

The Galactic Center and GeV gamma-rays

"Jack" J.W. Hewitt NASA Goddard / UMBC

member of LAT collaboration since 2012

Overview

- 1. Tour of the Galactic Center (GC)
 - Multi-wavelength overview: physical conditions and past activity
- 2. GeV emission with Fermi-LAT and a few highlights
 - Origin of diffuse GeV emission?
 - Emission from the central source: Sgr A*?
 - Dark Matter?

Overview of the GC

Mixture of thermal and non-thermal emission

 Nonthermal 90cm emission: ~ Gev particles

- Thermal Emission
 - Compact HII regions
 - Evolved HII regions
- Nonthermal Emission
 - SNRs.
 - Nonthermal filaments
 - Diffuse background
 - Colliding winds

Overview of the GC

- Molecular layer: 450 x 50 pc
- Velocity Dispersion Δv ~15 km/s
- Scatter broadening: turbulent medium
- Multi-temperature gas T ~ 30-100K,
- T_{dust} ~ 30K
- Molecular gas density n ~ 10² cm⁻³ (uncertain)
- Mass ~10⁷ to 10⁸ solar mass (uncertain)
- H3+ line emission indicates CR ionization rate ~10⁻¹⁵ s⁻¹ H⁻¹ (~2 orders of magnitude higher than locally observed)

850 micron (Pierce-Price et al. 2000)

90cm (LaRosa et al. 2005)

A view from the Great observatories

Central Molecular Zone (CMZ)

The inner 500 pc with ~10⁸ M_{sol} of mostly molecular gas

Average gas density: 100 cm⁻³ 100 times that of the Disk

Star Formation Rate: $\sim 0.5 \text{M} \odot \text{yr}^{-1} \text{ verus } 5 \text{M} \odot \text{yr}^{-1} \text{ in the Disk}$

Efficiency: 5 10⁻⁹ similar to that in the Disk

Cosmic Rays in the GC

Radio Arc (e.g. Yusef-Zadeh+ 84)

- •Largest-scale non-thermal filaments plentiful throughout GC
- •Indicates a strong (or turbulent?) magnetic field
- •Relativistic electrons (~1 GeV) are abundant

Cosmic Rays in the GC

• H₃⁺ absorption line studies of bright stars in the GC provide constraint on ζL : CR ionization rate * path length (Oka et al.)

$$\zeta L = 2k_{\rm e}N({
m H}_3^+) \left(rac{n_{
m C}}{n_{
m H}}
ight)_{
m SV} rac{R_{
m C/H}}{f({
m H}_2)}$$

For
$$\zeta \sim 3 \times 10^{-15} \text{ s}^{-1}$$
 $L \sim 15 - 50 \text{ pc}$

Note: these assume solar interstellar C; for constant ζ , L increases as C increases

 Evidence for abundant low-energy (ionizing) Cosmic Rays filling n_H ~ 100 cm⁻³ gas at Galactic center

Fe 6.4 keV line emission

 Dense, neutral gas is observed to correlate with 6.4 keV line emission observed in X-rays (Chandra, XMM, Suzaku, Integral)

Fe 6.4 keV line emission

• Dense, neutral gas is observed to correlate with 6.4 keV line emission observed in X-rays (Chandra, XMM, Suzaku, Integral)

Diffuse Radio, X-ray and Y-rays

- Enhanced nonthermal radio emission
- X-ray irradiation of molecular clouds
- Enhanced H₃⁺ Absorption lines
- Warm molecular gas
- Diffus γ-ray emission (Fermi)
- Chemisty of the gas (SiO, CH₃OH)
- CR ionization rate:

 z = 10⁻¹⁴ to fewx10⁻¹⁵ s⁻¹ from 6.4 keV line

Fel

e

Continuum: Bremsstrahuling

Past activity from Sgr A*

• XMM observes brightening and dimming of Fe 6.4 keV lines => super-luminal motion consistent with X-ray light echo.

Note: LECRs could still fit this scenario, but seem ad hoc. Coulomb lifetime ~ 1 yr.

