available in huge amount. But with the passage of time

the internet usage increased worldwide (number of hosts’ increased), as a result of

which monitoring infrastructures of various links also became complex. This increase

in number of monitoring hosts increased the data for analysis hugely by the addition of

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 18

hundreds of files with thousands of records in each file every day. This exponential

increase of data resulted in increase of processing time for analysis operations.

Because the raw data available in flat files collected from monitoring nodes is non-

relational or unstructured. Therefore, to make the analysis of data robust for current

amount of data there is a need to shift PingER archive site architecture from flat files

to relational database. So the purpose of this project is to implement a relational

archive site which stores raw data in tables instead of flat files and operations of

analysis i.e. aggregation or summarization of data are also performed on these data

tables by executing SQL queries instead of parsing flat files. This will result in huge

reduction of analysis time. After this the analyzed data will also be stored in tables

instead of flat files for display or measuring network performance of internet links.

This whole process will be transparent to end users because the whole interface will

remain the same.

Secondly the matrices that PingER calculates are

1. Conditional loss probability

2. Ping unreachability

3. Ping unpredictability

4. Round Trip Time

5. Packet Loss

6. Inter Packet delay variation or Jitter

7. TCP throughput

8. Out of order Packets

9. Duplicate Packets

10. Inter Quartile Range

11. Zero Packet loss frequency

There are two other matrices Alpha and Mean Opinion Score (MOS) which are being

widely used. Telecom Companies use MOS as a metric of voice quality. And alpha is

used to measure the directness of routes. To increase the efficiency and usability these

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 19

two matrices should also be added in the current version of PingER which is working

on flat files as well as new relational database architecture.

 Reasons for Moving From Flat File to Database Approach
[3]

 1.4.1

1. Database provides a relational data approach. This helps in easy retrieval of data.

2. A good database design will decrease redundancy of information as compared to

flat files. Where flat files would have the similar size for each new file, a database

table will not grow in the same way since repetitive fields are already normalized.

3. Relational database has quicker retrieval time as compared to flat files when data-

analysis tools are taken into account. Where data has to be read and split

atomically into correct fields, a database table already provides information

atomically.

4. Database approach in the system will provide better scalability

5. The invalid and null values in the data can also be replaced by using relational

approach relatively easy as compared to flat files.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 20

Chapter 2

2 LITRATURE REVIEW

To better understanding the functionality of PingER, first of all we will explain

the data structures at different types of nodes and their functionalities.

2.1 ARCHITECTURE OF PingER:

The performance of the network is determined by analyzing data which is

collected by continuous ping of monitoring nodes to remote nodes. This data is then

collected from monitoring nodes by an Archive Site on which analysis of data takes

places. Originally all the collected data which is available at archive site is in flat files

and all the analysis operations are performed by fetching appropriate data from these

flat files. The result of this analysis is also stored in flat files which are later used for

display.

The basic concept is that all the monitoring sites ping remote sites and other

monitoring sites and collect data i.e. RTTs of packets. Then Archive site collects and

archives all the data which is collected by these monitoring sites on daily basis. After

this various scripts perform analysis on this archived data and store results for

determining network performance of different links. Analysis is performed according

to different metrics for different regions given different periods of time etc. The

architecture diagram of PingER is shown below which shows all node types and data

flow at them.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 21

 Figure 3: PingER Architecture

Before we start discussion on archive site it is necessary to understand the

procedures that take place in monitoring site so that we can understand basics of data

structures of an archive site. To make a host to act as a monitoring node we install

PingER software on it.

2.2 MONITORING SITE FUNCTIONALITY:

All monitoring nodes have pinger2.pl software installed on them. This script

runs after every thirty minutes as cronjob and generates 21 pings every time to all

remote host listed in a file named Beacons.txt. As the script runs and pings remote

hosts, data i.e. RTTs and number of packets sent and received are collected and stored

in a file named as ping-yyyy-mm.txt in a directory at each monitoring site. So for one

complete month the data collected by a monitoring node by pinging remote hosts after

every thirty minutes is stored in this file with particular month included in the file

name.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 22

The format of one line or record of this file is shown below:

Monitoring node name Monitoring node IP Remote node name Remote

node IP Packet size UNIX epoch time Packets sent Packets received

 Minimum RTT Average RTT Maximum RTT Sequence numbers (1-10)

 RTTs (1-10)

For example:

pinger.slac.stanford.edu 134.79.240.30 ping.slac.stanford.edu

 134.79.18.21 100

1152489601 10 10 0.255 0.341 0.467

0 1 2 3 4 5 6 7 8 9

0.287 0.380 0.467 0.391 0.327 0.387 0.291 0.332 0.255 0.299

Similarly:

monitor.niit.edu.pk 203.99.50.204 www.carnet.hr 161.53.160.25 100 1171756802 10

10 223.323 224.978 226.805 1 2 3 4 5 6 7 8 9 10 226 223 226 223 223 226 223 224

226 225

The number of lines in each file is calculated approximately by following formula:

Number of Lines = Beacons * 48 * 30

Where Beacons are the remote hosts listed in file beacons.txt. A script named

pinger2.pl at monitoring sites runs after every thirty minutes to ping all remote hosts

so for one day or 24 hours it runs 24*2=48 times and there are 30 days in a month. So

if number of beacons or remote hosts in beacons.txt is 300 then number of lines in this

data file of each monitoring node is 300*48*30=432000 lines or records every month

on each monitoring site. As the number of monitoring and remote hosts is increasing,

the number of lines or records is also increasing. This results in increase in processing

time for analysis of this huge unstructured and non-relational data at archive site

where all of this data from all monitoring nodes is collected.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 23

2.3 ARCHIVE SITE FUNCTIONAALITY:

 At Archive site a script named node.pl runs as a cronjob four times a day to

collect updated information of nodes from PingER (NODEDETAILS) database, which

is placed at SLAC. This nodes information is stored in a file named nodes.cf at

Archive site. All the data collecting scripts i.e. getdata.pl or analysis scripts i.e.

analyze-hourly.pl, analyze-daily.pl etc. use this information stored in nodes.cf file

when dealing with different types of nodes. This script is also used for updating node

information, adding a node, deleting a node, find the region, continent or IP address or

related information of a node or filtering a particular type of nodes etc.

2.4 NODEDETAILS DATABASE
 [4]

The metadata of NODEDETAILS table whose data is collected into nodes.cf

file is shown here:

Table 1: Node Details table

Name Null? Data Type Use

NODENAME NOT

NULL

VARCHAR2(100) DNS host name

IPADDRESS VARCHAR2(15) IPv4 address

SITENAME VARCHAR2(100) Domain name of the node

NICKNAME VARCHAR2(35) Abstraction of the hostname with the TLD first
1

FULLNAME VARCHAR2(100) Human-friendly description of the node/site

LOCATION VARCHAR2(100) City and/or State/Province/Region for node
2

COUNTRY VARCHAR2(100) Country for node

CONTINENT VARCHAR2(100) Continent or region where node is thought to be located
3

LATANDLONG VARCHAR2(25) Latitude and longitude of node

PROJECTTYPE VARCHAR2(10) Flags describing how nodes are used
4

PINGSERVER VARCHAR2(100) URL for requesting a ping from this node to another
5

https://confluence.slac.stanford.edu/display/IEPM/PingER+NODEDETAILS#PingERNODEDETAILS-colnote1
https://confluence.slac.stanford.edu/display/IEPM/PingER+NODEDETAILS#PingERNODEDETAILS-colnote2
https://confluence.slac.stanford.edu/display/IEPM/PingER+NODEDETAILS#PingERNODEDETAILS-colnote3
https://confluence.slac.stanford.edu/display/IEPM/PingER+NODEDETAILS#PingERNODEDETAILS-colnote4
https://confluence.slac.stanford.edu/display/IEPM/PingER+NODEDETAILS#PingERNODEDETAILS-colnote5

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 24

TRACESERVER VARCHAR2(100) URL for requesting a traceroute from this node to another
5

DATASERVER VARCHAR2(100) URL for retrieving PingER data from this node
5

URL VARCHAR2(100) URL for the home page for the institution running the node

GMT VARCHAR2(10) Node's time offset from GMT, not used

COMMENTS VARCHAR2(4000) Comments and notes on when and how the node's record was last

updated
6

APP_USER VARCHAR2(20) Windows user name of the last user to edit the node's record through

the UI

CONTACTS VARCHAR2(100) Name and email address(es) of the node's maintainer(s)

PING_SIZE NUMBER Size of pings to be sent to the node - only controls SLAC's PingER

install

 On archive site the script getdata.pl collects data from monitoring sites and

stores in a file named like ping-yyyy-mm-dd.txt.gz. This script runs on daily basis

and collects data for particular date in a file which is included in the file name. The

format of this file is same as of file in monitoring sites described above. This script

reads all monitoring nodes which are listed in nodes.cf file and collects raw or ping

data from these monitoring sites and stores this data at a directory in archive site.

 On the other hand at archive site there are analysis scripts i.e. analyze-

hourly.pl, analyze-daily.pl, analyze-monthly.pl, analyze-yearly.pl, analyze-

allyears.pl etc. These scripts use the data that is stored at a directory by getdata.pl.

These scripts use different mathematical analysis operations like summarization or

aggregation(some other functions also) for generating results about packet loss, IQR,

Jitter and Throughput etc. of different links in different regions with different

packet size for different periods of time. After analyzing records the results are stored

in files having names of the form packet_loss-1000-by-node-2011-02-11.txt.gz,

average_rtt-100-by-site.txt.gz, and throughput-100-by-node-days-120.txt.gz and

iqr-1000-by-site-2011-02.txt.gz at archive site.

https://confluence.slac.stanford.edu/display/IEPM/PingER+NODEDETAILS#PingERNODEDETAILS-colnote5
https://confluence.slac.stanford.edu/display/IEPM/PingER+NODEDETAILS#PingERNODEDETAILS-colnote5
https://confluence.slac.stanford.edu/display/IEPM/PingER+NODEDETAILS#PingERNODEDETAILS-colnote6

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 25

 Previously we approximately calculated the number of lines or records in a

monthly data collecting file at monitoring node. As in archive site the daily data from

these files are archived, analyzed and also stored in another type of files so there is a

need to know how many files the archive site may generate daily to analyze the

complexity of this flat files based system. So the number of files of collected and

analyzed data created in each month is calculated as:

Number of files/month = (NOMN + NOMT*5) * 30

Here

MOMN: Number of monitoring nodes listed in nodes.cf file (Every day one file per

monitoring host is generated).

NOMT: Number of metrics i.e. packet-loss or Jitter (As daily for each metric 3

analysis scripts generate 5 different files).

So if number of monitoring nodes is 75 and number of metrics are 12 then number of

files generated each month is (75+12*5)*30=4050 and number of records or lines in

each file is calculated by Beacons * 48 * 30 as described above.

 So this exponential increase in number of records and files leads us to a

relational way to store and analyze by shifting this whole files based architecture to

database architecture so that all the data is stored in database instead of files. We

should change different scripts accordingly such that data is collected in to tables and

after analysis results are also stored in tables without changing the interface.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 26

Chapter 3

3 METHODOLOGY

We intend to convert the PingER archive site architecture to a more robust,

efficient and modern one. For this purpose we introduced two schemas of

implementation and performed stress testing on each schema. We also conducted a

stress test for flat files. Our stress testing involves time and space complexity for

finalizing which option performs optimally over a set of constraints.

3.1 1
st
 LEVEL NORMALIZED SCHEMA:

 It is level-1 normalized and is relatively simple. Time of insertion and retrieval

of data is less as no joins are required for it. Its design is simply based on data

structures of ping data files i.e. “ping-2010-02-04.txt.gz” and the files which stores

analysis results i.e. “packet-loss-100-by-site-2010-12-11.txt.gz”etc.

In this schema there are three tables

 Nodes Table 3.1.1

Nodes table is basically the modified form of NODEDETAILS table which is

placed at SLAC in old PingER architecture and is described above. This table

contains all the information about the nodes in its fields like node names, IP addresses,

lat / long, country, region, ping_server, trace route server, Data server, project_type

etc. The information stored in this table is used for gathering and analysis of data

different nodes. The primary key of this table is Host_id. Project_type is a flag which

tells what type of functionality a node has e.g. whether it remote, monitoring or a

beacon site. Ping_server, traceroute_server and data servers are URL’s of different

servers that are used in either gathering or analysis process.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 27

 Ping_Data Table 3.1.2

Ping_Data table is used to store the data which is gathered at the monitoring sites (by

pinging remote sites and other monitoring sites). This table has monitoring host id,

remote host id, UNIX epoch time, packet size, number of packets sent and received

and sequence number and RTT’s of each packet. Monitoring host id and remote host

id are basically the foreign keys from Nodes table. From number of packets sent and

received, we can directly calculate packet loss. While from RTT’s we can find out

minimum, maximum and average RTT’s directly or simple aggregation operations.

 Analysis Table 3.1.3

After the data stored in Ping_Data table is analyzed by analysis scripts, the results

are stored in Analysis table. Analysis table has a composite primary key which

contains six fields to uniquely identify each row. Each row contains all the metrics of

analysis for each unit of time i.e. a row contains analysis data for each hour which is

used for analyzing data on daily basis and this daily analysis data is used for

calculating monthly data.

