Variability of VHE γ -ray sources

Stanislav Stefanik Dalibor Nosek

Institute of Particle and Nuclear Physics Charles University in Prague

Fermi Summer School 2014 Lewes, Delaware June 2, 2014

Method

 presence of source in a given region: on-off method (Li&Ma, ApJ 272 (1983) 317) Citing Articles: 451 (from All Databases)

For: ANALYSIS-METHODS FOR RESULTS IN GAMMA-RAY ASTRONOMY

Li–Ma significance

$$S_{\rm LM} = s\sqrt{2} \left\{ N_{\rm on} \ln \left[\frac{1+\alpha}{\alpha} \frac{N_{\rm on}}{N_{\rm on}+N_{\rm off}} \right] + N_{\rm off} \ln \left[(1+\alpha) \frac{N_{\rm off}}{N_{\rm on}+N_{\rm off}} \right] \right\}^{\frac{1}{2}}$$

< ロ > < 同 > < 回 > < 回 >

Method

- presence of source in a given region:
 on-off method (Li&Ma, ApJ 272 (1983) 317)
- modification: test of constant intensity
 source parameter β

Citing Articles: 451 (from All Databases)

For: ANALYSIS-METHODS FOR RESULTS IN GAMMA-RAY ASTRONOMY

Binomial significance• hypothesis:
$$\mu_{on} = \beta \alpha \mu_{off}$$
 $S_{Bi} = \frac{N_{on} - \beta \alpha N_{off}}{\sqrt{\beta \alpha (N_{on} + N_{off})}}$ \leftarrow normally distributed $\mu_{S} = (\beta - 1) \alpha \mu_{off}$

Li–Ma significance

$$S_{\rm LM} = s\sqrt{2} \left\{ N_{\rm on} \ln \left[\frac{1+\beta\alpha}{\beta\alpha} \frac{N_{\rm on}}{N_{\rm on}+N_{\rm off}} \right] + N_{\rm off} \ln \left[(1+\beta\alpha) \frac{N_{\rm off}}{N_{\rm on}+N_{\rm off}} \right] \right\}^{\frac{1}{2}}$$

Nosek et al., ICRC 2013, arXiv:1309.6476

< ロ > < 同 > < 回 > < 回 >

Applications: PKS 2005-489

• F.Acero et al. (H.E.S.S. Collaboration), A&A 511 (2010) A52

Stanislav Stefanik

Variability of VHE γ -ray sources

Applications: PKS 2005–489

• F.Acero et al. (H.E.S.S. Collaboration), A&A 511 (2010) A52

Thank you!