Past activity from Sgr A*

 Multiple Fe 6.4 keV line regions fit by period of intense Xrays from Sgr A* that ended ~100 yr ago.

from Arm region

$$N_H$$
=2.7×10²³ cm⁻²
 D_{proj} =15 pc
Radius=1.1 pc

$$L_{SgrA^*} > 3 \times 10^{37} \text{ erg s}^{-1}$$

Assuming L=1.4×10³⁹ erg s⁻¹ 100 pc Sgr A* activity 500 yr

Current activity from Sgr A*

- Current X-ray flares observed ~3x10³⁵ erg /s
- As short as $200s \Rightarrow 200$ Rs
- Average ~1 flare per day

Current activity from Sgr A*

- NIR and sub-mm flares observed
- Flares are polarized, with timevariable polarization angle.

 Broadband SED of flares from radio to X-rays

Sgr A* Flares

- X-ray flare emission mechanism is non-thermal but otherwise still undetermined:
 - Synchrotron with cooling break
 - External Compton
 - Synchrotron self-Compton (SSC)
- Origin of NIR/sub-mm flares is undetermined:
 - magnetic reconnection
 - stochastic acceleration?
 - shock in jet or inner accretion flow
 - infalling asteroids?
 (Zubovas et al. 2012)

X-rays via inverse Compton scattering

Does Sgr A* have a jet?

 Parsec-scale, linear X-ray feature appears at the intersection with the Eastern arm of the "mini-spiral" (Li, Morris, Baganoff 2014)

Does Sgr A* have a jet?

- Parsec-scale, linear X-ray feature appears at the intersection with the Eastern arm of the "mini-spiral" (Li, Morris, Baganoff 2014)
- Bisects radio "shock front" in Eastern Arm

Does Sgr A* have a jet?

- Parsec-scale, linear X-ray feature appears at the intersection with the Eastern arm of the "mini-spiral" (Li, Morris, Baganoff 2014)
- Bisects radio "shock front" in Eastern Arm

[Ne II] 12.8 micron flux density - velocity diagram shows

flux drop at 160 km/s
=> momentum impact on
 velocity field of E. Arm

Too many coincidences?

 Other authors have claimed evidence of a putative jet from Sgr A*, but with different inclination angles, extents

Overview of the GC

- ~10⁸ M_{sol} reservoir of gas in inner 300 pc.
- Massive stellar clusters, compact objects, supernova remnants and pulsars (+ nebulae)
- Enhanced cosmic ray ionization rate
- Evidence for past/current activity from Sgr A*
 - May or may not have an existing jet

All within inner 2x1 degrees (~300 pc)

GeV emission with Fermi-LAT

High energy activity in the GC

HESS TeV detection of a "Galactic ridge" ~2°x1° (Aharonian+ 2006)

- Fel Ka 6.4 keV line emission.
 - Evidence of past AGN-like activity from Sgr A*? (Sunyaev 1993;1998)
 - LECR bombardment? (Yusef-Zadeh+ 2007; Tatischeff+ 2012)

The GeV GC with Fermi

- Fermi has brought a new era to GC studies
- Exposure, angular resolution, stability of response
- Never as much as you'd want, but a huge advance

Figure 3. Profile of observed and predicted γ -ray intensity in the Galactic center region, are ranged over $|b| < 1^{\circ}$. Points: observed COS-B γ -ray intensity (200-5000 MeV). Solid curve: predicted γ -ray intensity using the standard mass calibration ratio, $N_{\rm S}_{\rm A}/W_{\rm CO}$, derived from Galactic disk observations. Dashed curve: predicted γ -ray intensity using the standard mass calibration ratio, but with the eight wide-line thrude indicated in Figure 1 removed from the

Stacy, Dame, & Thaddeus (1987)

