

Guillaume Dubus

Fermi School 2014, Lewes DE Institut de Planétologie et d'Astrophysique de Grenoble

Binaries detected > 100 MeV by Fermi, IACTs

see Dubus, 2013, Astron. Astrophys. Rev., 21, 64

A rare & diverse lot...

How special are they?

Do these systems have anything in common?

What's involved in producing gamma rays?

How do they compare to other sources?

Motivation

use binaries to get a coherent picture across objects & scales of

- magnetized relativistic outflows
- accretion ejection phenomena
- particle acceleration

Overview

- i. Some history
- ii. Gamma-ray binaries: emergence of a new class
- iii. What powers gamma-ray binaries?
- iv. Tools of the trade: HE radiation in the context of binaries
- v. Current puzzles
- vi. A microquasar in gamma rays: Cyg X-3
- vii. A nova in gamma rays: V407 Cyg
- viii. A colliding wind binary in gamma rays: Eta Car

binaries in gamma rays: a checkered history...

2CG 135+01 = LS I+61°303?

- GeV source discovered in 1977 by Cos B.
- LSI +61°303 rare HMXB with periodic radio flares in error box

Gregory & Taylor 1978

2CG 135+01 = LS I+61°303?

- GeV source discovered in 1977 by Cos B.
- LSI +61°303 rare HMXB with periodic radio flares in error box
- but source confusion, no tell tale variability.

The notorious Cyg X-3

- X-ray binary discovered 1966, 4.8 hour orbit, large radio flares discovered 70s
- confused history in gamma rays...
 Chardin & Bonnet-Bideau 1988
- but triggered developments that led to today's gamma-ray astronomy

SAS-2 Parsignault et al. 1976

Weekes et al. 1981 12.8 ms pulsar: Chadwick et al. 1985

Sudan-I Marshak et al. 1986

GeV

TeV

muons

Y rays from compact binaries

pre-2004

- > 1 MeV
 non-thermal tails in a few binaries
- > 100 MeV tentative associations
- > 100 GeV confused situation since 1970s

2004+ breakthrough

 new Cherenkov arrays detect VHE emission from several binaries

New generation of observatories

radio mm IR UV X-rays γ γ HE γ VHE

Fermi Agile HESS MAGIC VERITAS

Identifying binaries: LS 5039

Aharonian et al. (HESS) 2006, A&A

Point source: position to within 30" VHE orbital modulation fully confirms association.

Identifying binaries: 1FGL 1018

Abramowski et al. (HESS) 2012, A&A

Ackermann et al. (Fermi) 2012, Science

observations of gamma-ray binaries: emergence of a new class at TeV

Gamma-ray binaries discovery

2004 2005 HESS J1825-137 HESS J1303-631 LS 5039 PSR B1259-63 3EG J1824-1514 13h10m 17.5 I (deg) 2006

2008

HESS J0632+057

05 50

06 45

H.E.S.S.

PSR B1259-63

Johnston et al. 1992

LS 5039

Motch et al. 1997

LS I+61 303

Hermsen et al. 1977

HESS J0632+057

06,33,00,

Aharonian et al. 2008

2012

1FGL J1018.6-5856

Abdo et al. 2012

Gamma-ray binaries optical

Massive star (0,Be) in eccentric orbit around compact object (pulsar ?)

Gamma-ray binaries Tev

All have TeV variability tied to orbital period

[Cyg X-1 in 2007]

Gamma-ray binaries Gev

GeV variability tied to orbital period

Gamma-ray binaries x-ray

X-ray variability tied to orbital period

Collmar et al. 2014

Gamma-ray binaries radio

Also radio variability tied to orbital period

Gamma-ray binaries modulations

system			Porb	radio	X-ray	GeV	TeV
PSR B1259-63	psr	Be	1237	90%	95%	100%	>75%
LS 5039	?	0	3.9	<30%	40%	60%	70%
LS I +61 303	?	Be	26.5	90%	70%	40%	>70%
HESS J0632+057	?	Be	320	<50%	85%		>50%
1FGL J1018.6-5856	?	0	16.6	60%	65%	20%	NEW

