CSC Functional blocks

ASM-II

- Chamber input signal
 - Precision (x-strip) data is from $2\frac{1}{2}$ layers
 - 96 channels per $\frac{1}{2}$ layer = 192 channels
 - Transverse (y-strip) data is from 4 layers
 - 48 channels per layer = 192 channels
 - Each of 16 HAMACs handle 12 channels = 192 channels
 - WA[7:0] selects which of 144 capacitors samples the input signal
 - All 12 HAMAC inputs are sampled on each WCLK
 - All HAMACs operate in lock step
 - Omitting a write address (to e.g., skip a bad cell) affects all 16 HAMACs
 - Mapping of strip number to HAMAC input channel is unclear
- Output is on 2 G-Links, 16 bits at 40 MHz, each
 - 4 bits of 4 channels per word on each fiber
 - SD is sampled on 8 RCLKs to build up the 8-bit read address: 0 143
 - HAMACs use G[1:0] signal to select between L, M, H inputs
 - Valid values are 1, 2, 3. G = 0 during the 3 (of 15) cycle setup time.
 - 4 RCLKs clock out 4 channel samples for a given G (I think)
 - 12 RCLKs clock out all 12 channel samples
 - HAMACs can operate with an 8 MHz RCLK
 - But ASM2MUX can do only 5 or 6.67 MHz (TBV)

Data format on the fibers

-SLAC

Fiber B							
	15 12	11 8	7 4	3 C			
R	L1H15 _{3:0}	L1H13 _{3:0}	L0H11 _{3:0}	L0H9 _{3:0}			
Ê	L1H15 _{7:4}	L1H13 _{7:4}	L0H11 _{7:4}	L0H9 _{7:4}			
	L1H15 _{11:8}	L1H13 _{11:8}	L0H11 _{11:8}	L0H9 _{11:8}			
$\mathbf{\Psi}$	L1H16 _{3:0}	L1H14 _{3:0}	L0H12 _{3:0}	L0H10 _{3:0}			
	L1H16 _{7:4}	L1H14 _{7:4}	L0H12 _{7:4}	L0H10 _{7:4}			
	L1H16 _{11:8}	L1H14 _{11:8}	L0H12 _{11:8}	L0H10 _{11:8}			
		$\frac{1}{100}$					

- L = Layer (0 1)
- H = HAMAC index (1 16)
- C = HAMAC channel (1 12)
- Strip = (H-1)*12+(C-1) (TBV)
- 4 ¹⁄₂ nibbles make up a word

Channel 1 = strips 0, 12, 24, ..., 84

Channel 2
= strips 1,
13, 25,,
85
:

	Fiber A							
1	5 12	11 8	7 4	3 0)			
	L1H7 _{3:0}	L1H5 _{3:0}	L0H3 _{3:0}	L0H1 _{3:0}	$ \rightarrow$			
	L1H7 _{7:4}	L1H5 _{7:4}	L0H3 _{7:4}	L0H1 _{7:4}				
	L1H7 _{11:8}	L1H5 _{11:8}	L0H3 _{11:8}	L0H1 _{11:8}				
	L1H8 _{3:0}	L1H6 _{3:0}	L0H4 _{3:0}	L0H2 _{3:0}				
	L1H8 _{7:4}	L1H6 _{7:4}	L0H4 _{7:4}	L0H2 _{7:4}				
	L1H8 _{11:8}	L1H6 _{11:8}	L0H4 _{11:8}	L0H2 _{11:8}				
					1			

Signal flow on CSC

http://indico.cern.ch/materialDisplay.py?contribId=61&sessionId=35&materialId=slides&confId=0510

ASM-II architecture

On-chamber electronics location

Fiber Nomenclature

http://positron.ps.uci.edu/~schernau/ROD/CSCFibers2.pdf

Chamber Nomenclature

controller*: Each TX FPGA contains one SCA controller and one CAL controller. During system initialization, ROD software selects the controller stream each MGT will output.

MGT*: MGT = multi-gigabit transceiver. Each Tx FPGA contains four MGT's used as G-Link serializers. Each Rx FPGA contains four MGT's used as G-Link deserializers.

fiber*: 0-11 refer to channel numbers specified in the parallel fiber-optic module data sheets. The fiber fanouts may map these channels onto individual fibers with a different labeling scheme, e.g., 1-12 or 12-1.