This table is constructed in such a way that analysis data of each metric e.g. Packet

loss, ping unreachability, minimum RTT, duplicate packets and IQR etc. according to

each time interval like hourly, daily, monthly, yearly etc. can be retrieved directly by

simple queries. This is the data that can be used to predict performance of some

internet link.

Below is the ERD diagram of 1
st
 level normalized schema.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 28

 Figure 4: 1
st
 level normalized schema

3.2 3
rd

 LEVEL NORMALIZED SCHEMA:

 This is level-3 normalized and is relatively complex. Time of insertion and

retrieval of data is comparatively higher because joins are required for retrieving

required data from files. Design is also based on data structures of ping data files and

the files which stores analysis results but in a normalized manner.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 29

There are 5 tables in this schema.

 Nodes Table 3.2.1

The Nodes table in this schema is same as described above in 1
st
 level normalized

Schema and is modified form of NodeDetails table which is currently on SLAC.

 End Points Table 3.2.2

This table contains all monitoring host remote host pairs. It has its own primary

key whereas the monitoring host id and remote host id are foreign keys from Nodes

table. This means we can access a pair with single key instead of accessing two both

id’s separately. Packet size is also included in this table because it remains same for

one monitoring remote pair usually. This table will only be updated when some new

node is inserted in the nodes table.

 Data Level 0 Table 3.2.3

This table contains the number of packets sent, received, Date, UNIX epoch time,

minimum, maximum and average RTT, and end pint id which is the foreign key from

End Points table.

 Data Level 1 Table 3.2.4

This table only stores the sequence numbers of packets and their respective RTT’s

according to each row of Data Level 0 table.

 Analysis Table 3.2.5

Analysis table in 3rd level normalized is identical to the one in the 1
st
 level

normalized Schema because the final output and calculated matrices remain same.

Here is the ERD diagram of 3
rd

 level normalized Schema

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 30

Figure 5: 3
rd

 Level Normalized Schema ERD Diagram

In the above schemas the Nodes table is the modified form of NODEDETAILS

table. By modifying this table, nodes.cf is not used anymore. The data contained by

this file is now directly accessed from nodes table. Ping_data table have same fields

as of one line of file named as ping-yyyy-mm-dd.txt.gz file described above. Due to

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 31

which this file is also removed. Both of these tables relate to each other by Host_id.

Analysis table has a structure that is able to store data (analysis results) of any analysis

file from a number of different types of analysis files as described above in Archive

Site section and removes the need for these separate analysis files.

3.3 STRESS TESTING PROCEDURE:

 We measure Time and Space complexity of both of these schemas as well as

flat files by creating two databases (according to both schemas). Time complexity is

measured as insertion and retrieval time of data excluding time required for analysis

operations on raw data (raw data means data in files like “ping-2010-02-04.txt.gz” i.e.

RTTs collected by the getdata.pl script).Space complexity measures the space

occupied by records on storage medium (in this case a hard disk drive). Space is

measured in multiples of bytes. We are measuring it in Mega-bytes (MB) to keep it in

human readable form. Space occupied is basically the SQL file size in case of

databases and sum of file sizes in case of flat files.

 The stress testing results and analysis of both schemas are shown below in

order to choose one appropriate schema.

3.4 STRESS TESTING RESULTS:

Table 2: 1
st
 level Normalized Schema Stress Testing

1
st
Level Normalized Schema Stress Testing Results

Number of files Insertion Time complexity Retrieval Time complexity Space complexity

25 47.62s 22.56s 45.5 MB

50 1m32s 56.23s 92 MB

100 2m58s 1m48s 187.4 MB

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 32

500 13m34s 7m27s 970.7 MB

1000 28m12s 18m35s 1.8 GB

Here Insertion time complexity means the time to insert data into tables i.e.

loading of data from files to tables. It does not include time taken by tables for

analysis operations on data in it which should be much less as compared to Flat-files.

Simply Retrieval time complexity means only the time taken by analysis operations

for retrieving data from tables excluding any processing time on this data. Space

complexity is the size of an SQL file containing records of a particular number of files

e.g. Loading data of five files into tables and calculate size of its SQL file etc.

Table 3: 3
rd

 Level Normalized Schema Stress Testing Results

3
rd

 Level Normalized Schema Stress Testing Results

Number of files Insertion Time complexity Retrieval Time complexity Space complexity

25 18m57.29s 24.25s 51.2 MB

50 41m9.32s 1m15s 99.6 MB

100 1h23m21s 4m13s 210.0 MB

500 7h46m13s 26m55s 1.24 GB

1000 16h25m44s 1h14m9s 2.56 GB

In Flat-files Insertion time complexity is time taken for loading data into files

at archive site from files at monitoring sites. Similarly Retrieving time complexity is

the time taken by scripts to retrieve data from files and Space complexity is the sum of

sizes of individual files.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 33

Table 4: Flat Files Stress Testing Results

Flat Files Stress Testing Results

Number of files Insertion Time complexity Retrieval Time complexity Space complexity

25 30.85s 17.78s 7 MB

50 55.451s 48.14s 14.5 MB

100 2m48s 1m49s 30.1 MB

500 16m47s 13m28s 157.4 MB

1000 43m31s 30m21s 321.5 MB

In 3rd level normalized we basically divide Ping_data table in 1st level

normalized Schema into three tables Endpoints, datalevel0 and datalevel1 by

normalization.

By observing both schemas and their stress testing with respect to Flat-files we

conclude that 1
st
 LEVEL NORMALIZED-SCHEMA should be our first choice

replacement because 1ST LEVEL NORMALIZED-SCHEMA performs better than

COMPLEX-SCHEMA. It is both space and time efficient if compared to COMPLEX-

SCHEMA and as shown in Table-1 and Table-2. Though flat-files have less insertion

and deletion times as compared to both of the schemas, it is however a slower and

cumbersome approach when data analysis is taken into account. A select query can

retrieve data atomically from one or more tables using a single statement. A file

however needs to be read and processed to get data in atomic form.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 34

3.5 IMPLEMENTATION:

For the implementation of this proposed architecture of PingER we modified

scripts to store data into a database instead of flat files and also read values from

database for operations. Originally node.pl script reads information about nodes from

the NODEDETAILS table and stores in nodes.cf file. We changed node.pl script

which now stores data in Nodes table instead of nodes.cf file (shown in 15.1).

Therefore this file has been removed from PingER architecture and is replaced by

Nodes table. We also changed getdata.pl script so that it can now store data into

Ping_data table instead of files named as ping-yyyy-mm-dd.txt.gz. It is also changed

to read monitoring nodes details from Nodes table instead of reading from nodes.cf

file. (15.2)

Below are the architecture diagrams of flat filing based system and relational

database based system.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 35

 Flat-files Based Architecture: 3.5.1

Figure 6 : Flat Files Based Architecture

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 36

 Relational Database Architecture: 3.5.2

Figure 7: Relational Database Architecture

 In the flat-files system all the information about nodes is placed in a

file nodes.cf. It is a large file generated by script named node.pl which is running four

times a day to keep nodes information up to date. The format of nodes.cf file is

explained below:

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 37

The information of all nodes is placed in a %NODE_DETAILS key. The data

for one node in this key is displayed in following figure:

Figure 8: NODE DETAILS Table Data

All the URLs of monitoring site from which archive site collects raw data are placed

in a separate key %data_servers. An example figure of this key is shown below:

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 38

Figure 9: Data Servers in NODEDETAILS

Similarly the monitoring and remote sites and countries and groups are stored

in special arrays in this file. An example of such arrays in shown below:

Figure 10: List of Monitoring Sites

Figure 11: Remote Sites

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 39

 There is a requirement to store all of this data in to a table in the same way as it

is stored in NODE_DETAILS table in SLAC described above in Archive site section

above. For this reason we designed a table for storing data of nodes that is previously

placed in nodes.cf file and is used by different analysis and data collection scripts for

their operation.

The structure of node_details table is shown below:

Figure 12: Metadata of Node_Details Table

One of the important fields is lat/Lon which is used in calculation of ALPHA.

Similarly projecttype tells either it is a monitoring or a remote site. And dataserver

tells the URL for collecting raw data from this monitoring site.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 40

 The raw data for analysis which is gathered from monitoring sites by archive

site contains host names, RTTs and number of packets sent, received etc. This data

from different monitoring site is copied to a text file at archive site on daily basis. The

file name is like ping-yyyy-mm-dd.txt.gz for example ping-2011-03-04.txt.gzas

described above.

Inside this file the data is placed in the format as shown below

Figure 13: Data Format in file

Above are shown three parts of one line of data stored in this file. We will explain

each field of this line one by one to understand data and how it can be placed into

table.

The first part of this line as eight fields:

 Monitoring host name

 Monitoring host IP

 Remote host name

 Remote host IP

 Packet size

 Unix Epoch Time

 Packets sent

 Packets received

First three fields of second part of this line are:

 Minimum RTT

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 41

 Average RTT

 Maximum RTT

Remaining fields are sequence numbers of packets from 1-10. Similarly third part of

line contains RTTs of respective sequence numbers of packets.

 As this file is generated by archive site daily so it contains data for all

monitoring sites for only one day. This file is read by the analysis script named

analyze-hourly.pl, which is responsible for analysis of one day data i.e. it calculates

different analysis metrics for every hour of that day.ad put the results in a file like

metric-packet size-by site or node-yyyy-mm-dd.txt.gz for example average_rtt-

100-by-node-2011-03-01.txt.gz.

 Keeping in mind the format of data of these files we can to design a table that

stores the data of these files in it so that only one table contain raw data for all times

and there is no need of separate file every day. The table that is designed for that

purpose is shown below in a figure:

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 42

Figure 14: Metadata of pingdata

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 43

All the data which is placed in raw data file is stored in this table either directly or

indirectly e.g. the date which is embedded with file name is stored in a field and only

IDs for monitoring and remote hosts are stored in this table all the required

information for every host is placed in node_details table.

Now we come to the analysis scripts i.e. analyze-hourly.pl (15.3), analyze-daily.pl

(15.4), analyze-monthly.pl (15.5), analyze-yearly.pl, analyze-allyears.pl etc. These

scripts are changed in such a way that they read values from ping_data table and

analyze accordingly. The results are then stored in the analysis table. Form analysis

table, we can get the values of any metric according to all tick types i.e. hourly, daily

and monthly etc. the structure of analysis table is described as

Analysis

PK,FK1

PK,FK2

PK

PK

PK

PK

Monitoring host id

Remote host id

Year

Month

Day

Hour

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 44

Figure 15: Metadata of Analysis Table

Here the problem arises that how to differentiate the data for different tick

types i.e. how hourly data is differentiated from daily data as all aggregation and

calculation cannot be done on runtime or at the time of request. So we should store

daily and monthly aggregated data in the same table but in different pattern than

hourly data which is basic unit of the Analysis table. For this the hour field is set to

null while storing the daily data. We can easily get analyzed data for one month, last

60 or 120 days. Similarly to store monthly analysis data we set Hour as well as Day

field to null so that for collecting data for certain number of months we select those

 By-Class

Packet size

Conditional Loss Probability

Minimum Round Trip Time

Ping Unreachability

Minimum Packet Loss

Ping Unpredictability

Inter Packet Delay Variation

Zero Packet Loss Frequency

Packet Loss

Duplicate Packets

Inter Quartile Range

Mean Opinion Score

Alpha

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 45

rows whose Hour and Day field is set to null. Similar is the case for yearly data in

which we set the Month, Day, Hour fields of analysis table to null.

There are many advantages of this structure of analysis table as compared to flat-files.

An example is given below:

 The anlyze-daily.pl script analyzes data on daily basis by collecting hourly

analysis data from analysis table. This script executes every day and replaces the old

file with current and updated file like metric-packet_size-by_class-days-120.txt.gz

or metric-packet_size-by_class-yyyy-mm.txt.gz. As this script is executed daily so it

analyzes data of today as well as of previous days, deleting the current file and making

a new file every day. There is a lot of repetition in this process and also lots of

calculations are done on data of previous days which has already been analyzed.

The analyze-hourly.pl script is also executed daily to analyze hourly data. But each

time it is executed, it makes a new file for each day. Analyze-daily.pl on the other

hand, deletes and reconstructs the same file for one month or 60 or 120 days. Deleting

of this file means erasing all the analyzed data for previous days and again analyzing

the data for previous days as well. This procedure results in lot of extra calculations

every day.

But in the database architecture, the data is in proper manner and structured,

therefore whenever a script is executed only required hourly analysis data is retrieved

and only daily analysis for that day is performed, not for all days as in flat-files. This

saves a lot of extra calculations and results in increase of efficiency. Similarly in case

of monthly analysis, the data of only a specific month is analyzed instead of analyzing

the data of each month every day. In the same way there is also no need to analyze the

data for last 60 or 120 days as this can be easily retrieved from the same analysis table.

3.6 ADDING MOS AND ALPHA:

The motivation for adding these two additional metrics in archive site is that

these two metrics are very useful in our daily life on internet connectivity and usage.