Stanislav Stefanik Variability of VHE γ -ray sources

- **→** → **→**

글▶ 글

Back-up

Stanislav Stefanik Variability of VHE γ -ray sources

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

MC example

• evolution of the source intensity $|S_{\rm LM}(\beta)| < 3$

Stanislav Stefanik Variability of VHE γ -ray sources

MC example

• quantile-quantile plots

Hypotheses tests

Asymptotic properties

• J.Aleksić et al. (MAGIC Collaboration), A&A 519 (2010) A32

Epoch	$N_{\rm on}$	$N_{\rm off}$	α	$N_{\rm s}$	$S^0_{\rm LM}$	$S_{\rm Bi}^0$	$S_{\rm LM}$	$S_{\rm Bi}$	$p_{\rm e}~{\rm or}~p_{\rm d}$	$\langle\beta,\beta_+\rangle_{3\sigma}$	
PSR B1259-63/LS 2883 (HESS Collaboration 2013), $\beta = 4.08$											
Pre-flare	44	133	0.0760	34	7.4	9.2	0.4	0.4	0.38	$\langle 2.5, 7.2 \rangle$	
Flare	68	232	0.0760	50	8.5	10.4	-0.5	-0.5	0.34	$\langle 2.5, 5.7 \rangle$	
PG 1553+113 (Aharonian et al. 2008), $\beta = 1.16$											
04/2005	1210	8154	0.1250	191	5.5	5.6	0.8	0.8	0.23	$\langle 1.1, 1.3 \rangle$	
08/2005	491	3462	0.1250	58	2.5	2.6	-0.5	-0.5	0.33	$\langle 1.0, 1.3 \rangle$	
04/2006	1811	12742	0.1250	218	5.0	5.1	-0.8	-0.8	0.22	$\langle 1.1, 1.2 \rangle$	
07/2006	2236	15341	0.1250	318	6.7	6.8	0.2	0.2	0.41	$\langle 1.1, 1.2 \rangle$	
B2 1215+30 (Aliu et al. 2013b), $\beta = 1.39$											
2008-09	304	2288	0.1243	20	1.1	1.1	-4.4	-4.3	$5.1 \ 10^{-6}$	$\langle 0.9, 1.3 \rangle$	
2011	472	2325	0.1161	202	10.4	11.2	4.4	4.6	$5.1 \ 10^{-6}$	$\langle 1.5, 2.0 \rangle$	
2012	443	898	0.1177	37	3.2	3.4	-0.3	-0.3	0.40	$\langle 1.0, 1.8 \rangle$	
1ES 022	1ES 0229+200 (Aharonian et al. 2007; Aliu et al. 2014) ^a , $\beta = 1.20$										
2005	246	2238	0.0916	41	2.7	2.7	-0.0	-0.0	0.52	$\langle 1.0, 1.5 \rangle$	
2006	1344	12304	0.0914	220	6.1	6.2	-0.1	-0.1	0.46	$\langle 1.1, 1.3 \rangle$	
2009 - 10	1054	7601	0.0909	363	12.2	12.9	7.1	7.3	$7.8 10^{-13}$	$\langle 1.4, 1.7 \rangle$	
2010 - 11	614	5862	0.0909	81	3.3	3.3	-1.0	-1.0	0.17	$\langle 1.0, 1.3 \rangle$	
2011 - 12	249	2241	0.0909	45	2.9	3.0	0.3	0.3	0.40	$\langle 1.0, 1.5 \rangle$	

1ES 0229+200 data

Table 1. The MJD of the first and last night of HESS observations of IES 0229+200, the live time of the observations, the number of on- and off-source events measured, the on/off normalization (α), the excess, and the significance of the excess are given. In addition, the integral flux above 580 GeV (assuming Γ = 2.50), and the corresponding percentage of the Crab Nebula flux above 580 GeV are shown. The \chi², degrees of freedom (NDF), and \chi² probability, P(\chi²), for a fit of a constant to the flux binned by dark period within each year, or yearly within the total, are also given.

Epoch	MJD First	MJD Last	Time [h]	On	Off	α	Excess	$_{[\sigma]}^{\rm Sig}$		Crab %	χ^2 , NDF	$P(\chi^2)$
2005 2006 Total	$53614 \\ 53967 \\ 53614$	53649 54088 54088	6.8 35.0 41.8	246 1344 1590	2238 12304 14542	$\begin{array}{c} 0.09160 \\ 0.09136 \\ 0.09140 \end{array}$	41 220 261	$2.7 \\ 6.1 \\ 6.6$	$\begin{array}{c} 6.8{\pm}3.1_{\rm stat}{\pm}1.4_{\rm syst} \\ 10.0{\pm}1.7_{\rm stat}{\pm}2.0_{\rm syst} \\ 9.4{\pm}1.5_{\rm stat}{\pm}1.9_{\rm syst} \end{array}$	1.3 1.9 1.8	$1.6, 1 \\ 1.5, 3 \\ 0.8, 1$	0.21 0.68 0.37

Table 1: The VERITAS 1ES 0229+200 observation details. α (the ratio of the area \times livetime of the on source and off source regions) is 1/11. The integraf thus is calculated assuming an overall spectral index of 2.59. Upper limits at the 99% confidence level using the Rolke method (Rolke & López 2001) are presented when the significance is less than two standard deviations. The horizontal lines delineate the results for the full time period, the data divided by season, and the data divided by observing period (dictated by the lumar cycle and indicated by P. 1 through P. 5 in each season).