RCV*: Each RX FPGA contains two receiver modules. Each module receives two fibers and outputs time slices to one DPU.

strips*: The CTM uses lookup tables (one per RCV*) to re-order strips (ADC samples) as needed.

DPU*: The ROD uses its Data Exchange to read out DPU's in any desired order. Transfer between ROD sides A and B is not supported.

Status*: The CTM sends fill frames on an ASMII's control link when it detects simultaneous loss of lock on both of that ASMII's data links.

http://positron.ps.uci.edu/~pier/csc/CTM/ChamberNomenclature00.pdf

Useful links

Chamber specifications

- <u>https://twiki.cern.ch/twiki/pub/Atlas/CscDocuments/chamberNumbers.txt</u> ASM-II schematic
- <u>https://twiki.cern.ch/twiki/pub/Atlas/CscIntegration/asm2_schematic.pdf</u> Data stream decode map
- <u>http://positron.ps.uci.edu/~schernau/ROD/decodemapl-2.xls</u>
- HAMAC documentation
- <u>http://www.nevis.columbia.edu/~atlas/electronics/asics/sca/DOC_HAMAC.pdf</u>
 SCA Controller
- <u>http://www.inst.bnl.gov/~vetter/atlas/sca_note.pdf</u>
- G-link record format
- <u>http://positron.ps.uci.edu/~schernau/ROD/G_Link_Record_Format.xls</u>
- G-Link datasheet
- <u>http://www.alldatasheet.com/datasheet-pdf/pdf/64650/HP/HDMP-1022.html</u> CTM Reference manual
- <u>http://positron.ps.uci.edu/~pier/csc/CTM/CTM_ReferenceManual_01.pdf</u>

Uplink – Front End Transmitters

- Various lock types:
 - Frequency lock Local reference clock vs. link bit rate
 - Protocol lock G-Link protocol
 - Word lock Correctly aligned words
- SEUs can induce loss of lock for ~500 uS
 - Monitor loss of lock rate
 - DCS uses this to power lasers down if excessive
 - Really? How?
- 5 + 1 16-bit data inputs
 - Five are used by the SCA block
 - One is used by the calibration pulser block

SI AC

Status register:

- Lock status
- Phase fault Incorrect CLK40 phase seen
- Phase match Correct CLK40 phase never seen
- SCAC_DAV was active at same time as periodic DAV
 - Huh? Does this belong here?
- Next time-slice starts before all serial info received
 - Does this belong here?

Control register (normal run-time values underlined):

- Downlink associations: (complicated but static)
 - One bit per downlink setting bit means downlink must lose lock before uplink is assumed to have lost lock
- Source: <u>SCAC</u>
 - SCAC, CAL, Test, etc.
- Fill mode: <u>DL_LOL</u>
 - Conditions under which fill frames are sent? Valid values:
 - None, Force, Controller, Downlink loss of lock
- MGT power down: <u>0</u>
- Link reset: <u>0</u>
 - Reset the MGT's buffer, i.e. recenter it
- Disrupt: <u>0</u>
 - Send word with invalid protocol → force loss of lock, to e.g. test system response to loss of lock

-SLAC

Delay register:

- Vernier delay: <u>4</u>
 - 0 9 → number of bits to delay input stream
- Coarse delay: 0
 - $0 15 \rightarrow 1 16$ cycles of CLK80
- Fill delay begin: <u>10</u> = 1 ms
 - 0 15 → 0 1.5 ms must elapse with downlink LOL active before fill frames are sent
- Fill delay end: <u>5</u> = 5 ms
 - 0 15 → 0 15 ms of fill frames will be sent after downlink
 LOL is deactivated

Test data register:

Data output on G-Link when Control.Source is set to Test

Loopback register:

- Time mode: <u>0</u>
 - Enter up/down-link loopback timing mode uplink output will not be standard G-Link protocol
- Time mark: <u>0</u>
 - Rising edge starts up/down-link round-trip time measurement
- Loopback: <u>1</u>
 - Connects uplink to downlink when deasserted, downlink has no input and its PLL should lose lock
- Inhibit: <u>0</u>
 - Force uplink differential output to zero

CV_Time register (Read only):

Uplink → downlink delay measurement, zero if no valid measurement

Latency registers (12) (Read only):