Their detailed description is explained below but the major advantage of using these

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 46

metrics is that we monitor network performance in a totally different context and

brings new perspective in understanding our data. VOIP is a vastly used technology

and in the same way Geo Location gains much importance in recent years so adding

these metrics in archive site contribute a lot to SEECS and SLAC in research of these

fields.

Initially these two metrics were added in flat-file based architecture, then tested

and deployed on SEECS PingER server. The whole previous raw data up till

September 2009 was analyzed to calculate these metrics. After successful deployment

these metrics are also added in our relational database architecture and we make two

additional fields in analysis table as shown above.

Following are the detailed description of both of these metrics:

 Mean Opinion Score (MOS): 3.6.1

 The telecommunications industry uses the Mean Opinion Score (MOS) as a

voice quality metric. The values of the MOS are: 1= bad; 2=poor; 3=fair; 4=good;

5=excellent. A typical range for Voice over IP is 3.5 to 4.2. In reality, even a perfect

connection is impacted by the compression algorithms of the codec, so the highest

score most codec’s can achieve is in the 4.2 to 4.4 range. For G.711 the best is 4.4 (or

an R factor (see ITU-T Recommendation G.107, "The E-model, a computational

model for use in transmission planning.") of 94.3) and for G.729 which performs

significant compression it is 4.1 (or an R factor of 84.3).

 There are three factors that significantly impacts call quality: latency, packet

loss, and jitter. Other factors include the codec type, the phone (analog vs. digital), the

PBX etc.). Most tool-based solutions calculate what is called an "R" value and then

apply a formula to convert that to an MOS score. We do the same. The R value score

is from 0 to 100, where a higher number is better. Typical R to MOS values is shown

below:

1. R=90-100 => MOS=4.3-5.0 (very satisfactory)

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 47

2. R=80-90=>MOS=4.0-4.3 (satisfactory)

3. R=70-80=>MOS=3.6-4.0 (some dissatisfaction)

4. R=60-70=>MOS=3.1-3.6 (more dissatisfaction)

5. R=50-60=>MOS=2.6-3.1 (Most dissatisfaction)

6. R=0-50=>MOS=1.0-2.6 (not recommended).

To convert latency, loss, jitter to MOS we followNessoft’s method.

Pseudo code is shown below:

As described the main factors needed for calculating MOS are:

1. Average latency

2. Jitter

3. Packet Loss

Formulas of all the metrics (that are calculated by archive site) are used in the script

analyze-hourly.pl to calculate hourly values of these metrics. So from raw data this

script also calculates Average RTT, IPDV (Jitter) and Packet Loss. When these

required metrics are calculated by the script then at run time they are used in

calculation of MOS.

 ALPHA: 3.6.2

 In tri-lateration and multilateration based Geolocation algorithms, the

correct estimation of the location of any target node depends on the correct mapping

of delay to distance. When we get RTT values from landmarks to the target node, the

#Take the average round trip latency (in milliseconds), add

#round trip jitter, but double the impact to latency

#then add 10 for protocol latencies (in milliseconds).

EffectiveLatency = (AverageLatency + Jitter * 2 + 10)

#Implement a basic curve - deduct 4 for the R value at 160ms of

latency

#(round trip). Anything over that gets a much more aggressive

deduction.

ifEffectiveLatency< 160 then

 R = 93.2 - (EffectiveLatency / 40)

else

 R = 93.2 - (EffectiveLatency - 120) / 10

#Now, let's deduct 2.5 R values per percentage of packet loss (i.e.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 48

next important step is to map this RTT value to a distance that can correctly represent

the radius of the circle drawn around that particular landmark. Since, the overlapping

area of the circles is used to estimate the location (latitude, longitude) of the target

node; the correct estimation purely depends on the radius of circles drawn.

 Thus we need to find a suitable correlation between the delay measurements

and the distance values. There are various factors affecting the RTT values including:

propagation delays; router forwarding and queuing delays; unavailability of great

circle path; presence of satellite connections etc. These make it impossible or at least

difficult to reach to a single common factor which could be used in the delay to

distance mapping.

 We know that digital information travels in fiber at a speed of 0.6 times the

speed of light in vacuum. Thus we can say that 1ms of RTT can equal roughly 100Km

distance. But in order to tackle the additive distortions in RTT values due to the

various delaying factors mentioned above, use of this 100Km/ms alpha value results in

a large over estimation. As a result many geolocation location techniques, such as

Octant, Constraint Based Geolocation, and Topology Based Geolocation use much

smaller values of 40-60 Km/ms for alpha.

 Our goal is to find values of alpha that can more accurately map RTT values

to geographical distance. So the formula for calculation of ALPHA is give below:

'c' = speed of light in vacuum i.e. 299,792,458 m/s

Using 300,000 km/s as 'c' this yields:

RTD [km] =Alpha*min_RTT [ms]*100[km/ms]

Alpha is a way to derive Round Trip Distance (RTD) between two hosts (using

minimum RTT).

Or if we know the RTD then we can derive Alpha

Alpha=RTD [km]/(min_RTT[ms]*100[km/ms])

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 49

 Alpha is a way to measure directness of internet routes. Large values of

Alpha close to one indicate a direct path. Small values usually indicate a very

indirectly routed path. This assumes no queuing and minimal network device delays.

 Round Trip Distance (RTD) which is used in calculation of ALPHA is

calculated at run time by obtaining the Lat, Lon of two hosts. From these Lat, Lon we

calculate distance between these two nodes and double this distance to calculate RTD

for these two nodes for which ALPHA needs to be calculated. In flat-files system

these Lat, Lon are obtained from nodes.cf file and in database architecture Lat, Lon

are obtained from node_details table which is basically a table replica of nodes.cf file.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 50

Chapter 4

4 RESULTS

The results of analysis are shown on browser by a script named pingtable.pl.

Previously in flat-files this script used to read data from analysis files which were

generated by various analysis scripts at archive site. The data that is read from analysis

files is formatted by a script named mon-lib.pl and display the results on browser.

Results for every metric at any interval of time and for any pair of nodes are available

in it. But in database architecture as all the analysis results are stored in single table so

we changed the script pingtable.pl such that it reads values from table by executing

SQL queries for results of different metrics at any interval of time and for any pair of

nodes. Below are the results that are shown in browser after modifying pingtable.pl.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 51

Figure 16: Result Output

 Above figure shows a fragment of result of TCP Throughput. Similarly all the

metrics can also be displayed including MOS and ALPHA. The output remains

same for both flat-files and database architecture as shown above. Only the

mechanism of collection of values is different for these approaches.

 Now we are going to display the data and results that are stored in tables

instead of flat-files that are shown earlier so that we can take a look of database to

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 52

understand working of database architecture archive site. Some of values in

node_details table are shown below in the figure:

Figure 17: Node_Details table

 Similarly of values stored in pingdata table which stores the raw data used for

analysis is shown below:

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 53

Figure 18: Pingdata Table

In the same way the fragment of values stored in analysis table which stores the

analysis results is shown below:

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 54

Figure 19: Analysis Table

Now we come towards the MOS and Alpha. These two matrices are added

in flat files based architecture of PingER and working on

http://pinger.seecs.edu.pk/cgi-bin/pingtable.pl.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 55

Chapter 5

5 DISCUSSION AND RECOMMENDATION

Now we come towards the discussion on the results and some recommendations to

overcome the current challenges.

5.1 DISSCUSSION

The archive site based on database architecture has advantages like data is

manageable, scalable and organized Moreover there is no need to calculate results

from thousands of files, instead only one query is now required. But besides these

advantages there are some drawbacks also e.g. more time is taken by scripts for

collecting and analyzing data as compare to flat-files and database tables acquire more

space than flat-files. However this holds little significance as compared to the

advantages offered since most of the analysis is done on daily, monthly or yearly

basis. Therefore data analysis can afford to be slow as it does not take place at

runtime/real-time.

5.2 RECOMMENDATIONS:

However there is always room for improvement and this is an interesting case

academically. One relatively quick way of improving speed of the analysis is to

change how scripts perform calculations. For example doing most of the calculations

and keeping processed data while also storing raw data. In theory this should improve

performance since retrieval will not require table joins or any involved iterations.

Performance can also be achieved by caching commonly used queries. One solution is

that we should change the schema and keep it closer to already deployed database

schema of another network performance monitoring infrastructure e.g. PerfSonar etc.

which is the future work of this project i.e. integrating PingER schema with

PerfSonar to get common interface of both infrastructures.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 56

Chapter 6

6 CONCLUSION:

All the research done on archive site flat-files system and conversion of this

system to database architecture can be useful as it provides insight to many hidden

issues of archive site analysis. This new database based system makes the archive site

extensible in future. This is also a step towards an update of archive site which is a

created a decade ago and needs to be updated according to the requirements of

modern world (Technology change). This research also opens doors for advanced

research in this field and also helps in adding new technologies in current

infrastructure and also help in integrating this infrastructure with another to provide

flexibility and improvements in network performance monitoring by covering more

areas of the world by covering all areas of world.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 57

II. Part II

Integration of TULIP with CBG

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 58

Chapter 7

7 INTRODUCTION AND BACKGROUND

7.1 GEOLOCATION
 [9]

Geolocation is the identification of the real-world geographic location of an

object, such as radar, mobile phone or an Internet-connected computer terminal. Geo

location may refer to the practice of assessing the location, or to the actual assessed

location. The world is already into a transition from relatively fixed computers

to mobile devices. This can potentially open a gateway for accurate locating services

that can have multiple usages.

7.2 IMPORTANCE OF GEOLOCATION

The Internet has become a collection of resources meant to appeal to a large

general audience. Although this multitude of information has been a great boom it also

has diluted the importance of geographically localized information. Offering the

ability for Internet users to gather information based on geographic location can

decrease search times and increase visibility of local establishments. Similarly, user

communities and chat-rooms can be enhanced through knowing the locations (and

therefore, local times, weather conditions and news events) of their members as they

roam the globe. It is possible to provide user services in applications and Web sites

without the need for users to carry Global positioning system (GPS) receivers or even

to know where they themselves are. Geo location by IP address is the technique of

determining a user's geographic latitude, longitude and, by inference, city, region and

nation by comparing the user's public Internet IP address with known locations of

other electronically neighboring servers and routers.

IP addresses are not static - they can be reassigned, relocated within the same

provider or being forwarded using mechanism like virtual private network systems

http://en.wikipedia.org/wiki/Radar
http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Geolocation_software

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 59

(VPNS) or other tunnels. A database consisting of geo locational information about IP

hence has to be updated and maintained on a regular base. Due to the large and

increasing number of used IP addresses, this is a task which is nearby impossible to be

maintained manually. A stripped down version of their commercially available

database is given out for free with several tools and API’s, and is quite popular within

the open source community.

In recent years many efforts have been made for IP geo-location. Very few are

based on dynamic measurements.

7.3 TYPES OF GEOLOCATION

There are different types of geolocation algorithms that differ in their

mechanism

 CBG 7.3.1

CBG (Constraint Based Geo location) transforms delay measurements to geographic

distance constraints, and then uses multiltateration to infer the Geo location of the

target host. CBG is able to assign a confidence region to each given location estimate.

This allows a location-aware application to assess whether the location estimate is

sufficiently accurate for its needs.

 GeoIP 7.3.2

This technique uses end users input. It acquires data from various sites that

require users to register themselves for service. Based on this data it estimates the

location of an ASN. This technique is ideal for e-commerce applications but fails for

intermediate and backbone routers. This is observed mainly because routers belonging

to one AS may be in different countries. Hence for scientific study GeoIP will not be

the ideal tool. E.g. if we are to find the geographical location of a bottleneck it may be

an intermediate router.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 60

 Domain Name Services 7.3.3

DNS may also help in locating a host. The DNS LOC (location) resource record is

designed to make this data available. In addition the names of routers often contain

their location (e.g. city) so a trace route may help identify where a host is near.

 Autonomous system 7.3.4

Given an IP or host name you can use Fixed Orbits to find the relevant AS. Then

using a table of AS number to name you can find out more about the AS (e.g. contacts,

HQ site etc.)

7.4 TULIP
 [7]

TULIP stands for Trilateration Utility for Locating IP hosts. TULIP was developed

by NUST-SEECS in collaboration with SLAC under the Internet End-to-End

Performance Monitoring (IEPM) project. TULIP's purpose is to geo locate a specified

target host (identified by host name or IP address) using RTT delay measurements of

ping to the target from reference landmark hosts whom positions are well known.

Estimating speed of light in copper and fiber, latitude and longitude of the target is

calculated with respect to given landmarks. TULIP calculates the latitude and

longitude coordinates (LAT/LON) of landmarks with the help of reflector.cgi and

sites.xml.

 Reflecter.cgi 7.4.1

This is a CGI script placed at SLAC server. When it runs it makes all active

landmarks to ping all active targets and collects RTTs into a file.