source detected + orbital variability

Gamma-ray binaries luminosities

	PSR B1259-63	LS 5039	LS I +61°303	HESS J0632+057	1FGL J1018.6-5856
norm @1 TeV (10 ⁻¹² ph cm ⁻² s ⁻¹ TeV ⁻¹)	<0.4-2.9	0.5-3	<0.5–5	<0.3-1.2	0.1-0.9
$\Gamma_{ m VHE}$	2.7	1.8 _{cut} -3.1	2.6	2.5	2.4
$L_{\rm VHE} (10^{35} {\rm erg s^{-1}})$	0.09	0.14	0.13	0.02	0.09
$F_{\rm HE}(>0.1{\rm GeV})(10^{-7}{\rm phcm^{-2}s^{-1}})$	<0.09-35	4–15	6–14	<0.3	5.0-5.6
$\Gamma_{ m HE}$	1.4 _{var}	2.1	2.1	(2.9)	$1.9_{\rm var}$
$E_{\rm cut}$ (GeV)	0.3	2.2	3.9	-	2.5
$L_{\rm HE} (10^{35} {\rm erg s^{-1}})$	2.8	2.8	2.3	<0.03	9.7
$F_{\rm X}(1-10{\rm keV})~(10^{-12}{\rm ergs^{-1}cm^{-2}})$	1–37	5-12	5–30	0.3-4.1	0.5–5
Γ_{X}	1.2-2.0	1.4-1.6	1.5-1.9	1.2-1.7	1.3-1.7
$L_{\rm X} (10^{35} {\rm erg s^{-1}})$	0.23	0.12	0.14	0.01	0.17
F _{radio} (2 GHz) (mJy)	2–50	30	20-300	0.2-0.7	1.5–6
$L_{\rm radio} (10^{29} {\rm erg s^{-1}})$	6.3	6.0	28.7	0.04	4.2

VHE luminosity above 100 GeV, HE luminosity from 0.1-10 GeV, derived from the values in the text & distances from Tab. 1

X-ray flux modulation and (peak) luminosity in the 1-10 keV range, radio flux and (peak) luminosity at ≈ 2 GHz.

The HE spectra marked var show more complex variability with orbital phase than is summarised here.

Dubus 2013 A&ARv

LHE~10 LVHE (except HESS J0632) hard X-ray spectra with L_X~L_{VHE}

Gamma-ray binaries sed

similar spectral energy distributions peaking > 1 MeV

Gamma-ray binaries definition

some confusion in the litterature

5 known systems incl. one with pulsar → a common scenario ?

What powers gamma-ray binaries?

PSR B1259-63

48 ms radio pulsar, spinning down on timescale $~ au pprox 3 imes 10^5~{
m yr}$

$$\Rightarrow$$
 spindown power $\dot{E} = I\Omega\dot{\Omega} \approx 8 \times 10^{35}\,\mathrm{erg\,s^{-1}}$

Spindown power carried by relativistic wind beyond light cylinder

$$\dot{E} \approx \frac{B_{\rm ns}^2 R_{\rm ns}^6 \Omega^4}{c^3} \left(1 + \sin^2 \chi \right) \quad \Rightarrow \quad B_{\rm ns} \approx 3 \times 10^{11} \,\mathrm{G}$$

Pulsar Wind Nebula (PWN)

Pulsar wind termination shock

$$p_{\rm pw} = \frac{\dot{E}}{4\pi R_{\rm s}^2 c} = p_{\rm ext}$$

Crab PWN in X-rays

Pulsar wind in a binary

Pulsar wind termination shock

$$p_{\rm pw} = \frac{\dot{E}}{4\pi R_{\rm s}^2 c} = p_{\rm w} = \frac{\dot{M}v_{\rm w}}{4\pi (d - R_{\rm s})^2}$$

adapted from Lamberts et al. 2013

Pulsar wind in a binary

Structure set by

$$\eta = \frac{\dot{E}/c}{\dot{M}v_{\rm w}}$$

Bogovalov et al. 2008

adapted from Lamberts et al. 2013

Pulsar wind in a binary

Termination shock is much closer to pulsar: from 10⁹ to 10⁴ R_{LC}

adapted from Lamberts et al. 2013

PSR B1259-63

non-thermal emission at shock, powered by pulsar spindown

~1% of power emitted in VHE, as in pulsar wind nebulae

Tavani & Arons 1997 Kirk et al. 1999

Gamma-ray binaries: young pulsar + massive star like PSR B1259-63 ?

