supernova remnants and particle acceleration

fermi summer school – may 2014

daniel castro - mit

outline

part I: SNRs

why should you care about SNRs? what do we know about SNRs in general? executive summary types structure and evolution emission x-ray observations balmer dominated shocks

i. why should you care about SNRs?

i. why should you care about SNRs?

- supernovae
- pulsars + pwn
- feedback
 - shocks
 - chemistry
 - Crs
- SN GRB
- dust production

ii. what are snrs?

- explosive end of a star
- two types:
 - $_{\circ}$ core-collapse
 - $_{\circ}$ thermonuclear
- material ejected with ~10⁵¹ erg kinetic energy
- shock wave forms & sweeps up ISM/CSM

ii. types

- ejecta mass ~ 1.4 solar masses
- expands into approx uniform ISM

ii. types

core-collapse

- Progenitor mass > 8 solar masses
- expands into modified CSM

ii. types

ii. types (surrounding media)

ii. determining type

ii. morphology & type

ii. morphology & type

mirror asymmetry

ii. structure

x-ray: nasa/cxc/sao, infrared: nasa/jpl-caltech; optical: mpia, calar alto, o.krause et al.

ii. structure

- free expansion: dynamics and emission dominated by ejecta, R ∝ t
- adiabatic/sedov-taylor: swept up material dominates, R ∝ t^{2/5}
- radiative/snow-plow, radiative losses become significant

CSM

Contact Discontinuity

Shocked CSM

CSM

Contact Discontinuity

Shocked CSM

ii. structure (caveats)

why should you care?

puppis A is interacting with a dense cloud at BEK (hwang+ 2005)

detected with Fermi-LAT (hewitt+ 2012)

katsuda+ (2012) found enhanced f/r ratios in xmmnewton RGS x-ray spectra of BEK

ii. structure (caveats)

why should you care?

- puppis A is interacting with a dense cloud at BEK (hwang+ 2005)
- detected with Fermi-LAT (hewitt+ 2012)
- katsuda+ (2012) found
 enhanced f/r ratios in xmm newton RGS x-ray spectra
 of BEK

ii. structure (caveats)

why should you care?

- puppis A is interacting with a dense cloud at BEK (hwang+ 2005)
- detected with Fermi-LAT (hewitt+ 2012)
- katsuda+ (2012) found enhanced f/r ratios in xmmnewton RGS x-ray spectra of BEK

x-ray: nasa/cxc/sao & esa; infared: nasa/jpl-caltech/b. williams (ncsu)

chandra and xmm

red: 0.5 - 1 keV green: 1.5 - 2 keV blue: 2 - 8 keV

ii. emission

 $E^2 dN/dE$

ii. thermal x-rays

0

N = 1.85 O = 0.6

ii. thermal x-rays + progenitor?

ii. thermal x-rays

ii. thermal x-rays - sedov

sedov expansion

$$R_{S} = \left[\frac{\alpha(\gamma)Et^{2}}{\rho_{0}}\right]^{1/5}$$

• Rankine-Hugoniot jump conditions

$$kT_S = \frac{2(\gamma - 1)}{(\gamma + 1)^2} \,\mu m_{\rm H} v_S^2$$

•
$$EM = n_e n_H V \longrightarrow$$

$$EM = \frac{(\gamma + 1)}{(\gamma - 1)} \left(\frac{n_e}{n_H}\right) n_0^2 \frac{4}{3} \pi R_S^3$$

ii. thermal x-rays - sedov

$$n_0 = 40.64 \left(\frac{EM}{10^{60} \,\mathrm{cm}^{-3}}\right)^{1/2} \left(\frac{R_S}{1 \,\mathrm{pc}}\right)^{-3/2} \,\mathrm{cm}^{-3} \,,$$

$$t = 423.9 \left(\frac{kT_S}{1 \,\mathrm{keV}}\right)^{-1/2} \left(\frac{R_S}{1 \,\mathrm{pc}}\right) \,\mathrm{yr},$$

$$E_0 = 0.075 \left(\frac{EM}{10^{60} \,\mathrm{cm}^{-3}}\right)^{1/2} \left(\frac{kT_S}{1 \,\mathrm{keV}}\right) \left(\frac{R_S}{1 \,\mathrm{pc}}\right)^{3/2} \times 10^{51} \mathrm{ergs} \,.$$

what are balmer-dominated shocks? why are they important to SNR science?