 Land marks 7.4.2

Accuracy of the TULIP algorithm increases with increase in number of landmarks

and the fact how well they are spread out over a continent. The network infrastructure

http://www.ckdhr.com/dns-loc/
http://www.fixedorbit.com/search.htm
http://bgp.potaroo.net/cidr/autnums.html
https://confluence.slac.stanford.edu/display/IEPM/TULIP+Central+Reflector

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 61

to North America and East Asia is similar and well structured. Other parts of the world

such as Africa lack a structured infrastructure. In such cases quantifying a correlation

between distance and RTT is next to impossible .with present techniques more

landmarks in developing and under-developed countries with help in improving

accuracy of locating targets. We have three main types of landmarks:

 PingER landmarks

 Planet lab landmarks

 PerfSONAR landmarks

 Sites.xml 7.4.3

This file is placed at SLAC server. From this file we collect LAT/LON of the

Landmarks and also other information like city, country and continent name.

The format of sites.Xml file looks like

Figure 20:Sites.xml

Note this is the information of only one target.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 62

7.5 MOTIVATION FOR INTEGRATION

SLAC maintains a database for more than 540 landmarks from three different

international infrastructures (PlanetLab, PingER and PerfSONAR), which cover over

99% of the world's internet population. The data that is collected by these

infrastructures is used by all geolocation techniques. CBG uses this data to estimate

the geographical location of some target, therefore integration of CBG has become the

matter of high priority because it will enable us to display more accurate results for

targets and consequently use this infrastructure to the best of its ability. Furthermore

this will provide an amalgamation of best known Geolocation techniques for research

and education purposes. This can also be a very useful tool for pursuing future projects

in locating IP hosts. This can potentially open a gateway for accurate locating services

that can have multiple uses.

CBG algorithm is currently implemented in Matlab code. Whereas TULIP and

Apollonius deployment at SLAC is Java based. We will integrate the two such that

TULIP and Apollonius will keep running at SLAC and there'll be a Matlab server at

SEECS running CBG code. There are two things which we need to take care of:

1. Integration should be transparent i.e. the end user will execute the TULIP GUI

as before without any changes.

2. Integration should introduce minimum possible changes into the current

TULIP architecture.

7.6 PROBLEM STATEMENT

There are many existing algorithms like Apollonius, TBG, and Trilateration etc.

being used for Geolocation of IP hosts. But results of these algorithms are not much

accurate e.g. in case of Apollonius the accuracy is only 30% and in case of TULIP the

accuracy is 50%.Our goal is to achieve maximum accuracy. CBG is found to be

relatively much more accurate than other existing algorithms including Trilateration,

http://www.planet-lab.org/
http://www-iepm.slac.stanford.edu/pinger/
http://www.perfsonar.net/
http://en.wikipedia.org/wiki/Geolocation_software
http://www.oracle.com/technetwork/java/index.html
http://www-wanmon.slac.stanford.edu/cgi-wrap/tulip-viz.cgi?target=slac.stanford.edu

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 63

Apollonius and TBG. In case of CBG the accuracy is 70% and due to its greater

accuracy we want to integrate it with TULIP

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 64

Chapter 8

8 LITERATURE REVIEW

8.1 CONSTRAINT BASED GEOLOCATION

Previous work on the measurement-based Geolocation of Internet hosts uses the

positions of reference hosts with well-known geographic location as the possible

location estimates for the target host. This leads to a discrete space of answers, i.e. the

number of answers is equal to the number of reference hosts, which can limit the

accuracy of the resulting location estimation. This is because the closest reference host

may still be far from the target.

To overcome this limitation, we propose the Constraint-Based Geolocation

(CBG) approach, which infers the geographic location of Internet hosts using

multilateration. Multilateration refers to the process of estimating a position using a

sufficient number of distances to some fixed points. As a result, multilateration

establishes a continuous space of answers instead of a discrete one.

Constraint Based Geolocation (CBG) is an algorithm that is used for

calculating geographical location (Geolocation) of IP hosts (each host is called a

target). This technique takes multiple landmarks (hosts whose lat/lon coordinates are

known) as input to plot circles and identify possible regions of intersection of these

circles. Each landmark is a center of a circle and the radius of a circle is the distance

from a landmark to the target. The radial distance of each circle is calculated from the

minimum Round Trip Time (RTT) between a landmark and the target. RTTs are

gathered from pings.

CBG works on three Constraints which are given below

 Speed of light

 Speed of internet

 Bestline

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 65

This technique takes multiple landmarks (hosts whose LAT/LON coordinates are

known) and ping the targets to plot circles and identify possible regions of intersection

of these circles. CBG draws two circles instead. One is called baseline and other is

called bestline. Baseline is calculated assuming no distortion in the links while bestline

considers all parameters like processing time and queues on routers etc. along with

calculated RTTs in ideal conditions. Actually bestline is result of the actual geographic

distance plus an additive geographic distance distortion while baseline is only real

geographic distance calculated. These two lines form shapes of donuts intersecting

each other. The area of intersection in this case is much reduced as compared to

intersection area of single circles. This leads in more precise estimation of target. Fig 1

shows donut shapes formed by three landmarks L1, L2, L3. Baseline is denoted by

solid line where as bestline is denoted by dotted line. Each landmark is a center of a

circle and the radius of a circle is the distance from a landmark to the target. The radial

distance of each circle is calculated from the minimum Round Trip Time (RTT)

between a landmark and the target. RTTs are gathered from pings.

Figure 21: CBG Mechanism

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 66

The first version of CBG code was independently runnable. It was necessary to

modify CBG code to take input from already running TULIP. We had to modify CBG

code in such a way that it could be executed for a single target instead of all targets

and that target should be user defined. Landmarks that will ping the target can also be

specified at runtime. This modified code calculates results for single target and stores

in a file.

After modification of CBG code, TULIP code was also modified in such a way

that LAT/LON coordinates of landmarks and RTT’s provided by reflector.cgi were

written to a file. The data written in this file was used as input to CBG code.

CBG code has three techniques with respect to constraints. Here is input format

of each technique.

Input to speed of light (SOL) constraint

For cbg2.m (which has constraint of speed of light) input is like

Target_lat Targer_lon Target_id 0

Landmark1_lat Landmark1_lon Landmark1_id RTT

Landmark2_lat Landmark2_lon Landmark2_id RTT

Landmark3_lat Landmark3_lon Landmark3_id RTT

Here the target is pinged by the given landmarks and RTT mentioned is the

minimum RTT of each landmark with the target.

Input to speed of internet (SOI) constraint

First Target entries:

Target_lat Targer_lon Target_id 0

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 67

Landmark1_lat Landmark1_lon Landmark1_id RTT

Landmark2_lat Landmark2_lon Landmark2_id RTT

Landmark3_lat Landmark3_lon Landmark3_id RTT

Second Input number of landmarks

Third input provides entries of each landmark:

Landmark _lat Landmark_lon Landmark _id 0

Target1_lat Target 1_lon Target 1_id RTT

Target 2_lat Target 2_lon Target 2_id RTT

Target 3_lat Target 3_lon Target 3_id RTT

Where above is the landmark and targets pinged by this landmark and the RTT is the

minimum RTT of each target with the landmark.

The output to the CBG code like this:

Target_id est_loc_lat est_loc_lon act_loc_lat act_loc_lon

err_km region_area_km^2 dist_nearest_landmark

constraint_type in_region (1 or 0)

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 68

Figure 22: CBG Flow Diagram

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 69

Chapter 9

9 METHODOLOGY

The TULIP and CBG integration is done in such a way that TULIP is running as

java client, on the other hand, CBG code is running on the Matlab Server. The

architecture of integration is given below.

9.1 ARCHITECTURE OF INTEGRATION

1) User enters the URL with target to be geolocated.

2) The TULIP visualization GUI on the client calls the Java code. The Java code calls

the reflector RTT server with the target and information on the selection of

landmarks. The reflector calls the enabled landmarks from the set of selected

landmarks. The landmarks measure the ping RTTs to the target and return the

results of the pings to the reflector that in turn returns those results to the client.

The client then massages the results and computes the answer. Meanwhile the

client sends a query string via a web service/remote routine (Perl or CGI script) to

the Matlab server. Detail below:

i) The TULIP client gets the active landmarks list from the reflector as

before.

ii) Client massages/adjusts the results and computes the answer for the target

that needs to be geolocated.

iii) Client needs to send this active landmark and target list to Matlab as well.

To accomplish this, the client (which is written in Java) writes a file.

iv) A perl script can then use sockets to establish a connection to the Matlab

server and send this file.

v) Another perl script running on the Matlab server receives the file via

sockets and writes it in local directory.

https://confluence.slac.stanford.edu/display/IEPM/Laundering+Landmarks

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 70

vi) Matlab CBG code then needs to read this file and provide the contents as

input to the geolocateall method.

3) The Matlab server computes an answer from data provided in the query

string. Matlab server sends back a reply in the form of a dataset. Detail below:

a) Matlab CBG code computes an answer from the list of landmarks and target.

b) Matlab CBG code writes the result to a file.

c) This file is sent to the TULIP client using perl script. This will be the same

script running on Matlab server which was used to receive the active

landmarks and target list.

d) The file will be received at TULIP client by perl script.

e) The TULIP Java code will be modified to read this file and put the CBG results

on the map.

4) The Java code receives the reply and merges this to other results to create a

standardized XML file.

5) This XML file is then read by TULIP visualization GUI to display the result on

Google map. Each algorithm's result is represented in a distinct fashion

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 71

Tulip-CBG Integration

Target IP address

TULIP Code

Perl script

Perl script
CBG Code

1

2

3

4

5

MAP
6

Figure 23: TULIP CBG Integration

9.2 TOOLS USED

The tools that are used in implementing the integration of TULIP-CBG are:

1. Java (jdk1.6)

2. Matlab

3. Perl Scripting Language

4. Google Maps API

9.3 TULIP CONFIGURATION AT SEECS

We deployed TULIP at SEECS and replicated the exact same setup present at SLAC

as it is deployed at SLAC. The software’s and services required for the deployment of

TULIP are explained below:

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 72

 Software and Services 9.3.1

1. Java (jdk 1.6)

2. Ant (1.7)

3. Apache

4. Google Map API

We deployed TULIP on PerfSONAR server at SEECS. It requires a public IP because

it collects landmarks data from reflector.cgi that is placed at SLAC. It also requires

root access due to its directory structure and permission. All core classes are placed at

$TULIP_HOME/src/tulip/core/ and all related classes are placed at

$TULIP_HOME/src/tulip/util/.

3.1.1 Running Procedure

The following commands are executed to run the code properly

1 ANT for compiling java code.

2 then we moved to $TULIP_HOME/builddirectory and then give the

following command i.e. :

Java –cp commons-httpclient-3.1.jar:commons-logging-1.1.1.jar:commons-codec-

1.3.jar:. Tulip.core.AutomateTest target 132.227.74.51 startNewTest

Java command remains as it is. We only change the respective target.

9.4 MATLAB SERVER CONFIGURATION AT SEECS

1. Install Matlab on Linux terminal..

2. Run cbg_soi.m for constraint based on Speed of Internet (SOI), which is here

defined as the speed of optical signals in fibre or ~2/3 the Speed of Light in

vacuum (c).

3. Run bestline.m for constraint based on bestline approach. The bestline is defined

in the Constraint-Based Geolocation paper, but basically is the tightest fit over all

the (delay, distance) pairs meant to never underestimate the distance for a delay.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 73

9.5 INTEGRATION METHODOLOGY WITH TULIP

For Integration of TULIP with CBG we have changed the CBG code such that it

reads an input file and the results is printed to an output file. On the other hand we

have also changed TULIP code such that all the landmarks data i.e. their Lat/Lon/RTT

(which the TULIP code also uses for its Trilateration calculations) is written to a file

by TULIP code. Actually this written file is sent to CBG server as an input file as

described above. By processing this input file the output file which is generated by

CBG is send back to TULIP server. At this time another change in TULIP code takes

place which reads this output or CBG result file and shows these results on map.

 Now we explain the exchange mechanism of these input and output files between

TULIP and CBG server. We have written three Perl scripts for this purpose. Two

scripts are placed at the TULIP server and one on the CBG server. Two scripts that are

on TULIP server are:

1. Server.pl (15.11)

2. Client.pl (15.13)

After collecting landmarks data into a file, TULIP code connects to the CBG

server and transfers this file over the network by using the TCP protocol

CBG server receives this input file and calls CBG code with the received file as input

parameters. CBG code processes this input into a TULIP compatible output. This out

output is also saved to file and returned by the CBG server to the TULIP clients as a

TCP response. TULIP while generating results for the other algorithms receives this

file and plots the results on map, shown to user via a browser.

Currently integration of TULIP-CBG is running on speed of internet constraint in

which speed of internet is used for making circles or Donuts which overlap with each

other to calculate the confidence region in which CBG has confidence that a particular

target must be placed in that region. Other constraint is speed of light which is also

operational and the third constraint bestline will be discussed later.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 74

Now we will explain the format of input file and Result file. In input file

according to CBG code first line contains actual Lat, Lon, id and 0 of the target.

These actual Lat, Lon are used for calculating error difference from estimate Lat, Lon

but here actual Lat, Lon are not available as they are to be calculated so we put 0

there. Id is always set to 1 because there is no need of separate Id in this integrated

system. Separate ids are only needed when we run CBG code for multiple targets. But

in this case, we are executing for single target. All other lines contain Lat, Lon, RTT

and id of landmarks that ping the given target and which are used for both TULIP and

CBG calculation.