Controversy microquasars or pulsars?

resolved radio emission on milliarcsec scale suggested microquasar jets

Compact radio jets? (microquasars)

LS 5039

LS I +61°303

Paredes et al. 2000

Massi et al. 2004

Gamma-ray binaries cometary nebula

Pulsars, not microquasars

also LS 5039, HESS J0632, PSR B1259-63 (work by Moldón et al. 2011-3)

Where is the pulsar?

radio pulses strongly absorbed by stellar wind

$$\tau_{\rm ff} \approx 14.7 \, g_{\rm ff} \left(\frac{\nu}{10^9 \, \rm Hz}\right)^{-2} \left(\frac{\dot{M}_{\rm w}}{10^{-7} \, \rm M_{\odot} \, yr^{-1}}\right)^2 \left(\frac{v_{\rm w}}{1000 \, \rm km \, s^{-1}}\right)^{-2} \left(\frac{T_{\rm w}}{10\,000 \, \rm K}\right)^{-3/2} \left(\frac{d}{1 \, \rm AU}\right)^{-3}$$

detecting X-ray, γ-ray pulsations extremely difficult

ORBITAL PLANE

Melatos et al. 1995

PSR B1259-63

Where is the pulsar?

radio pulses strongly absorbed by stellar wind

$$\tau_{\rm ff} \approx 14.7 \, g_{\rm ff} \left(\frac{\nu}{10^9 \, {\rm Hz}}\right)^{-2} \left(\frac{\dot{M}_{\rm w}}{10^{-7} \, {\rm M}_{\odot} \, {\rm yr}^{-1}}\right)^2 \left(\frac{v_{\rm w}}{1000 \, {\rm km \, s}^{-1}}\right)^{-2} \left(\frac{T_{\rm w}}{10\,000 \, {\rm K}}\right)^{-3/2} \left(\frac{d}{1 \, {\rm AU}}\right)^{-3}$$

- detecting X-ray, γ-ray pulsations extremely difficult
- 2 magnetar bursts seen by Swift/BAT < 2' of LSI +61°303 ⇒ young pulsar ?

Barthelmy et al. 2008, Burrows et al. 2012, Torres et al. 2012

takanori 11-Sep-2008 19:23

Indirect evidence for pulsar

- only identified compact object in a gamma-ray binary is a pulsar (*)
- magnetar bursts detected from LS I+61 303
- similarities in timing/spectra
- periodic morphological changes in radio
- X-ray/GeV/TeV properties consistent with those of PWN
- lack of accretion signatures (spectral changes, outbursts...)
- expected progenitors of high-mass X-ray binaries & double NS

coherent interpretation

(*) + three other known pulsars with massive companion but far & low power so no gamma rays

Evolution

Accretion held off if ppw>pacc at Bondi-Hoyle radius

$$\dot{E} \approx 4 \times 10^{33} \left(\frac{\dot{M}_{\rm w}}{10^{-7} \,{\rm M}_{\odot} \,{\rm yr}^{-1}} \right) \left(\frac{1000 \,{\rm km \, s}^{-1}}{v_{\rm w}} \right)^3 \left(\frac{0.1 \,{\rm AU}}{d} \right)^2 \,{\rm erg \, s}^{-1}$$

 $L_Y > 10^{34}$ erg/s so ok

- Pulsar spins down
 - → accretion eventually starts → HMXB

Lorimer 2008

birthrate ~ 10⁻³ yr⁻¹ x 10⁵ yr lifetime ~ 100 gamma-ray binaries in Galaxy ?

