

Subphotospheric Dissipation in GRBs

Björn Ahlgren

Introduction
What is a GRB?
Spectral Fitting

Work in Progress
Fitting Without the
Band Function
Some Results
Outlook

Subphotospheric Dissipation in GRBs Fermi Summer School 2014

Björn Ahlgren

KTH Oskar Klein Centre Stockholm, Sweden

June 3, 2014

Outline

Subphotospheric Dissipation in GRBs

Björn Ahlgre

Introduction
What is a GRB?
Spectral Fitting

Work in Progress Fitting Without the Band Function Some Results Outlook

- Introduction
 - What is a GRB?
 - Spectral Fitting
- Work in Progress
 - Fitting Without the Band Function
 - Some Results
 - Outlook

What is a Gamma-Ray Burst (GRB)?

Subphotospheric Dissipation in GRBs

Björn Ahlgre

What is a GRB?
Spectral Fitting

Work in Progres
Fitting Without th
Band Function
Some Results
Outlook

- Very bright flash of gamma rays
- Short bursts (from binary mergers)
- Long bursts (from exploding stars)
- Prompt emission and afterglow

Prompt emission

Subphotospheric Dissipation in GRBs

Björn Ahlgren

Introduction
What is a GRB?
Spectral Fitting

Work in Progress Fitting Without the Band Function Some Results Outlook

- Origin unknown
- Lasts \sim seconds minutes
- Bulk of the emission in the range tens of keV to hundreds MeV

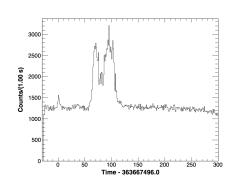


Figure: Prompt emission light curve for GRB120711. GBM data only.

The Band Function

Subphotospheric Dissipation in GRBs

Björn Ahlgren

Introduction
What is a GRB?
Spectral Fitting

Work in Progress
Fitting Without the
Band Function
Some Results
Outlook

- Empirical function
- Smoothly broken power law
- Characterized by $\alpha, \beta, E_{\text{peak}}$
- Has nothing to do with bands

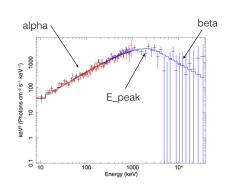


Figure: Plot of a Band-function fit of GRB120711

Proposed physical models

Subphotospheric Dissipation in GRBs

Björn Ahlgre

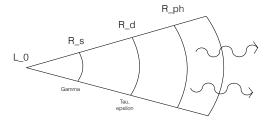
Introduction
What is a GRB?
Spectral Fitting

Work in Progress
Fitting Without the
Band Function
Some Results
Outlook

- Synchrotron, Tavani (1996)
- Synchrotron + black body emission, Meszaros et al. (2002), Burgess et al. (2013)
- Magnetic dissipation Giannios (2010)
- Photosphere + geometrical effects (Lundman et al. 2013)
- Subphotospheric dissipation Rees & Meszaros (2005) Peer et al. (2005), Beloborodov (2011)

Fitting Without the Band Function

Subphotospheric Dissipation in GRBs


Björn Ahlgrer

Introduction What is a GR Spectral Fitti

Work in Progress
Fitting Without the
Band Function
Some Results

Use a model based on subphotospheric dissipation in a relativistically expanding fireball from Pe'er et al. (2006).

- Characterized by $\tau, \Gamma, L, \epsilon$
- Kinetic energy in bulk flow is dissipated to the electrons at some radius $R_d(\tau, \Gamma, L)$
- Thermal seed photons and electrons interact and electrons cool

Preliminary results

Subphotospheric Dissipation in GRBs

Björn Ahlgrer

Introduction
What is a GRB?
Spectral Fitting

Work in Progress
Fitting Without the
Band Function
Some Results

- Spanned parameter grid to create table models
- Can fit to data with fit quality comparable to Band's function (same number of free parameters)

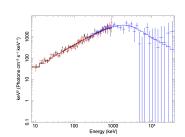


Figure: Band's function

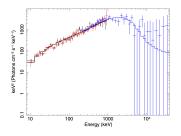


Figure: Subphotospheric dissipation model

Björn Ahlgren

Outlook

Subphotospheric Dissipation in GRBs

Björn Ahlgrer

Introduction
What is a GRI
Spectral Fittin

Work in Progres
Fitting Without th
Band Function
Some Results
Outlook

- Assuming this physical scenario, properties of the jet can be derived
 - Arrive at reasonable parameter values for studied cases
- Results are promising
- For a sample of bright bursts with known redshift, a fit with quality comparable with that of a Band function fit is found
- Time to move on from empirical models