The output or result file contains id, actual Lat, Lon (which are set to 0), estimate

Lat, Lon (which are calculated), error difference (difference between actual and

estimate location), region area (confidence area in which target is located), in region

(is the actual target placed in that region), hull bull (0 if target is to be located between

convex hull of landmarks and 1 if to be locate target anywhere).

9.6 MULTITHREADING

Basically the TULIP and CBG code is multithreaded and many users can run the

code at same time. The whole integration process also supports multiple users in such

a way that there is no intermingling of values takes place in input and output files as

their names depend upon their target names. The integration is transparent as the CBG

Matlab code is running on backend same output as TULIP.

On both TULIP and CBG server’s there are two directories. One directory is

inputs and second is Results. Inputs directory contains input files whose names are

given as target names i.e. if target is 10.3.20.10 then in inputs directory name of input

file for that target is 10.3.20.10.txt. Similar is the case for output files. In results

directory the result of target 10.1.11.11 is placed in output directory 10.1.11.11.txt.

These names are given to input and output files automatically by code depending

upon on which target the code is running for.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 75

9.7 TULIP VISUALIZATION
 [11]

Now we come towards GUI of TULIP-CBG integrated system. Before this we test

integration on command terminal. There are three main components which are used

for displaying results on GUI

1. Test_table.html

2. Tulip_map.html

3. Tulip_viz.cgi

Here the main component is tulip-viz.cgi and other two html files are called in this

script when it is running on the browser. Basically tulip-viz.cgi runs the main code of

tulip and the output of this tulip code is served as function call for add row () function

which is present in test_table.html and used to display a table of landmarks

information on browser. The map and the markers on the map, which identifies the

landmarks and calculated target locations on map, are displayed by tulip_map.html.

We have changed this file to include a CBG marker to also show result of CBG with

already deployed TULIP, Apollonius and GeoIP. Due to a java script problem it was

not operable on MSIE .However the problem has been fixed

There are some screens shots of result Map are given below.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 76

Figure 24: TULIP Interface before CBG Integration

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 77

Figure 25: TULIP Interface after Integrating CBG

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 78

Chapter 10

10 RESULTS AND PERFORMANCE EVALUATION

10.1 RESULTS

The results of CBG TULIP integration which are shown on browser are explained

below

 Comparison of Lat/Lon 10.1.1

When all the active landmarks calculate their Min RTT, Max RTT, Average RTT

and distance to given target, Tulip, CBG and Apollonius calculate their Lat/Lon

results and these results are displayed into a table. This helps in easy comparison of

the estimated Lat/Lon calculated by Apollonius, Trilateration and CBG. The figure is

given below

Figure 26: Results Table

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 79

The resulted Lat/Lon is also drawn on map to identify the position of target

globally.

For better understanding below there is a figure of map without landmarks.

Figure 27: Without Landmarks

 Ideal Case 10.1.2

If we give actual landmark as target IP address then estimated distance from that

landmark would be 0 and both techniques CBG and Trilateration would give exact

Lat/Lon, it means that we are testing techniques for best case (as distance from one

point to target would be 0), so this means that accuracy is hundred percent but if we

test it for any IP that is not a landmark then these techniques give different results

because in this case distance is never zero from any point to target. Below there is an

example in which we give the different landmarks as a target IP address and their

accuracy come 100%..For example we select different city from North America

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 80

continent and we get the actual Latitude and Longitude from the Sites.Xml and then

compare the results with CBG and Trilateration.

Table 5: Ideal Case

City Country Target Lat/Lon Actual

lat/lon
CBG Trilaterati

on
Apollonius

Williamsbur

g

United

States
128.239.22.9

Latitude 37.2707 37.271 37.2707 35.933

Longitud

e

-

76.7075
-76.707 -76.7075 -74.268

Houston
United

States

192.124.228.1

18

Latitude 29.7629 29.763 29.763 31.8522

Longitud

e

-95.383 -95.383 -95.383 -97.2877

Eagle Nest
United

States
67.230.207.3

Latitude 36.5538 36.554 36.5538 41.323

Longitud

e

-

105.264
-105.26 -105.264 -109.107

Cambridge
United

States

140.247.197.2

04

Latitude 42.3824 42.382

4
42.3824 40.837

Longitud

e

-

71.0997

-

71.099

7

-71.0097 -73.497

10.2 ACCURACY OF DIFFERENT CONTINENTS

 Accuracy of Asia 10.2.1

Table 6: Accuracy in Asia

 Country

Target Lat/Lon GeoIP CBG Trilateration Apollonius

Korea
116.89.165.133

Latitude 24.788 25.051 22.3361 35.331

Longitude 115.33 115.54 114.264 130.803

Taiwan 140.112.42.159 Latitude 25.0392 24.784 24.7812 21.507

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 81

Longitude 121.525 120.99 120.993 136.026

India 120.88.46.30

Latitude 18.975 18.987 18.98 20.574

Longitude 72.8258 72.83 72.83 81.5722

China

202.112.0.35

Latitude 39.9289 39.913 39.9092 38.835

Longitude 116.3883 116.24 116.24 112.875

China 61.175.163.41

Latitude 30.2553 41.82 39.909 17.10333

Longitude 120.1689 116.24 116.24 120.362

India 59.165.131.15

Latitude 18.975 18.98 18.98 24.7679

Longitude 72.8258 72.83 72.83 83.77

Sri Lanka 192.248.48.3

Latitude 7.2631 19.38 18.93 8.772

Longitude 80.6028 72.85 72.85 65.457

Sri Lanka 192.248.1.164

Latitude 7.2964 14.129 18.93 9.2207

Longitude 80.635 77.58 72.85 66.54

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 82

Figure 28: Accuracy in Asia graph

 Accuracy of Europe 10.2.2

Table 7: Accuracy in Europe

Country

Target Lat/Lon GeoIP CBG Trilateration Apollonius

Andorra 194.158.78.228
Latitude 42.5 53.855 51.5722 50.744

Longitude 1.5167 -1.3099 -1.3099 -17.1345

Belarus 74.125.53.121
Latitude 37.4192 47.459 49.2119 40.063

Longitude -122.0574 -123.19 -123.103 -118.509

Belgium 193.190.198.39
Latitude 50.8333 51.622 51.5722 52.147

Longitude 4.3333 -1.3099 -1.3099 0.9666

Denmark 130.225.212.5 Latitude 55.7 51.384 51.5722 57.183

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 83

Longitude 12.5167 0.88071 -1.3099 0.6766

France
132.227.74.51

Latitude 48.867 49.868 51.5722 52.896

Longitude

2.3333 2.2246 -1.3099 0.880

Germany 140.181.64.223

Latitude 49.8706 47.798 46.2325 49.490

Longitude

8.6494 4.4836 6.0459 8.655

Figure 29: Accuracy in Europe graph

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 84

 Accuracy in Africa 10.2.3

Table 8: Accuracy in Africa

Country

Target Lat/Lon GeoIP CBG Trilateration Apollonius

 Morocco 81.192.184.85

Latitude 34.0528 53.343 53.3431 39.700

Longitude -4.9828 -2.6407 -2.6407 -32.314

Algeria 193.194.64.71

Latitude 36.7631 36.9 36.9 49.697

Longitude 3.0506 2.9 2.9 16.284

Botswana 168.167.168.34

Latitude -24.6464 -42.041 -33.9658 -89.824

Longitude 25.9119 18.168 18.1684 -948.25

Burkina Faso

206.82.130.77

Latitude 12.3702 12.666 12.377 33.687

Longitude -1.5247 -1.53 -1.53 10.811

Cape Verde 195.8.3.90

Latitude 14.9167 53.343 51.5722 55.759

Longitude -23.5168 -2.6407 -1.3099 -35.900

Ethiopia 213.55.76.98

Latitude 8 51.572 51.5722 54.080

Longitude 38 -1.3099 -1.3099 -2.844

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 85

Figure 30: Accuracy in Africa graph

 Accuracy in North America 10.2.4

Table 9: Accuracy in North America

Country

Target Lat/Lon GeoIP CBG Trilateration Apollonius

United States
192.42.83.251

Latitude 41.8471 45.544 44.98 42.7935

Longitude -87.6248 -

86.263

-93.2638 -90.063

Laval 64.15.128.187
Latitude 45.6 43.692 45.42 41.934

Longitude -73.7333 -

76.167

-75.7 -73.169

Santa Clara

198.175.112.105

Latitude 37.3558 37.539 37.4177 39.8313

Longitude -

121.9537

-122.2 -122.203 -128.66

Stanford 171.64.7.115
Latitude 37.4178 37.418 37.4177 40.920

Longitude -122.172 -122.2 -122.203 -122.478

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 86

MIT(USA) 18.7.22.69

Latitude 42.3646 42.343 42.3824 40.451

Longitude -71.1028 -

71.088

-71.0997 -73.24

North

America
128.197.26.35

Latitude 42.3451 42.384 42.3824 40.604

Longitude -71.0993 -71.1 -71.0997 -73.308

United States 129.79.78.192

Latitude 38.739 41 .217 44.98 38.708

Longitude -87.157 -

86.238

-93.2638 -87.16

Figure 31: Accuracy in North America

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 87

 Average distance error comparison w.r.t continents 10.2.5

Figure 32: Average distance error w.r.t to continents

 Average distance error comparison w.r.t countries 10.2.6

Table 10: Average distance error comparison w.r.t to world wide

Country

Target Lat/Lon GeoIP CBG Trilateration Apollonius

France
132.227.74.51

Latitude 48.867 49.868 51.5722 52.896

Longitude 2.3333 2.2246 -1.3099 0.880

Taiwan
140.112.42.159

Latitude 25.0392 24.784 24.7812 21.507

Longitude 121.525 120.99 120.993 136.026

Italy
143.225.229.236

Latitude 46.578 46.578 45.6486 40.066

Longitude 13.78 13.78 13.78 0.950

http://en.wikipedia.org/wiki/taiwan

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 88

United States
192.42.83.251

Latitude 41.8471 45.544 44.98 42.7935

Longitude -87.6248 -86.263 -93.2638 -90.063

Korea
116.89.165.133

Latitude 24.788 25.051 22.3361 35.331

Longitude 115.33 115.54 114.264 130.803

United States
131.247.2.245

Latitude 28.0631 41.691 42.3824 19.963

Longitude -82.4128 -87.063 -71.0997 -101.415

Japan
133.15.59.2

Latitude 36 24.781 33.75 29.551

Longitude 138 120.99 73.165 119.113

Germany 195.37.16.121

Latitude 48.5833 49.212 50.6833 50.009

Longitude 13.4832 3.4329 10.9 8.400

Santa Clara
198.175.112.105

Latitude 37.3558 37.539 37.4177 39.8313

Longitude -121.9537 -122.2 -122.203 -128.66

Guatemala
168.234.74.100

Latitude 15.5 29.763 32.7781 11.195

Longitude -90.25 -95.383 -96.7982 -74.244

http://en.wikipedia.org/wiki/united%20states
http://en.wikipedia.org/wiki/korea,%20republic%20of
http://en.wikipedia.org/wiki/united%20states
http://en.wikipedia.org/wiki/germany
http://en.wikipedia.org/wiki/guatemala

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 89

Figure 33: Average distance comparison world wide

We compared our results with the GeoIP because actual data is already stored

in GeoIP database (actual latitude, longitude, city name, country name, continent name

and distance). When we say that CBG is more accurate than Trilateration or

Apollonius, it is expected that its results are much closer to GeoIP as compare to

results of Trilateration and Apollonius. It’s also seen that with less number of

landmarks CBG will perform well as compared to previous techniques.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 90

Chapter 11

11 DISCUSSION

The results that we have seen from this project are such that more accurate results are

achieved for targets in regions like North America and South Asia due to good

network infrastructure and due to more monitoring and remote nodes as compared to

any other areas. Similarly the results in Africa and Australia are not much accurate

because of less number of nodes and network infrastructure. Currently CBG is running

on two constraints cbg2 (Speed of light) (15.7) and cbg_soi (Speed of internet).

Cbg_soi (15.8) results are more accurate than cbg2. On the other hand bestline

constraint provides more accurate results but it is not integrated yet due to insufficient

data provided by TULIP database. It requires data from an additional data source.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 91

Chapter 12

12 CONCLUSION

We already know that Internet has become a collection of resources meant to

appeal to a large general audience. Although this multitude of information has been a

great boon, it also has diluted the importance of geographically localized information.

Offering the ability for Internet users to garner information based on geographic

location can decrease Search times and increase visibility of local establishments.

Geolocation by IP address is the technique of determining a user's geographic latitude,

longitude and, by Inference, city, region and nation by comparing the user's public

Internet IP address with known locations of other electronically neighboring servers

and routers.

So In this document, we described the CBG-TULIP integration; both are

measurement-based method to estimate the geographic location of Internet hosts.