- Uplink → downlink time in bit periods zero indicates no valid measurement
- 8 bits of value in units of 10 bit periods
- 4 bits of value in units of 1 bit period

Downlink – Front End Receivers

- Various locks:
 - Frequency lock Local reference clock vs link bit rate
 - Protocol lock G-Link protocol
 - Word lock Correctly aligned words
- SEUs can induce loss of lock for ~500 uS
 - Monitor loss of lock rate for DCS
 - Power down lasers if excessive on too many fibers
- 10 + 2 16-bit data outputs
 - 10 = 5 pairs for receiving chamber data
 - 1 pair for each ASM-II Front End Board
 - 2 channels are unused

SI AC

Status register:

- Phase status Incorrect CLK40 phase seen
- Phase match Correct CLK40 phase never seen
- Excessive loss of lock 1 bit per deserializer
- Lock state
 - Resetting
 - Attempting bit alignment
 - Attempting word alignment
 - Locked

Link control register:

- Latency: <u>79</u>, but overwritten by configuration value
 - The length of the TTC latency pipeline, i.e. the piepline that delays DAV_N from the uplink block such that it is aligned with the DAV_N from the ASM-IIs

Receiver control register:

- LASTP_DATA: 23
 - Last data paragraph in time slice, typically set to 192/8 1 = 23
 - (for 192 12-bit ADC samples)
- LASTP_STAT: <u>24</u>
 - Last status paragraph in time slice, typically set to LASTP_DATA + 16/8
 - (for 16 12-bit status words)
- INVERT_RCLK: 0
 - 1 → invert RCLK, i.e., use DCM's CLK180 instead of CLK0
- NOINV_FLAG_ERR: 0
 - Do not invalidate slices because of flag errors
- POWERDOWN: <u>Unused channels</u>
 - Can be used to power down unused MGT's, e.g., those attached to the two spare fibers

SLAC

Readout sequencer control register:

- RSEQ_LENGTH: <u>52</u>
 - Readout sequence length in output triplets (3 16-bit halfwords) typically set to (192+16)*12/16/3 = 52
 - (for 192 12-bit ADC samples and 16 12-bit status words)
- OTEST_PATTERN: <u>None</u>
 - Output test pattern: None, Alternate, Count
- RSEQ_ENABLE: <u>1, except for unused channels</u>
 - 1 → enable output sequencer, else its output is zero this is independent of OTEST_PATTERN

Loss of lock override register:

- Mask: (unused channels)
 - Which channels are affected by the override

Status counter registers:

- Protocol error
- Flag error
- Data error
- Lock error
- Uplink invalid
 - Uplink asserting INVALIDATE, as extended in this block

(Not sure whether these are occurrences or durations (counts of some clock while true))

- REFORMAT_MASK: <u>0x800</u>
 - xor'd into the 12-bit ADC samples before they are output
- RECEIVER_ID: <u>0 5</u>, <u>8 13</u> (0 3 → X0 X3, 4 → Y, 5 → unused)
 - Data stream identifier sent in status words

RCLK phase register: (Scanned)

 RCLK phase control – writing 0/1 steps phase +/-(hardware saturates phase in both directions)

-SLAC

Delay register (read only):

- Delays as determined by deserializer's lock acquisition mechanism – zero when not locked
 - Course units of 10 bit
 - Fine units of 1 bit

Readout LUT X setup register:

- Used to deconvolve data organization on the link
- See WriteLUT_Standard() in ctm_rcv.cpp

Readout LUT Y setup register:

- Used to deconvolve data organization on the link
- See WriteLUT_Standard() in ctm_rcv.cpp

-SLAC

Control register:

- SCAC_RUN
- BUSY threshold
- BUSY enable

Status register:

- FAULT_SCAC_FREE_FIFO
- FAULT_SCAC_WRITE_ADDR
- FAULT_READOUT_SEQ

Setup register:

- Number of time slices to read out per trigger (8 bits)
 - <u>4</u>, but want to go as high as at least 8
- Enable simultaneous read/write, else SCA write address does not advance during readout (1 bit)
 - <u>1</u>
- Read clock phase w.r.t write address (1 bit)
 - 0
- Read clock rate: 0 = 5 MHz, 1 = 6.67 MHz (1 bit)
 - <u>1</u>
- Write clock rate (2 bits):
 - 00 = 20 MHz, CLK_20M toggled, 0 phase
 - <u>01</u> = 20 MHz, CLK_20M toggled, 180 phase
 - 10 = 20 MHz, CLK_20M held low
 - 11 = 40 MHz, CLK_20M held low
- Reset lookup table address register (1 bit)
 - Obsolete and unused
- Tx mode (2 bits)
 - <u>00</u> = Drive Tx with SCA control
 - 01 = Drive Tx with test pattern
 - 10 = Drive Tx with simulated ASM-II data
 - 11 = reserved