Period	Dates	Live Time	On	Off	Significance	Flux ($> 300 \text{ GeV}$)	UL (> 300 GeV)
	[MJD]	[minutes]	[events]	[events]	$[\sigma]$	$[10^{-9} \text{ m}^{-2} \text{ s}^{-1}]$	$[10^{-9} \text{ m}^{-2} \text{ s}^{-1}]$
2009-2012	55118 - 55951	3260	1917	15704	11.7	$23.3\pm2.8_{\rm stat}\pm5.8_{\rm sys}$	N/A
2009-2010	55118 - 55212	1674	1054	7601	12.2	$30.3 \pm 3.9_{\rm stat} \pm 7.6_{\rm sys}$	N/A
2010-2011	55476 - 55587	1079	614	5862	3.3	$18.7\ \pm 5.1_{\rm stat} \pm 5.7_{\rm sys}$	N/A
2011-2012	55828 - 55951	507	249	2241	2.9	$9.9 \pm 6.4_{stat} \pm 2.5_{sys}$	N/A
2009-2010 P. 1	55118 - 55131	715	484	3210	9.7	$41.8 \pm 6.4_{\rm stat} \pm 10.5_{\rm sys}$	N/A
2009-2010 P. 2	55144 - 55159	844	524	3880	8.1	$24.2 \pm 5.4_{\rm stat} \pm 6.1_{\rm sys}$	N/A
2009-2010 P. 3	55183 - 55183	24	10	120	-0.3	$1 \pm 26_{stat} \pm 1_{sys}$	100
2009-2010 P. 4	55200 - 55212	91	36	391	0.1	$3 \pm 10_{stat} \pm 1_{sys}$	51
2010-2011 P. 1	55476 - 55482	319	187	1900	1.0	$15 \pm 9_{stat} \pm 4_{sys}$	41
2010-2011 P. 2	55501 - 55513	162	121	901	3.8	$39 \pm 14_{stat} \pm 10_{sys}$	N/A
2010-2011 P. 3	55526 - 55538	127	69	692	0.7	$1 \pm 14_{stat} \pm 1_{sys}$	60
2010-2011 P. 4	55555 - 55570	297	147	1490	1.0	$15 \pm 10_{stat} \pm 4_{sys}$	40
2010-2011 P. 5	55583 - 55587	174	90	879	1.1	$26 \pm 13_{stat} \pm 7_{sys}$	54
2011-2012 P. 1	55828 - 55840	101	46	434	1.0	$13 \pm 14_{stat} \pm 3_{sys}$	66
2011-2012 P. 2	55855 - 55861	111	55	460	1.9	$15 \pm 14_{stat} \pm 4_{sys}$	78
2011-2012 P. 3	55886 - 55895	119	68	608	1.6	$13 \pm 14_{stat} \pm 3_{sys}$	77
2011-2012 P. 4	55916 - 55922	103	41	435	0.2	$-6 \pm 13_{stat} \pm 2_{sys}$	51
2011-2012 P. 5	55940 - 55951	73	39	304	1.9	$16 \pm 18_{stat} \pm 4_{sys}$	100

Applications: 1ES 0229+200

- F.Aharonian et al. (H.E.S.S. Collaboration), A&A 475 (2007) L9
- E.Aliu et al. (VERITAS Collaboration), ApJ 782 (2014) 13

Applications: 1ES 0229+200

- F.Aharonian et al. (H.E.S.S. Collaboration), A&A 475 (2007) L9
- E.Aliu et al. (VERITAS Collaboration), ApJ 782 (2014) 13