Based on delay measurements, CBG use Triltilateration or Multiltateration to infer a

location estimate for a given target host. The experimental results show that CBG

perform well as compared to other existing techniques because its accuracy is almost

70% which is greater than the all other existing technique. Our results are based on

measurements taken in well connected, geographically contiguous networks. To some

extent our work takes advantage of the fact that network connectivity has improved

dramatically in the last decade, and that the relationship between network delay and

geographic distance is strong in these regions Thus one must be cautious before

extrapolating our results to arbitrary network regions.CBG establishes a dynamic

relationship between network delay and geographic distance. This is done in a

distributed and self-calibrating fashion among the adopted landmarks using the

constraint SOI (cbg_soi) we can also use other constraint like speed of light (cbg2.m)

and Bestline (bestline.m) .In addition to some expected sources of distortion in this

relationship, such as queuing delay and the absence of great-circle paths, our results

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 92

point out other sources as well. The presence of shared paths hides the location of the

target host behind a single point, also leading to inaccurate estimates. But basic

purpose of this project is to integrate the CBG with other existing algorithm like

Apollonius and GeoIP so we have multiple ways to view the results on Map and

compare these results with each other and find the most accurate result.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 93

Chapter 13

13 FUTURE WORK

We also know that no software is perfect .So still there are also some issues are

existing in this architecture which can be solve by using these techniques.

13.1 USING BESTLINE APPROACH

As we now CBG is running on three constraints:

 Speed of Light

 Speed of Internet

 Bestline approach

Currently we have deployed first two constraints but regarding accuracy the

third constraint is more accurate. Basically TULIP code provides us the data only by

which we can measure first two constraints. For third constraint CBG will requires

some extra information which is not currently available from TULIP code.

The input of CBG with respect to different constraint is such that for first two

constraints it only needs data of Landmarks i.e. Lat/Lon and their RTTs with the

specified target. For bestline approach we not only required this data but also requires

data for all those targets which are pinged by these Landmarks for example their RTTs

from that one landmark which is in group of landmarks who ping the target whose

location is to be determined.

For extracting this extra information we require to have connection to a database

that stores RTTs of different landmarks to different targets. When this Integration

code runs for estimating a target then at run time it connects to this database and

fetches data for those landmarks which are called by reflector.cgi to ping the given

target. Most probably this database is of PingER which stores data hourly for analysis

purposes.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 94

13.2 LANDMARK TIERING ANALYSIS

Basically it will help selecting only those landmarks that are near to the testing

target. Another approach towards effective landmark selection could be tiering

approach. In this approach first we probe a target host with a few selected level zero

Landmarks once the tier has be Landmarks of that tear to increase accuracy. Following

is a case study for the feasibility of tiring approach for North American region. The

purpose of this study is to investigate the effectiveness of tiering for TULIP (i.e. we

have a set of primary landmarks tier0 which will narrow down the target location to

being in a particular region and then a denser set of secondary tier1 landmarks in the

discovered region that can be used to get more accurate results). The use of tiering

should enable us to reduce the network traffic (number of landmarks pinging a target)

while retaining the accuracy of using all landmarks.

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 95

Chapter 14

14 REFERENCES

[1] http://pinger.seecs.edu.pk/tutorial/tutorial.html#mechanism

[2] ICFA SCIC Network Monitoring Report Prepared by the ICFA SCIC

Monitoring Working Group published January 2010.

 [3] A Hands-On Guide to Relational Database Design By Michael J. Hernandez

Chapter 2 Design Objectives

[5]https://confluence.slac.stanford.edu/display/IEPM/PingER+NODEDETAILS

[6]http://pinger.seecs.edu.pk/tutorial/tutorial.html#gather

[7]https://confluence.slac.stanford.edu/dosearchsite.action?queryString=tulip

(TULIP)

[8]https://confluence.slac.stanford.edu/display/IEPM/TULIP+Map+%28Land

marks%29

[9]http://en.wikipedia.org/wiki/Geolocation

[10]http://portal.acm.org/citation.cfm?id=1028828

[11]https://confluence.slac.stanford.edu/display/IEPM/TULIP+Web+Based+V

isualization

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 96

Chapter 15

15 APPENDICIES

15.1 CHANGES IN NODE.PL

my $dbh = DBI->connect('DBI:mysql:archive3', 'root', 'chishti') || die "Could not connect to database: $DBI::errstr";
if($countt==0){
my $query1t = "truncate node_details";
my $query_handle1 = $dbh->prepare($query1t);
 $query_handle1->execute();
$countt++;
}
my $query1 = "INSERT INTO node_details VALUES (null,'$row->{'NODENAME'}', '$row->{'IPADDRESS'}', '$row-
>{'SITENAME'}',
'$row->{'NICKNAME'}', '$row->{'COUNTRY'}', '$row->{'CONTINENT'}',
'$row-> {'LAT'}', '$row->{'LONG'}', '$row->{'PROJECTTYPE'}', '$row->{'PINGSERVER'}', '$row->{'TRACESERVER'}',
'$row->{'DATASERVER'}', '$row->{'URL'}', '$row->{'GMT'}')";
my $query_handle = $dbh->prepare($query1);
 $query_handle->execute();

15.2 CHANGE IN GETDATA.PL

my $dbh = DBI->connect('DBI:mysql:archive3', 'root', 'chishti') || die "Could not connect to database: $DBI::errstr";
my $query2 = "select nodename,dataserver from node_details where (projecttype='M' || projecttype='MB' || projecttype='MD' ||
projecttype='MWB' || projecttype='DM') and country='Pakistan'";
my $query_handle = $dbh->prepare($query2);
$query_handle->execute();
$query_handle->bind_columns(undef, \$nd, \$ds);
my @nodename;
my @data_servers;
my $count=0;
while($query_handle->fetch()) {
@nodename[$count]=$nd;
@data_servers1[$count]=$ds;
$count++;}
$count1=0;
** Insert values**
my $query1 = "INSERT INTO pingdata VALUES ($id2, $id3, $vars[4], '$vars[5]', $vars[6], $vars[7], $vars[8], $vars[9], $vars[10],
$vars[11], $vars[12], $vars[13], $vars[14], $vars[15], $vars[16], $vars[17], $vars[18], $vars[19], $vars[20], $vars[21], $vars[22],
$vars[23], $vars[24], $vars[25], $vars[26], $vars[27], $vars[28], $vars[29], $vars[30],'$date')";
my $query_handle = $dbh->prepare($query1);
 $query_handle->execute();

There are also changes to handle data. That cannot be mentioned except writing the

whole script here.

15.3 CHANGES IN ANALYZE HOURLY

$query1s = "SELECT count(*) from pingdata where date='$process_year-$process_mon-$process_mday' and
monnode_id='$idmn'";
$query_handle = $dbh->prepare($query1s);
$query_handle->execute();

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 97

$query_handle->bind_columns(undef, \$ct);
$query_handle->fetch();
if($ct==0)
{print "\nNo data for date $process_year-$process_mon-$process_mday for monitoring site $monitoring_site exists.\n";
$countmns++;
print "Number of no data monitoring sites are $countmns";
next;
}
$nmon_site++;
Read Data
my $count1=0;
$query2s = "SELECT a.nodename,a.sitename,a.ipaddress,a.projecttype,a.nickname,a.lat,a.lon,
b.nodename,b.sitename,b.ipaddress,b.projecttype,b.nickname,b.lat,b.lon,
c.packet_size,c.time,c.sent,c.recv,c.min_rtt,c.avg_rtt,c.max_rtt,c.seq1,c.seq2,c.seq3,c.seq4,
c.seq5,c.seq6,c.seq7,c.seq8,c.seq9,c.seq10,c.rtt1,c.rtt2,c.rtt3,c.rtt4,c.rtt5,
c.rtt6,c.rtt7,c.rtt8,c.rtt9,c.rtt10
FROM node_details a,node_detailsb,pingdata c
WHERE c.date='$process_year-$process_mon-$process_mday' and
c.monnode_id=a.id and
c.remnode_id=b.id and c.monnode_id='$idmn'";
$query_handle = $dbh->prepare($query2s);
$query_handle->execute();
$query_handle->bind_columns(undef, \$mon_name, \$mon_sitename, \$mon_ip, \$mon_proj, \$mon_nick, \$mon_lat,
\$mon_lon, \$rem_name, \$rem_sitename, \$rem_ip, \$rem_proj, \$rem_nick, \$rem_lat, \$rem_lon, \$pk_size, \$time, \$sent,
\$recv, \$min_rtt, \$avg_rtt, \$max_rtt, \$seq1, \$seq2, \$seq3, \$seq4, \$seq5, \$seq6, \$seq7, \$seq8, \$seq9, \$seq10, \$rtt1,
\$rtt2, \$rtt3, \$rtt4, \$rtt5, \$rtt6, \$rtt7, \$rtt8, \$rtt9, \$rtt10);
LINE:
while($query_handle->fetch()) {
 $nline++;
my $from=$mon_name;
 if($from =~ /(\d{1,3})\.(\d{1,3})\.(\d{1,3})\.(\d{1,3})/) {
 if(($debug>0) && ($nline<2)) {
 print STDERR " Warning mon host for $monitoring_site has only IP address=$from\n";
***Store in analysis table**
my $query1 = "INSERT INTO analysis VALUES ('$monnn', '$remmm', '$size', '$by', '$clp', '$min_rtt', '$pur', '$mpl', '$pup',
'$ipdv', '$zplf', '$pk_loss', '$alphaa', '$dp', '$iqr', '$avg_rtt', '$thr', '$ooop', '$moss', '$yearc', '$monc', '$mday', $i)";
my $query_handle = $dbh->prepare($query1);
 $query_handle->execute();

15.4 CHANGES IN ANALYZE-DAILY.PL

***Reading data**:

$query1s = "SELECT a.mon,a.rem,a.hour,a.$metric_select,a.mon,a.rem from analysis a where a.year='$year' and
a.month='$mon' and a.day='$mday' and a.pksize='$size' and a.byclass='$by' and hour is not null order by a.mon,a.rem,a.hour";
$query_handle = $dbh->prepare($query1s);
$query_handle->execute();
#$query_handle->bind_columns(undef, \$monh, \$remh, \$hh, \$mt, \$monht, \$remht, \$monst, \$remst);
$query_handle->bind_columns(undef, \$monh, \$remh, \$hh, \$mt, \$monht, \$remht);
LINE:
while($query_handle->fetch()) {

#print "\n $monh $remh --------------------- $hh ----- $mt ---------------------- $monht $remht \n";
$ele[$hh]=$mt;
if($hheq '23')
{
$line="$monh $remh $ele[0] $ele[1] $ele[2] $ele[3] $ele[4] $ele[5] $ele[6] $ele[7] $ele[8] $ele[9] $ele[10] $ele[11] $ele[12]
$ele[13] $ele[14] $ele[15] $ele[16] $ele[17] $ele[18] $ele[19] $ele[20] $ele[21] $ele[22] $ele[23] $monht $remht";

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 98

********************Storing data***********************************
my $query1 = "INSERT INTO analysis VALUES ('$monnn', '$remmm', '$size', '$by', '$clp', '$min_rtt', '$pur', '$mpl', '$pup',
'$ipdv', '$zplf', '$pk_loss', '$alphaa', '$dp', '$iqr', '$avg_rtt', '$thr', '$ooop', '$moss', '$year', '$mon', '$mday', null)";
my $query_handle = $dbh->prepare($query1);
 $query_handle->execute();
print "\n\nOne row Inserted\n\n";

15.5 CHANGES IN ANALYZE-MONTHLY.PL

$query1s = "SELECT a.mon,a.rem,a.day,a.$metric_select,a.mon,a.rem from analysis a where a.year='$year' and
a.month='$mon' and a.hour is null and a.day is not null and a.pksize='$size' and a.byclass='$by' order by a.mon,a.rem,a.day";
$query_handle = $dbh->prepare($query1s);
$query_handle->execute();
#$query_handle->bind_columns(undef, \$monh, \$remh, \$hh, \$mt, \$monht, \$remht, \$monst, \$remst);
$query_handle->bind_columns(undef, \$monh, \$remh, \$hh, \$mt, \$monht, \$remht);
LINE:
while($query_handle->fetch()) {
print "\n $monh $remh --------------------- $hh ----- $mt ---------------------- $monht $remht \n";
$ele[$hh-1]=$mt;
if($hheq $days)
{
if($hh==31)
{
$line="$monh $remh $ele[0] $ele[1] $ele[2] $ele[3] $ele[4] $ele[5] $ele[6] $ele[7] $ele[8] $ele[9] $ele[10] $ele[11] $ele[12]
$ele[13] $ele[14] $ele[15] $ele[16] $ele[17] $ele[18] $ele[19] $ele[20] $ele[21] $ele[22] $ele[23] $ele[24] $ele[25] $ele[26]
$ele[27] $ele[28] $ele[29] $ele[30] $monht $remht";
}

if($hh==30)
{
$line="$monh $remh $ele[0] $ele[1] $ele[2] $ele[3] $ele[4] $ele[5] $ele[6] $ele[7] $ele[8] $ele[9] $ele[10] $ele[11] $ele[12]
$ele[13] $ele[14] $ele[15] $ele[16] $ele[17] $ele[18] $ele[19] $ele[20] $ele[21] $ele[22] $ele[23] $ele[24] $ele[25] $ele[26]
$ele[27] $ele[28] $ele[29] $monht $remht";
}
if($hh==28)
{
$line="$monh $remh $ele[0] $ele[1] $ele[2] $ele[3] $ele[4] $ele[5] $ele[6] $ele[7] $ele[8] $ele[9] $ele[10] $ele[11] $ele[12]
$ele[13] $ele[14] $ele[15] $ele[16] $ele[17] $ele[18] $ele[19] $ele[20] $ele[21] $ele[22] $ele[23] $ele[24] $ele[25] $ele[26]
$ele[27] $monht $remht";
}
if($hh==29)
{$line="$monh $remh $ele[0] $ele[1] $ele[2] $ele[3] $ele[4] $ele[5] $ele[6] $ele[7] $ele[8] $ele[9] $ele[10] $ele[11] $ele[12]
$ele[13] $ele[14] $ele[15] $ele[16] $ele[17] $ele[18] $ele[19] $ele[20] $ele[21] $ele[22] $ele[23] $ele[24] $ele[25] $ele[26]
$ele[27] $ele[28] $monht $remht";
}
print "\n $line \n";
****************Store in analysis Table**************************
my $query1 = "INSERT INTO analysis VALUES ('$monnn', '$remmm', '$size', '$by', '$clp', '$min_rtt', '$pur', '$mpl', '$pup',
'$ipdv', '$zplf', '$pk_loss', '$alphaa', '$dp', '$iqr', '$avg_rtt', '$thr', '$ooop', '$moss', '$year', '$mon', null, null)";
my $query_handle = $dbh->prepare($query1);
 $query_handle->execute();
print "\n\nOne row Inserted\n\n";