Readout sequencer setup (ROSEQ_Setup) register:

- DAV delay in RCLK periods (6 bits)
 - (RDCLK == 6.67 MHz ? 6 : 8) * 2 + 9 → <u>21</u>
- LUT select (1 bit)
 - Obsolete and unused
- SD phase w.r.t RDCLK in 40 MHz counts (3 bits)
 - <u>0</u>
- ADC clock phase w.r.t RDCLK in 40 MHz counts (3 bits)
 - (RDCLK == 6.67 MHz ? 6 : 8) 1 \rightarrow 5

LatencyCells register:

- Number of SCA cells to use (8 bits)
 - <u>144</u>
- Depth of latency pipeline in clock cycles (8 bits)
 - <u>20</u>, value is loaded from configuration DB

Look-up tables:

- Unexercised (by us) diagnostic modes allow filling the LUT with usersupplied pattern
- LUT is readable by software

Readout Sequence LUT:

- Calculated at configuration time
 - Depends on read clock rate (5 vs 6.67 MHz)
 - See WriteROSEQ_LUT_Standard() in ctm_scac.cpp
- 91 entries of 256 used in normal running
- "Successful operation typically requires ~50 <= N <= 145 entries"

Gray LUT:

- Calculated at configuration time
 - Depends on SCA cell count choice
 - See WriteROSEQ_LUT_Standard() in ctm_scac.cpp

Uplink data:

- RD_CLK (Bit 0)
 - 6.67 MHz
 - Active during SCA readout
- SD (Bit 1)
 - Serial read address data
 - 8 bits shifted in on RD_CLK
- RD (Bit 2)
 - Read frame
 - High during readout
 - Rising edge stores serial address data
- GA[1:0] (Bits 4:3)
 - Gain address bits
 - Used to select gain for readout in calorimeter (4 channels, 3 gains)
 - Used as high order channel address bits in MUON readout sequence (12 channels)
- WA[7:0] (Bits 5:12)
 - Write address for incoming data
 - Which of the 144 SCA storage locations to put data
 - Updated once per write clock (once every receive word?)
- TRIG_DATA (Bit 13)
 - Appears to be unused, but CTM_ReferenceManual.pdf indicates this goes to DAV~ of HDMP-1022s
- ADC_CLOCK (Bit 14)
 - ADC conversion clock
 - Adjustable phase to RD_CLK
- SCA_WRITE_CLOCK (Bit 15)
 - SCA write clock
 - Max frequency is 20MHz if really used (one half cycle per received word)
 - Firmware suggests jumper on ASMII to use serial recovered clock
 - Jumper does not appear on schematic

SCA Controller notes

-SLAC

- 40 MHz word rate on uplink fiber, 16 bit words = 640 Mbits/sec
 - "The ROD transmits a clock and 17 parallel control bits to the ASM-II" (16 + FLAG?)
 - "Read cycle requires 15 read clock cycles to read out 12 channels of one time sample." – See HAMAC_readout_timing.pdf in reseng CSC_working repository
 - 1 bit per word allocated to RCLK
 - Toggle every (=> RCLK rate => 4 sample readout time => Max L1 rate):
 - 8 words => 5 MHz => 12.0 uS => 83 KHz
 - 7 words => 5.7 MHz => 10.5 uS => 95 KHz
 - 6 words => 6.67 MHz => 9.0 uS => 111 KHz
 - 5 words => 8 MHz => 7.5 uS => 133 KHz
 - 4 words => 10 MHz => 6.9 uS => 167 KHz
 - 5 MHz = minimum: ADC constraint
 - RCLK can <u>only</u> be 5 or 6.67 MHz due to 2*12 to 4 bit MUX chip used on ASM-II
 - If we used 8 MHz, only 20 of the 24 bits will be presented to the G-link transmitter
- 20 vs 40 MHz WCLK
 - Unclear whether 40 MHz is really supported by ASM-II w/o jumper changes
- WCLK of 20 MHz and 4 samples
 - To capture 140 ns features
- 40 MHz word rate on downlink fiber, 16 bit words \rightarrow saturation occurs at:
 - (2 fibers * 16 bits/word * 40 MW/sec) / (192 channels / time-slice * 12 bits / channel)
 - 556 K time-slices / second = 138 KHz L1 rate