Low-mass gamma-ray binaries

- old pulsar spun-up by accretion in LMXB (recycled ms pulsar)
- pulsar pressure increases, ends up quenching accretion
- ~30 GeV pulsars in binaries
- modulated γ-ray emission in black widow pulsar (Wu et al. 2012)

"black widow" PSR B1957+20

>2.7 GeV lightcurve

Low-mass gamma-ray binaries

Tam et al. 2010

Hill et al. 2011

PSR J1023+0038
1.6-ms radio pulsar
accretion disk disappears when radio pulsar on

both have 0.2d orbit, 0.2 M_☉ star hard X-ray spectrum optical, X-ray variability pos. Fermi counterpart few 10³³ erg/s

XSS J12270-4859
unidentified compact object
faint radio source

Low-mass gamma-ray binaries

Tam et al. 2010

Hill et al. 2011

PSR J1023+0038

1.6-ms radio pulsar
radio pulsar disappears as accretion back on

both have 0.2d orbit, 0.2 M_☉ star hard X-ray spectrum optical, X-ray variability GeV brighter when accretion on

XSS J12270-4859

unidentified compact object 1.6 ms pulsar

switched to non-accreting state dec. 2012

Takata et al. 2014, Bassa et al. 2014...

tools of the trade: high-energy radiative processes in the context of binaries

Efficient particle acceleration

diffusive shock acceleration timescale

$$\tau_{\rm ac} \ge \xi \frac{R_L}{c} \approx 0.1 \, \xi \left(\frac{E}{1 \, {\rm TeV}} \right) \left(\frac{1 \, {\rm G}}{B} \right) \, {\rm s}$$

must be < synchrotron loss timescale

$$\tau_{\rm sync} \approx 400 \left(\frac{1 \, {\rm TeV}}{E}\right) \left(\frac{1 \, {\rm G}}{B}\right)^2 \, {\rm s}$$

maximum energy

$$\Rightarrow E_{\text{max}} \approx 60 \, \xi^{-1/2} B^{-1/2} \, \text{TeV}$$

Khangulyan et al. 2008

VHE photons > 20 TeV imply efficient acceleration (reconnection?)

Basics of spectrum formation

Assume steady injection of pairs with escape timescale > radiative timescale

inverse Compton cooling on star photons

$$\tau_{\rm ic} = 20 \ \gamma_6 d_{0.1}^2 / [\ln \gamma_6 + 1.3] (T_{*,4} R_{*,10}) \text{ seconds}$$

synchrotron cooling

$$\tau_{\rm sync} = 770 \ \gamma_6^{-1} B_1^{-2} \ {\rm seconds}$$

⇒ break frequencies

$$\epsilon_{\rm IC} = 4 \ (T_{*,4} R_{*,10} / d_{0.1}) B_1^{-1} \ {\rm TeV}$$

$$\epsilon_{\text{sync}} = 750 \ (T_{*,4}R_{*,10}/d_{0.1})^2 \ \text{keV}$$

GD et al. 2007

Moderski et al. 2005,

Massive star sets everything \Rightarrow B \approx 1G

caveat: adiabatic cooling

Intrinsic variations in R_s, σ , $\tau_{ad...}$

Apastron: diffuse polar wind, large shock distance, low B = VHEPeriastron: dense equatorial wind, small shock distance, high B = no VHE

inverse Compton on star photons

depends on photon density
$$U_\star = \frac{\sigma_{\rm SB} T_\star^4}{c} \left(\frac{R_\star}{d}\right)^2 \, {
m so} \, {
m \propto d^{-2}}$$

- inverse Compton on star photons
- pair production on star photons (opacity) $\epsilon_{\min} \epsilon_{\star} \geq (511 \, \mathrm{keV})^2$

also depends on photon density so $\propto d^{-2}$

- inverse Compton on star photons: anisotropic
- pair production on star photons (opacity)

$$P_{\star} = \sigma_T c U_{\star} (1 - \beta \cos \psi) \left[(1 - \beta \cos \psi) \gamma^2 - 1 \right]$$

Thompson regime, electron Lorentz factor γ , ψ angle between incoming and outgoing photon