15.6 CHANGES IN PINGTABLE.PL

if($FORM{'tick'}=~/hourly/) {
$topline="0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 ";#First line contains the heading
$vartt=23;

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 99

my $query21 = "select count(*) from analysis where year='$FORM{'year'}' and month='$FORM{'month'}' and
day='$FORM{'day'}'
and pksize='$FORM{'size'}' and byclass='$FORM{'by'}'";
my $query_handle = $dbh->prepare($query21);
$query_handle->execute();
$query_handle->bind_columns(undef, \$count_hourly);
$query_handle->fetch();
$count_interval=$count_hourly;
$query1hds = "SELECT a.mon,a.rem,a.hour,a.hour,a.$metric_select,a.mon,a.rem from analysis a where
a.year='$FORM{'year'}' and a.month='$FORM{'month'}' and a.day='$FORM{'day'}' and a.pksize='$FORM{'size'}' and
a.byclass='$FORM{'by'}' order by a.mon,a.rem,a.hour";}
#***Display Daily Data***
elsif($FORM{'tick'}=~/daily/) {
undef $FORM{'day'};
my $mon=$FORM{'month'};
 if(isLeapYear($year) eq '1'){
 $days = $days_in_month_leapYear[$mon-1];
 }
 else {
 $days=$days_in_month[$mon-1];
 }
$vartt = $days;
for $day (1..$days) {
 $year=$FORM{'year'};
 $mon=sprintf "%2.2d", $mon;
 $mday=sprintf "%2.2d", $day; #Create header label of form yymmmdd, e.g. 07May01 (= May 1st 2007)
$title[$day]=substr(sprintf("%2.2d",$year),2,2).$months[$mon-1].$mday;
$topline =$topline."$title[$day] ";
#$topline ="$title[$day] ".$topline;
}
my $query21 = "select count(*) from analysis where year='$FORM{'year'}' and month='$FORM{'month'}' and
pksize='$FORM{'size'}' and byclass='$FORM{'by'}' and hour is null";
my $query_handle = $dbh->prepare($query21);
$query_handle->execute();
$query_handle->bind_columns(undef, \$count_daily);
$query_handle->fetch();
$count_interval=$count_daily;
$query1hds = "SELECT a.mon,a.rem,a.hour,a.day,a.$metric_select,a.mon,a.rem from analysis a where a.year='$FORM{'year'}'
and a.month='$FORM{'month'}' and a.hour is null and a.day is not null and a.pksize='$FORM{'size'}' and
a.byclass='$FORM{'by'}' order by a.mon,a.rem,a.day";
}
#**Display last 60 days data**
elsif($FORM{'tick'}=~/last60days/) {
undef $FORM{'day'}; undef $FORM{'month'};
$config{'DATAFILE'} = "$PATH{'REPORT_DIR'}/$FORM{'dataset'}/$FORM{'file'}/$FORM{'file'}-$FORM{'size'}-$FORM{'by'}-
60days.txt.gz";
$days=60;
my $seconds_ago=($days)*24*60*60;
my $start_time=time-$seconds_ago;
my @yyear;
my @mmonth;
my @dday;
my $ccountty=0;
my $ccounttm=0;
my $ccounttd=0;
$vartt = $days;
for $day (1..$days) {
$unix_time=$start_time+($day-1)*86400;
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime($unix_time);

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 100

$year+=1900;
if($ccountty>0)
{
if($year==$yyear[$ccountty-1]) { }
else {
$yyear[$ccountty]=$year;
$ccountty++;
}}else
{$yyear[$ccountty]=$year;
$ccountty++;
}
 $mon=sprintf "%2.2d", $mon+1;
if($ccounttm>0)
{
if($mon==$mmonth[$ccounttm-1]) { }
else
{
$mmonth[$ccounttm]=$mon;
$ccounttm++;}
}
else
{
$mmonth[$ccounttm]=$mon;
$ccounttm++;
}
$mday=sprintf "%2.2d", $mday;
if($ccounttd>0)
{
if($mday==$dday[$ccounttd-1]) { }
else
{
$dday[$ccounttd]=$mday;
$ccounttd++;}
#Create header label of form yymmmdd, e.g. 07May01 (= May 1st 2007)
$title[$day]=substr(sprintf("%2.2d",$year),2,2).$months[$mon-1].$mday;
#$topline =$topline."$title[$day] ";
$topline ="$title[$day] ".$topline;
}
if($#mmonth+1==2)
{
my @md1;
my @md2;
my $ccutt=0;
my $cct1=0;
my $asd=0;
for($t=0 ; $t<60 ; $t++)
{

$asd++;

if ($dday[$t]==1)
{
if($asd!=1)
{
$cct1++;
}
$ccutt=0;
}
if($cct1==0)

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 101

{
$md1[$ccutt]=$dday[$t];
$ccutt++;
}
if($cct1==1)
{
$md2[$ccutt]=$dday[$t];
$ccutt++;
}$query1hds = "SELECT mon,rem,month,day,$metric_select,mon,rem from analysis where year=$year and
((month=$mmonth[0] and day >=$md1[0]) or (month=$mmonth[1] and day<=$md2[$#md2])) and hour is null and day is not null
and pksize='$FORM{'size'}' and byclass='$FORM{'by'}' order by mon,rem,month,day,year";
}
if($#mmonth+1==3)
{
my @md1;
my @md2;
my @md3;
my $ccutt=0;
my $cct1=0;
for($t=0 ; $t<60 ; $t++)
{
if ($dday[$t]==1)
{
$cct1++;
$ccutt=0;
}
if($cct1==0)
{
$md1[$ccutt]=$dday[$t];
$ccutt++;
}
if($cct1==1)
{
$md2[$ccutt]=$dday[$t];
$ccutt++;
}if($cct1==1)
{
$md2[$ccutt]=$dday[$t];
$ccutt++;
}
if($cct1==2)
{
$md3[$ccutt]=$dday[$t];
$ccutt++;
}
}
$cutmon=$mmonth[2];
$cutday=$md3[$#md3];
$query1hds = "SELECT mon,rem,month,day,$metric_select,mon,rem from analysis where year=$year and (month=$mmonth[1]
or (month=$mmonth[0] and day >=$md1[0]) or (month=$mmonth[2] and day<=$md3[$#md3])) and hour is null and day is not
null and pksize='$FORM{'size'}' and byclass='$FORM{'by'}' order by mon,rem,month,day,year";

}
my $query21 = "select count(*) from analysis where year=$year and month=$mon and pksize='$FORM{'size'}' and
byclass='$FORM{'by'}' and hour is null";
my $query_handle = $dbh->prepare($query21);
$query_handle->execute();
$query_handle->bind_columns(undef, \$count_daily);
$query_handle->fetch();

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 102

$count_interval=$count_daily;
}
#**Last 120 Days**
elsif($FORM{'tick'}=~/last120days/) {
undef $FORM{'day'}; undef $FORM{'month'};
 # $config{'DATAFILE'} = "$PATH{'REPORT_DIR'}/$FORM{'dataset'}/$FORM{'file'}/$FORM{'file'}-$FORM{'size'}-$FORM{'by'}-
120days.txt.gz";
$days=120;
my $seconds_ago=($days)*24*60*60;
my $start_time=time-$seconds_ago;
my @yyear;
my @mmonth;
my @dday;
my $ccountty=0;
my $ccounttm=0;
my $ccounttd=0;
$vartt = $days;

my $hahaha=0;
for $day (1..$days) {
 $unix_time=$start_time+($day-1)*86400;
($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime($unix_time);
$year+=1900;
if($ccountty>0)
{
if($year==$yyear[$ccountty-1]) { }
else {
$yyear[$ccountty]=$year;
$ccountty++;
}
}
else
{
$yyear[$ccountty]=$year;
$ccountty++;
}
 $mon=sprintf "%2.2d", $mon+1;
if($ccounttm>0)
{
if($mon==$mmonth[$ccounttm-1]) { }
else
{
$mmonth[$ccounttm]=$mon;
$ccounttm++;
}
}
else
{
$mmonth[$ccounttm]=$mon;
$ccounttm++;
}
 $mday=sprintf "%2.2d", $mday;
if($ccounttd>0)
{
if($mday==$dday[$ccounttd-1]) { }
else
{
$dday[$ccounttd]=$mday;

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 103

$ccounttd++;
}
}else
{
$dday[$ccounttd]=$mday;
$ccounttd++;
}
#Create header label of form yymmmdd, e.g. 07May01 (= May 1st 2007)
$title[$day]=substr(sprintf("%2.2d",$year),2,2).$months[$mon-1].$mday;
#$topline =$topline."$title[$day] ";
$topline ="$title[$day] ".$topline;
}
if($#mmonth+1==4)
{
my @md1;
my @md2;
my @md3;
my @md4;
my $ccutt=0;
my $cct1=0;
for($t=0 ; $t<120 ; $t++)
{

if ($dday[$t]==1)
{
$cct1++;
$ccutt=0;
}
if($cct1==0)
{
$md1[$ccutt]=$dday[$t];
$ccutt++;
}
if($cct1==1)
{
$md2[$ccutt]=$dday[$t];
$ccutt++;
}
if($cct1==2)
{
$md3[$ccutt]=$dday[$t];
$ccutt++;
}
if($cct1==3)
{
$md4[$ccutt]=$dday[$t];
$ccutt++;
}
}$cutmon=$mmonth[3];
$cutday=$md4[$#md4];
$query1hds = "SELECT mon,rem,month,day,$metric_select,mon,rem from analysis where year=$year and
((month=$mmonth[0] and day >=$md1[0]) or month=$mmonth[1] or month=$mmonth[2] or (month=$mmonth[3] and
day<=$md4[$#md4])) and hour is null and day is not null and pksize='$FORM{'size'}' and byclass='$FORM{'by'}' order by
mon,rem,month,day,year";
}
if($#mmonth+1==5)
{
#print "\n Five months \n";
my @md1;

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 104

my @md2;
my @md3;
my @md4;
my @md5;
my $ccutt=0;
my $cct1=0;
for($t=0 ; $t<120 ; $t++)
{
if ($dday[$t]==1)
{
$cct1++;
$ccutt=0;
}
if($cct1==0)
{
$md1[$ccutt]=$dday[$t];
$ccutt++;
}
if($cct1==1)
{
$md2[$ccutt]=$dday[$t];
$ccutt++;
}if($cct1==2)
{
$md3[$ccutt]=$dday[$t];
$ccutt++;
}
if($cct1==3)
{
$md4[$ccutt]=$dday[$t];
$ccutt++;
}
if($cct1==4)
{
$md5[$ccutt]=$dday[$t];
$ccutt++;
}
}
$cutmon=$mmonth[4];
$cutday=$md5[$#md5];
$query1hds = "SELECT mon,rem,month,day,$metric_select,mon,rem from analysis where year=$year and
((month=$mmonth[0] and day >=$md1[0]) or month=$mmonth[1] or month=$mmonth[2] or month=$mmonth[3] or
(month=$mmonth[4] and day<=$md5[$#md5])) and hour is null and day is not null and pksize='$FORM{'size'}' and
byclass='$FORM{'by'}' order by mon,rem,month,day,year";
}
my $query21 = "select count(*) from analysis where year=$year and month=$mon and pksize='$FORM{'size'}' and
byclass='$FORM{'by'}' and hour is null";
my $query_handle = $dbh->prepare($query21);
$query_handle->execute();
$query_handle->bind_columns(undef, \$count_daily);
$query_handle->fetch();
$count_interval=$count_daily;}
#**Monthly Data**
else {
undef $FORM{'day'}; undef $FORM{'month'};
 # $config{'DATAFILE'} = "$PATH{'REPORT_DIR'}/$FORM{'dataset'}/$FORM{'file'}/$FORM{'file'}-$FORM{'size'}-
$FORM{'by'}.txt.gz";
$vartt = 24;
my ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime(time);