Calibration controller

Control registers:

- Main
 - Assert time: <u>10</u> valid range is 0 0x3f
 - Number of uS pulser output is asserted in response to a single-cycle CAL
 - Pulser enables: <u>0</u>
 - One enable bit for each CAL board pulser line
 - Calibration is typically one layer at a time
 - Pulser polarities: 0
 - One invert bit for each CAL board pulser line
- Link
 - Attenuation: <u>0x20</u>
 - Attenuation level 64 0.5 dB steps to 31.5 dB
 - Invert TTC CAL: <u>0</u>
 - Chooses edge of TTC CAL pulse that causes CAL board output pulse
 - Probably never used, because TTC CAL pulse should be active for just one clock cycle
 - Link Enable: <u>0</u>
 - 0 → G-link data lines will be zero and fill frames sent (if serializer is set up to use CAL controller's link enable, which it typically is not)
 - Ground output: <u>0xf</u>
 - One ground bit for each CAL board pulser line

SI AC

Calibration controller notes

- Same G-Link method as used on the ASM-II:
 - HDMP- 1024
 - 40 MHz word rate on uplink fiber, 16 bit words
 - FLAG is used as extra data bit, but is unconnected
- Four independent channels
- Programmable attenuator is PE4302
 - <u>http://www.psemi.com/pdf/datasheets/pe4302ds.pdf</u>
- When not in use, fill frames are sent to keep lock
 - Outputs are grounded
- Control word bit mapping:

G-Link Data	Function	Notes
Bit		
D0	0.5dB	1 = Attenuate
D1	1.0dB	>>
D2	2.0dB	66
D3	4.0dB	"
D4	8.0dB	**
D5	16.0dB	"
D6	Pulser 0	Inverting
D7	NC	
D8	NC	
D9	Pulser 1	Inverting
D10	Pulser 2	Inverting
D11	Pulser 3	Inverting
D12	Analog Switch 0	1= ground output
D13	Analog Switch 1	"
D14	Analog Switch 2	"
D15	Analog Switch 3	"
D1619	NC	

Timing, Trigger and Control (TTC)

- Trigger message definition:
 - TBD, but includes L1ID, BCID, ECR, BCR, CAL, Orbit
 - Convert to Trigger Information Stream (TIS)
- Assign Trigger message ID (TID) to TIS
 - Synonymous with L1ID?
 - Want to avoid increasing size of TIS
- Pass 32-bit TID to FEX RCEs
 - Two (?) trigger kinds: L1A, CAL
 - Can not allow a TID (= a TIS) to cause more than one readout
 - Can we check for this? E.G., Read-out Request counter != TID => bugcheck
 - Tag outgoing data with TID
- Pass TIS (includes TID) to Fmt RCEs
 - TIS arrives earlier than data
 - Fill in event contribution header and trailer as much as possible
 - Event build two data contributions according to TID
 - Complete and wrap with header and trailer
 - Hand off to ROL

TTC

- Originally implemented in the SL FPGA
- Ability to locally construct TIS needed?
 - Yes, if operation without Trigger fiber is to be supported
- Capture Extended L1ID and Orbit number from trigger message
 - EL1ID increments after each L1A
- BCID, EL1ID and Orbit counter programmatically settable
 - Needed for stopless recovery
- Incomplete trigger message reception detection?
- L1ID rollover before ECR detection
- Unexpected BCR or BCID value detection
 - Requires BCID_MAX value = 3563 (= no. BCs per orbit?)
- Any status too look at about the TTC fiber link?
 - E.G. link loss (disconnected), error rate

Data Presenter

 Deconvolves data from fiber order to order desirable for FEX

Feature Extraction (FEX)

- Three possibilities
 - Software
 - Firmware
 - Some of each

Read Out Link (ROL)

• Xon / Xoff is the only signal returned

Build system

- One or more of these?
 - Firmware
 - Software framework
 - FEX