Dark Period	MJD First	MJD Last	Time [hrs]	On	Off	α	Excess	Sig [σ]	${I(>\!400~{\rm GeV})^a} \\ [10^{-12}~{\rm cm}^{-2}~{\rm s}^{-1}]$	Crab ^b %	χ^2 (NDF ^c)	$P(\chi^2)^c$
06/2004 07/2004 09/2004 10/2004 07/2005 08/2005 09/2005 06/2006 07/2006 08/2006 09/2006 06/2007 07/2007 08/2007	53171 53199 53255 53285 53582 53609 53639 53908 53908 53908 53908 53908 53908 53908 53908 53908 53908 53908 53908 53908 53908 53908 53908 53908 53908 53925 54241 54321	53185 53205 53268 53292 53595 53618 53646 53909 53940 53977 54002 54270 54270 54304 54329 54345	8.1 1.5 5.6 9.0 9.4 5.1 18.1 1.3 4.4 7.4 5.3 4.4 1.8 0.5	678 105 342 569 573 286 1072 127 397 500 405 333 309 93 11	5877 985 3171 5065 4504 2159 9125 824 2927 4261 4116 3006 2412 849 114	0.0919 0.0909 0.0916 0.0916 0.0908 0.0928 0.0928 0.0938 0.0901 0.0913 0.0920 0.0924 0.0924 0.0977 0.1000	138 15 52 105 164 73 225 50 133 111 26 55 76 10 0	5.4 1.5 2.8 4.5 7.3 4.5 7.1 4.9 7.3 5.1 1.3 3.1 4.5 1.0 -0.1	$\begin{array}{c} 2.64 \pm 0.50\\ 1.06 \pm 1.18\\ 1.89 \pm 0.78\\ 2.58 \pm 0.62\\ 3.56 \pm 0.67\\ 2.86 \pm 0.93\\ 2.93 \pm 0.46\\ 4.72 \pm 1.32\\ 4.33 \pm 0.70\\ 2.74 \pm 0.57\\ 1.31 \pm 0.58\\ 1.02 \pm 0.60\\ 2.51 \pm 0.70\\ 0.52 \pm 0.92\\ < 6.60^d\end{array}$	3.0 1.2 2.1 2.9 4.0 3.2 3.3 5.3 4.8 3.1 1.5 1.1 2.8 0.6 <7.4	$\begin{array}{c} 7.2 \ (10) \\ 1.4 \ (1) \\ 2.1 \ (5) \\ 1.5 \ (4) \\ 9.2 \ (9) \\ 4.6 \ (4) \\ 13.1 \ (6) \\ 0.0 \ (1) \\ 1.3 \ (2) \\ 15.1 \ (7) \\ 6.0 \ (5) \\ 1.9 \ (6) \\ 15.2 \ (8) \\ 2.9 \ (3) \end{array}$	0.71 0.75 0.84 0.83 0.42 0.33 0.041 0.97 0.52 0.035 0.30 0.93 0.056 0.41 -
2004 2005 2006 2007	53171 53582 53908 54264	53292 53646 54002 54345	24.2 32.6 21.5 12.0	1694 1931 1429 746	15098 15785 12128 6381	0.0917 0.0930 0.0914 0.0947	310 462 320 141	7.7 11.0 8.8 5.3	$\begin{array}{c} 2.37 \pm 0.33 \\ 3.09 \pm 0.35 \\ 2.84 \pm 0.34 \\ 1.50 \pm 0.40 \end{array}$	2.6 3.5 3.2 1.7	2.0 (3) 0.6 (2) 13.5 (3) 3.8 (3)	0.57 0.73 0.0037 0.28
Total	53171	54345	90.3	5800	49392	0.0924	1233	16.7	2.57 ± 0.18	2.9	10.2 (3)	0.016

Table 1. Results from long-term HESS observations of PKS 2005-489.

・ロン ・部 と ・ ヨ と ・ ヨ と …

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

æ

2

P

2

P

< ≣ >

Э.

< ≣ >

Э.

문 🛌 문

< ≣

'≣ ▶

< ≣

Э

문 🛌 문

э

문 🛌 문

문 🛌 문

< ≣⇒

母▶ ∢ ≣▶

æ