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 105

my $start_time=timegm(0,0,0,15,$mon,$year-2);
my @yyear;
my @mmonth;
#my @dday;
my $ccountty=0;
my $ccounttm=0;
#my $ccounttd=0;
for my $month (1..24) {
 $unix_time=$start_time+$month*86400*30;
 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) = gmtime($unix_time);
$year+=1900;
if($ccountty>0)
{
if($year==$yyear[$ccountty-1]) { }
else {
$yyear[$ccountty]=$year;
$ccountty++;
}
 $mon=sprintf "%2.2d", $mon+1;
if($ccounttm>0)
{
if($mon==$mmonth[$ccounttm-1]) { }
else
{
$mmonth[$ccounttm]=$mon;
$ccounttm++;
}
}
else
{
$mmonth[$ccounttm]=$mon;

$ccounttm++;
}
 $title[$month]="$months[$mon-1]$year";

#$topline =$topline."$title[$month] ";

$topline ="$title[$month] ".$topline;
}if($#yyear+1==2)
{
#print "\n Two years \n";
my @md1;
my @md2;
#my @md3;
my $ccutt=0;
my $cct1=0;
for($t=0 ; $t<24 ; $t++)
{
if ($mmonth[$t]==1)
{
$cct1++;
$ccutt=0;
}
if($cct1==0)
{
$md1[$ccutt]=$mmonth[$t];
$ccutt++;
}

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 106

if($cct1==1)
{
$md2[$ccutt]=$mmonth[$t];
$ccutt++;
}$cutmon=$yyear[1];
$cutday=$md2[$#md2];
$query1hds = "SELECT mon,rem,year,month,$metric_select,mon,rem from analysis where (year=$yyear[0] and month
>=$md1[0]) or (year=$yyear[1] and month<=$md2[$#md2]) and hour is null and day is null and pksize='$FORM{'size'}' and
byclass='$FORM{'by'}' order by mon,rem,year,month";
}if($#yyear+1==3)
{
my @md1;
my @md2;
my @md3;
my $ccutt=0;
my $cct1=0;
for($t=0 ; $t<24 ; $t++)
{
if ($mmonth[$t]==1)
{
$cct1++;
$ccutt=0;
}
if($cct1==0)
{
$md1[$ccutt]=$mmonth[$t];
$ccutt++;
}
if($cct1==1)
{
$md2[$ccutt]=$mmonth[$t];
$ccutt++;
}if($cct1==1)
{
$md2[$ccutt]=$mmonth[$t];
$ccutt++;
}
if($cct1==2)
{
$md3[$ccutt]=$mmonth[$t];
$ccutt++;
}
}
$cutmon=$yyear[2];
$cutday=$md3[$#md3];
$query1hds = "SELECT mon,rem,year,month,$metric_select,mon,rem from analysis where year=$yyear[1] or (year=$yyear[0]
and month >=$md1[0]) or (year=$yyear[2] and month<=$md3[$#md3]) and hour is null and day is null and
pksize='$FORM{'size'}' and byclass='$FORM{'by'}' order by mon,rem,year,month";}
my $query21 = "select count(*) from analysis where year=$year and pksize='$FORM{'size'}' and byclass='$FORM{'by'}' and
hour is null and day is null";
my $query_handle = $dbh->prepare($query21);
$query_handle->execute();
$query_handle->bind_columns(undef, \$count_daily);
$query_handle->fetch();

$count_interval=$count_daily;
*****************************Select Monitoring Nodes**
 print "
From\n";
 print "<select name=\"from\">\n";print "<option value=\"WORLD\">WORLD\n";

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 107

$query2s = "select distinct nickname from node_details where projecttype in('MB','M','MD','MWB','DM')";
$query_handle = $dbh->prepare($query2s);
$query_handle->execute();
$query_handle->bind_columns(undef, \$site);
while($query_handle->fetch()) {
print "<option value=\"$site\" ";
 if ($site=~/^$FORM{from}$/) { print " selected"; }
 print ">$site\n";}
$query2s = "select distinct country from node_details where projecttype in('MB','M','MD','MWB','DM')";
$query_handle = $dbh->prepare($query2s);
$query_handle->execute();
$query_handle->bind_columns(undef, \$site);
while($query_handle->fetch()) {
print "<option value=\"$site\" ";
 if ($site=~/^$FORM{from}$/) { print " selected"; }
 print ">$site\n";

}
$query2s = "select distinct continent from node_details where projecttype in('MB','M','MD','MWB','DM')";
$query_handle = $dbh->prepare($query2s);
$query_handle->execute();
$query_handle->bind_columns(undef, \$site);
while($query_handle->fetch()) {
print "<option value=\"$site\" ";
 if ($site=~/^$FORM{from}$/) { print " selected"; }
 print ">$site\n";
}
 print "</select>\n";
#*****************************Select Remote Nodes**
 print "To\n";
 print "<select name=\"to\">\n";
 print "<option value=\"WORLD\">WORLD\n";
$query2s = "select distinct nickname from node_details where projecttype in('D','DA','ZNND','ZD','MD','ID','DI','DM')";
$query_handle = $dbh->prepare($query2s);
$query_handle->execute();
$query_handle->bind_columns(undef, \$site);
while($query_handle->fetch()) {
print "<option value=\"$site\" ";
 if ($site=~/^$FORM{from}$/) { print " selected"; }
 print ">$site\n";}
$query2s = "select distinct country from node_details where projecttype in('D','DA','ZNND','ZD','MD','ID','DI','DM')";
$query_handle = $dbh->prepare($query2s);
$query_handle->execute();
$query_handle->bind_columns(undef, \$site);
while($query_handle->fetch()) {
print "<option value=\"$site\" ";
 if ($site=~/^$FORM{from}$/) { print " selected"; }
 print ">$site\n"
}
$query2s = "select distinct continent from node_details where projecttype in('D','DA','ZNND','ZD','MD','ID','DI','DM')";
$query_handle = $dbh->prepare($query2s);
$query_handle->execute();
$query_handle->bind_columns(undef, \$site);
while($query_handle->fetch()) {
print "<option value=\"$site\" ";
 if ($site=~/^$FORM{from}$/) { print " selected";
 print ">$site\n";}
 print "</select>\n";

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 108

15.7 CHANGES IN CBG2.M

%% run constraint-based geolocation using speed of light constraints
%% expects one file per target (see geolocate.m for format)
%% target.list should be a file listing all the target files
%% writes the results to estimates.cbg (see geolocateall.m for format)
%% wraps geolocateall, which creates its own output files with .cbg extension

function[]=cbg2(target)
tt = target;
extension = '.txt';
manifest = ['inputs/',tt,'.txt'];
resultfile = ['results/',tt,char(extension)];
estimates = geolocateall(char(manifest),char(extension),0,1)
dlmwrite(char(resultfile),estimates,'delimiter',' ','newline','pc');
quit;

15.8 CHANGES IN CBG_SOI.M

%% run constraint-based geolocation using speed of internet constraints
%% expects one file per target
%% target.list should be a file listing all the target files (see
%% geolocate.m for format)
%% writes the results to estimates.soi (see geolocateall.m for format)
%% wraps geolocateall, which creates its own output files with .soi
%% extension

function[]=cbg_soi(target)
tt = target;
extension = '.txt';
manifest = ['inputs/',tt,'.txt'];
resultfile = ['results/',tt,char(extension)];
estimates = geolocateall(char(manifest),char(extension),0,-1)
dlmwrite(char(resultfile),estimates,'delimiter',' ','newline','pc');
%estimates = geolocateall(target_info,char(extension),0,-1)
%dlmwrite(char(resultfile),estimates,' ');
quit;

15.9 CHANGES IN AUTOMATETEST.JAVA

System.out.println("
"+"--------------------Constraint Based Geolocation-----------------------------"+"
");

String cbg_lat = "";
String cbg_lon = "";

//String CBG_HOME = System.getenv("CBG_HOME");

try{
 // Open the file that is the first
 // command line parameter
 FileInputStream fstream = new FileInputStream("/home/bilal/tulip/results/"+ip+".txt");
 // Get the object of DataInputStream
 DataInputStream in = new DataInputStream(fstream);
 BufferedReader br = new BufferedReader(new InputStreamReader(in));
 String strLine;
 //Read File Line By Line
 while ((strLine = br.readLine()) != null) {

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 109

 // Print the content on the console
 // System.out.println ("\n\n\n\n"+strLine+"\n");

Scanner scanner = new Scanner(strLine);
 scanner.useDelimiter(" ");
 if (scanner.hasNext()){

 String id = scanner.next();
 cbg_lat = scanner.next();
 cbg_lon = scanner.next();
 }
 else {
 System.out.println("Empty or invalid line. Unable to process.");
 }
 }
 //Close the input stream
 in.close();
 }catch (Exception e1){//Catch exception if any
 System.err.println("Error: " + e1.getMessage());
 }
System.out.println("

"+"Latitude through CBG is : "+cbg_lat+"
");
System.out.println("Longitude through CBG is : "+cbg_lon+"

");
#**Forming Table**
System.out.println("<table border=1>");
System.out.println("<caption> Comparison of Lat/Lons </caption>");
System.out.println("<tr>");
System.out.println("<th> Lat/Lon </th>");
System.out.println("<th> Apollonius </th>");
System.out.println("<th> Trilateration </th>");
System.out.println("<th> CBG </th>");
System.out.println("</tr>");
System.out.println("<tr>");
System.out.println("<th> Latitude </th>");
System.out.println("<td>" +Apollonius_circle.y+" </td>");
System.out.println("<td>"+LLPos.y+"</td>");
System.out.println("<td>"+cbg_lat+" </td>");
System.out.println("</tr>");
System.out.println("<tr>");
System.out.println("<th> Longitude </th>");
System.out.println("<td> "+Apollonius_circle.x+" </td>");
System.out.println("<td>"+LLPos.x+"</td>");
System.out.println("<td>"+cbg_lon+"</td>");
System.out.println("</tr>");
System.out.println("</table>");
System.out.println("

");
#**Writing CBG Result in XML File***

dos.writeBytes("<item>\n");
dos.writeBytes("<link></link>\n");
dos.writeBytes("<title> CBG </title>\n");
dos.writeBytes("<lat>"+cbg_lat+"</lat>\n");
dos.writeBytes("<lon>"+cbg_lon+"</lon>\n");
dos.writeBytes("<region> North America</region>\n");
dos.writeBytes("<type>Target</type>\n");
dos.writeBytes("<subject>CBG</subject>\n");
dos.writeBytes("<rtt></rtt>\n");
dos.writeBytes("</item>\n");

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 110

15.10 CHANGES IN GetPingDataPL.java

 FileWriter outFile = new FileWriter("/home/bilal/tulip/inputs/"+site+".txt");
 PrintWriter out = new PrintWriter(outFile);
out.println("0 0 1 0");
String rttm = null;
String latt = null;
String lonn = null;
rttm = parser.minv;
latt = frame.monPL[i].getLat();
lonn = frame.monPL[i].getLon();
 // Write text to file
if(rttm == null || latt == null || lonn == null)
{ }
else if(rttm.length()==0||latt.length()==0||lonn.length()==0)
{
}
else{
 out.println(latt+" "+lonn+" "+rttm+" 1");
out.close();

#**********************************Calling Client.pl***
Runtime.getRuntime().exec("perl //home//bilal//tulip//client.pl "+site);

15.11 SERVER_TULIP.PL

use IO::Socket;
my $server = IO::Socket::INET->new(
 Listen => 50,
 LocalAddr => 'localhost',
LocalPort => 5053,
Proto => 'tcp'
) or die "Can't create server socket: $!";
my $count=0;
while(true) {
my $client = $server->accept;
while (<$client>) {
if($count==0)
{$target=$_;
$target=substr($target , 0 , -1);
$count++;
}
elsif($count==1)
{open FILE, ">results/$target.txt" or die "Can't open: $!";
 print FILE $_;
$count++;}
else
{ print FILE $_;
}
}close FILE;
$count=0;}

15.12 SERVER_CBG.PL

use IO::Socket;
my $server = IO::Socket::INET->new(
 Listen => 50,
 LocalAddr => 'localhost',
 LocalPort => 5053,

Analysis and Implementation of Relational Archive Site for PingER and CBG Integration with TULIP Page 111

 Proto => 'tcp'
) or die "Can't create server socket: $!";
my $count=0;
while(true) {
my $client = $server->accept;
while (<$client>) {
if($count==0)
{
$target=$_;
$target=substr($target , 0 , -1);
$count++;
}
elsif($count==1)
{
open FILE, ">results/$target.txt" or die "Can't open: $!";
 print FILE $_;
$count++;
}
else
{ print FILE $_;
}
}
close FILE;
$count=0;
}

15.13 CLIENT_TULIP.PL

use IO::Socket;
my $target=@ARGV[0];
my $server = IO::Socket::INET->new(
 PeerAddr => 'localhost',
 PeerPort => 5054,
 Proto => 'tcp'
) or die "Can't create client socket: $!";
print $server "$target\n";
open FILE, "/home/bilal/tulip/inputs/$target.txt";
while (<FILE>) {
 print $server $_;
}
close FILE;