- inverse Compton on star photons: anisotropic
- pair production on star photons (opacity): anisotropic

$$\epsilon_{\gamma} \epsilon_{\star} (1 - \cos \psi) \ge 2 \left(m_e c^2 \right)^2 \implies \epsilon_{\gamma} \ge 30 \left(\frac{10 \,\text{eV}}{k T_{\star}} \right) \,\text{GeV}$$

- inverse Compton on star photons: anisotropic
- pair production on star photons (opacity): anisotropic

→ distinguish intrinsic variability from variability due to observer geometry

Anistropic IC and pair production

Protheroe & Stanev 1993 Moskalenko 1995 Dermer & Bottcher 2005 GD 2006

Jackson 1972 Bednarek 1997 Kirk et al. 1999 GD et al. 2008 Khangulyan et al. 2008

Y-ray modulation of LS 5039

Led several groups to predict GeV modulation later seen by Fermi

Complications

significant pair cascade emission at superior conjunction

Cerutti et al. 2010

synchrotron emission from pairs in X-rays limit ~1 G

Complications

- significant pair cascade emission at superior conjunction
- bulk doppler boost in shocked wind modifies lightcurve

alternative: adiabatic timescale (Takahashi et al. 2009)

Radiative models: summary

Bednarek et al.; Kirk et al; Romero et al., Dermer & Bottcher, Khangulyan & Bosch-Ramon et al.; Neronov & Chernyakova; Dubus, Cerutti, Henri; Sierpowska-Bartosik & Torres; Takata & Taam; Yamaguchi & Takahara...

Consensus

- inv. Compton + synchrotron + pair production + cascade
- anisotropic IC, yy produce modulations without intrinsic variability
- particle acceleration is efficient in these systems

Differing options

- size & location of emitter
- impact of various processes (cascades, Doppler boosting)
- intrinsic variability (shock location, adiabatic timescale)

no consensus yet...

current puzzles

Gamma-ray emission

two components: pulsar & pulsar wind nebula (PWN)?

GeV spectra like that of the 100+ Fermi/LAT pulsars

TeV (X-ray) emission similar to pulsar wind nebulae

The puzzling emission of gamma-ray binaries (G. Dubus)

Puzzle: pulsar-like component

orbital modulation unexpected for pulsar emission within light cylinder

modulation best understood as inv. Compton on stellar light

The puzzling emission of gamma-ray binaries (G. Dubus)

Puzzle: pulsar-like component

orbital modulation unexpected for pulsar emission within light cylinder

origin of pulsar-like component

- striped wind (Pétri & GD 2011)
- cold wind (à la Khangulyan+ 2012)
- thermalized particles at shock (Zabalza+ 2013, GD & Cerutti 2013)
- shocked stellar wind (Bednarek 2011)

a clue to pulsar emission process?

The puzzling emission of gamma-ray binaries (G. Dubus)

Puzzle: GeV flare of PSR B1259-63

- Fermi/LAT detection at periastron mid-December 2010 (next in 5/2014)
- orbital phasing unexpected for inverse Compton scattering of stellar photons

Puzzle: GeV flare of PSR B1259-63

- high $L_Y \rightarrow$ nearly all spindown power radiated away at peak
- GeV-only flare

Puzzle: GeV flare of PSR B1259-63

Extremely efficient radiation with Ly ~ spindown power!

If inverse Compton, need very high radiation density to allow electrons to cool on a scale $\sim d_{orb}$

- Be disc photons ? (Khangulyan+ 2012)
- SSC on PWN emission ? (GD & Cerutti 2013)

Alternatives to IC

- Doppler boosting (Kong+ 2012)
- conversion to EM wave (Mochol & Kirk 2013)
- Crab-like reconnection unrelated to orbit?

orbit close to periastron

periastron : May 2014

The puzzling y-ray binaries

 Gamma-ray binaries powered by pulsar spindown, energy dissipated in shock with stellar wind → new probes of pulsar physics

Puzzle: the GeV spectral component

Is the similarity with emission from other pulsars telling us something about pulsar physics or ... a red herring?

Puzzle: the gamma-ray flare of PSR B1259-63

Is it due to complex inverse Compton geometry (need simulations of interaction region) or is it evidence for alternate emission mechanisms?