impact excitation of neutral hydrogen

two components: narrow and broad

narrow – cold pre-shock gas

broad – thermal broadening of shocked protons

weak presence of forbidden lines

helder, vink & bassa (2011)

end of part I

up to now...

part I: SNRs

why should you care about SNRs? what do we know about SNRs in general? executive summary types structure and evolution emission x-ray observations balmer dominated shocks

part II: particle acceleration
outline

why should you care about SNRs-CRs?

what evidence is there that SNRs accelerate cosmic rays?

how has the fermi-lat contributed?

what are the open questions?

why should we care about the connection between SNRs and cosmic rays?

• origin

- y-ray background
- particle acceleration
- SNR evolution

• origin

- *P*-ray background
- particle acceleratio
- SNR evolution

origin

B-ray background

• particle acceleration

caprioli & spitkovsky 2014

- origin
- y-ray background
- particle acceleration
- SNR evolution

what evidence is there that SNRs accelerate cosmic rays?

- non-thermal X-rays
- y-ray emission
- dynamical properties
- structure

koyama+ 1995

• non-thermal X-rays

- *P*-ray emission
- dynamical properties
- structure

hinton & hofmann 2009 uchiyama+ 2002 aschenbach 1998 vink+ 2006 aharonian+ 2006, 2007,2008 naumann-godo+ 2006

- non-thermal X-rays
- y-ray emission
- dynamical properties
- structure

hughes+ 2000

- non-therma
- y-ray emiss
- dynamical provident of the second seco
- structure

- non-thermal X-rays
- y-ray emission
- dynamical properties
- structure

- non-thermal X-rays
- y-ray emission
- dynamical properties
- structure

$$t_{
m sync} \sim 1.5 \left(\frac{B}{
m mG}\right)^{-1.5} \left(\frac{\epsilon}{
m keV}\right)^{-0.5}$$
 year

• non-thermal X-rays

a

- P-ray emission
- dynamical properties
- structure
- non-thermal X-rays

uchiyama+ 2007

how has the fermi-lat contributed?

• non-thermal X-rays

- *P*-ray emission
- dynamical properties
- structure

hinton & hofmann 2009 uchiyama+ 2002 aschenbach 1998 vink+ 2006 aharonian+ 2006, 2007,2008 naumann-godo+ 2006

- many snrs (>25)
- most are snr-mc
- structure

LAT SNR catalog (sometime in the next few months)

Table 1: Fermi-LAT SNRs		
Name	Reference	
W28	Abdo et al. (2010a)	
W30	Castro & Slane (2010)	
W41	Castro et al. (2013c)	
3C 391	Castro & Slane (2010)	
W44	Abdo et al. (2010c)	
W49b	Abdo et al. (2009)	
W51C	Abdo et al. (2009)	
Cygnus Loop	Katagiri et al. (2011)	
γ -Cygni SNR	Lande et al. (2012)	
HB 21	Reichardt et al. (2012)	
CTB 109	Castro et al. (2012)	
Cas A	Abdo et al. (2010b)	
Tycho	Giordano et al. (2012)	
S147	Katsuta et al. (2012)	
IC443	Abdo et al. (2010d)	
Puppis A	Hewitt et al. (2012)	
Vela Jr.	Tanaka et al. (2011)	
Kes 17	Wu et al. (2011)	
CTB 33	Castro et al. (2013c)	
Kes 41	Castro et al. (2013a)	
RX J1713	Abdo et al. (2011)	
CTB 37A	Castro & Slane (2010)	
G349.7-0.5	Castro & Slane (2010)	
MSH 17-39	Castro et al. (2013c)	

Blue indicates likely interaction with a molecular cloud (Jiang et al., 2010)

- many snrs (>25)
- most are snr-mc
- structure

Table 1: Fermi-LAT SNRs		
Name	Reference	
W28	Abdo et al. (2010a)	
W30	Castro & Slane (2010)	
W41	Castro et al. (2013c)	
3C 391	Castro & Slane (2010)	
W44	Abdo et al. (2010c)	
W49b	Abdo et al. (2009)	
W51C	Abdo et al. (2009)	
Cygnus Loop	Katagiri et al. (2011)	
γ -Cygni SNR	Lande et al. (2012)	
HB 21	Reichardt et al. (2012)	
CTB 109	Castro et al. (2012)	
Cas A	Abdo et al. (2010b)	
Tycho	Giordano et al. (2012)	
S147	Katsuta et al. (2012)	
IC443	Abdo et al. (2010d)	
Puppis A	Hewitt et al. (2012)	
Vela Jr.	Tanaka et al. (2011)	
Kes 17	Wu et al. (2011)	
CTB 33	Castro et al. (2013c)	
Kes 41	Castro et al. (2013a)	
RX J1713	Abdo et al. (2011)	
CTB 37A	Castro & Slane (2010)	
G349.7-0.5	Castro & Slane (2010)	
MSH 17-39	Castro et al. (2013c)	

Blue indicates likely interaction with a molecular cloud (Jiang et al., 2010)

- many snrs (>25)
- most are snr-mc
- structure

 $E^2 dN/dE$

ackermann et al. 2013 (Funk, Tanaka, Uchiyama)

iv. open questions

what are the open questions being addressed today?

iv. hadronic or leptonic

what mechanism produces the y-ray emission from SNRs?

iv. hadronic or leptonic

ackermann et al. 2013 (Funk, Tanaka, Uchiyama)

iv. hadronic or leptonic

how does the magnetic field get amplified by particle acceleration and escape in SNRs?

how

.resonant cosmic ray streaming instability e.g. zirakashvili 2000 .bell's non-resonant instability bell 2004 .non-resonant long-wavelength instability bykov & toptygin 2005 .others...

evidence

.rapid variability of nonthermal X-ray emission from bright filaments in SNRs .sharp X-ray edges

evidence

.rapid variability of nonthermal X-ray emission from bright filaments in SNRs .sharp x-ray edges

.sharp x-ray edges

		Саз А (5.0-10.0 крV)
00 11:0		
	- Kepler (4.0- 0.0 keV)	
40 20 0:25:00 40 8	56 5 8 52 17:30 50 48 46 44 42 17:30,40 38 38	50 40 30 4 23:23:20

bamba et al. 2005

from Bamba+ 2003

 $f(x) = \begin{cases} A \exp\left(-\left|\frac{x_0 - x}{l_{up}}\right|\right) & x > x_0 \\ A \exp\left(-\left|\frac{x_0 - x}{l_{down}}\right|\right) & x < x_0 \end{cases}$

iv. escape and diffusion

what is the spectrum of accelerated particles which escape the SNR shock?

how do these particles diffuse through the ISM and CSM?

can we observe signatures of escape in γ -ray emission near SNRs?

iv. escape and diffusion

ellison & bykov+ 2011

iv. molecular clouds

what happens when SNR shocks interact with dense clouds of material?

iv. molecular clouds

- castro & slane (2010,2013):
 - w30 + ctb 37a + g349.7-0.5 + 3c391
 - w41 + ctb 33 + msh 17-39
 - x-ray density << 29-ray density

see also:

- uchiyama+ 2010 reacceleration
- inoue+ 2010 diffusion
- schuppan+ 2012 ionization
end of part II