A microquasar in gamma rays: Cygnus X-3

Cygnus X-3

only confirmed y-ray microquasar (good evidence also for Cyg X-1)

Tavani et al. 2009 (AGILE) Abdo et al. 2009 (Fermi)

4.8hr orbital modulation (X, Y)

Wolf-Rayet + black hole (?)

Credit: W. Feimer/NASA/GSFC

Y-ray & X-ray modulation

inverse Compton on ★ photons

Y-ray & X-ray modulation

inverse Compton on \bigstar photons $\Rightarrow \gamma$ -ray emission zone far out

Y-ray & X-ray modulation

different origin for hard X-rays and γ -rays

- accretion disk corona excluded (yy + modulations)
- injection energy γ_{inj}≈1000
- magnetic field B<100 G
- L_{jet}≈10³⁸ erg/s

Cerutti et al. 2011, Zdziarski et al. 2012a, b

 γ -rays <10% X-rays

Cygnus X-3 flares

Cygnus X-3 flares

Y-ray & X-ray emission are linked

Friday, May 30, 14

71

A window into accretion-ejection

• How are γ-rays, X-rays and radio connected ?

How unique is Cyg X-3?

Are y-rays produced at a recollimation shock?

Perucho et al. 2010

How is its formation related to the conditions in the corona, radio jet?

A nova in gamma rays: V407 Cyg

A surprising transient

Fermi Detects Gamma Rays from Nova Cygni 2010

Feb. 19 to March 9, 2010

March 10 to 29, 2010

Gamma-rays from V407 Cyg

- symbiotic system: red giant wind & radiation
- thermonuclear runaway WD ejects 10⁻⁶ M_☉ at ~ 3000 km/s

Walder, Folini & Shore 2008

Gamma-rays from V407 Cyg

- Mini-supernova, 10⁴⁴ erg, developping in "real time"
- γ -rays: π_0 & IC on e^- , thermal X-rays from shocked material

Tatischeff & Hernanz 2007

Walder, Folini & Shore 2008

SNR evolution in 'real' time

γ-ray Razzaque+ 2010, Sitarek+Bednarek 2012 X-ray Nelson+, Orlando+ 2012 radio Chomiuk+ 2013

time & location-dependent γ -ray, X-ray, radio emission depends on

- ejecta parameters (~10⁻⁶ M_☉ at 3000 km/s)
- system parameters (stellar wind, radiation, separation, circumstellar material)
- acceleration parameters (test particle, diffusion eff., B field, e-/p inj. fraction)

SNR evolution in 'real' time

Inverse Compton model

- nova light dominates
- need density enhancement
- 10% energy in acc. particles
- e~0.03%, p~0.5%

SNR evolution in 'real' time

Inverse Compton model

- nova light dominates
- need density enhancement
- 10% energy in acc. particles
- e~0.03%, p~0.5%

π_0 model

- helps with low γ points
- X-ray thermal important
- 100% energy in acc. particles
- acceleration: non-linear regime!

New novae

New novae

- Problem: not symbiotics so no dense stellar wind, small system
- Nova Mon 2012: KV star, Porb=7.1 hour

all fast novae ? Shore et al. 2013ab

Nova Sco 2012: -

• What's accelerated and where ?! need to revisit nova physics ?

A colliding wind binary in gamma rays: Eta Carina

Eta Carina and CWB

- η Carinae, ~100 M_☉ star + comp., 5.5 yr orbit
- ◆ kinetic power of stellar winds L_{kin} ~6 x 10³⁷ erg/s
- variable γ-ray emission (~0.1% L_{kin})

Walter & Farnier 2011, Reitberger et al. 2012

No y-rays from other colliding wind binaries: why?

Werner et al. 2013

Summary

Binaries > 100 MeV

Rich variety of binaries observed

- a new field with a history...
- γ-rays reveal a new class: gamma-ray binaries
- twists to radiative processes in context of binaries → modulations
- binary-fixed radiation field & geometry constrain physics

Binaries > 100 MeV

Use γ rays from binaries to build a consistent picture across objects & scales of

- accretion ejection
- relativistic, magnetized outflows
- particle acceleration