12-month data set, Diffuse class, Front only

LAT Analysis: Inner 2°x1° Emission

 Both GeV and Radio emission appear to be extended along the Galactic ridge (inner ~2° x 0.85°)

smoothed >1GeV CMAP, background subtracted

Diffuse 20cm Radio Map

LAT Analysis: Spatial Template Fitting

- Multi-wavelength Spatial Templates:
 - Fel Kα Line (X-rays)
 - CS 1-0 line (gas; optically thin)
 - 20cm GBT map (radio)*
 - HESS excess map (TeV)*
 *needed to remove Sgr A source
- Replace 2FGL sources in inner 2°x1°
 (Arc, Sgr B, Sgr C) with template.
- Likelihood improves for template fits

$2 \log(\mathcal{L}_1/\mathcal{L}_0)$		
0		
25.6		
33.9		
50.6		
60.6		
-51.4		

LAT Analysis: Residuals

- See well-known negative residual from ring model.
 No sources fit in this region.
- CS gas map should trace residual emission due to gas in the GC, yet this gave the worst fit of all models.

LAT Analysis: Systematic Errors

- Gaussian residuals from lbl < 1° show small offset due to negative structure at GLON~3°. Standard deviation = 0.12
- Therefore take the systematic uncertainty in the Galactic Normalization ~ 6%
- Even with GAL_v02 index free, still see residuals at ~6% level.

Residuals still apparent with higher energy cut (2 vs 1 GeV)

SED Modeling (Radio + GeV + TeV)

- Radio synchrotron spectrum has a clear break at ~3 GHz
- Can Bremsstrahlung emission from these e- explain γ-rays?

$$F_{\gamma} \sim 10^{-14} \left(\frac{\mathrm{E}_{\gamma}^{-\mathrm{p}} \, \mathrm{f(p)} \, \nu^{(\mathrm{p}-1/2)} \, \mathrm{S}_{\nu} \, \mathrm{n_H}}{B^{(\mathrm{p}+1)/2}} \right) \, \mathrm{ph} \, \mathrm{cm}^{-2} \, \mathrm{s}^{-1} \, \mathrm{GeV}^{-1} \quad \stackrel{\frown}{\searrow} 10^{3}$$

 GeV electrons can also explain Fe Ka line X-rays, and mol. gas heating rate due to enhanced ionizations (see text for details.)

Table 4. Parameters of the fit to γ -ray sources using Fermi and HESS data

Source	Β (μG)	${ m n}_H \ m (cm^{-3})$	F_{325MHz} (Jy)	p1	p2	$ u_{break} $ (GHz)	$\mathrm{Flux}(\mathrm{HESS}) \ (\mathrm{MeV}\ \mathrm{cm}^{-2} s^{-1})$	$\Gamma({\rm HESS})$
GC diffuse	8	12.5	508	1.5	4.4	3.3	$(2.58\pm1.39)\times10^{-5}$	2.27±0.07
Sgr A	70	770	185	1.4	3.2	15	$(6.37\pm4.18)\times10^{-6}$	2.20 ± 0.09
Sgr B2	30	2600	9	0.4	4.4	10	$(5.62\pm4.24)\times10^{-6}$	2.19 ± 0.10
Radio Arc	40	450	156	2.4	2.8	20		

SED Modeling (Radio + GeV + TeV)

- Example SED fits for regions with published TeV spectra.
- TeV emission could arise from much young electron population which does not yet show break...
- Acceleration by X-ray/radio filaments? . . .
 expect X-ray synchrotron L~1-3x10³⁸ erg /s

Modeling GeV Emission

- A model invoking GeV (and TeV) electrons could explain a wide variety of observed physical conditions: ionization rate, mol. heating rate, Fel Kα lines, radio synchrotron spectrum and γray emission (via Bremsstrahlung radiation).
- Hadronic models also viable.
- Challenges: conditions and kinematics

CO distribution in velocity and longitude

GeV emission from Sgr A*

Sgr A* as a gamma-ray source

- Sgr A* the 4x10⁶ M_{sol} black hole at Gal. Center
 - Current activity: X-ray/IR flares (L_X~10³⁵ erg/s)
 - Evidence of past activity: 6.4 keV Fe Ka lines
 X-ray light echo, ~300 yr ago: L_X ~ 10³⁹ erg/s
- Unidentified GeV/TeV source

One explanation:
CR proton source flared
~300 or 10⁴ yr ago, now
diffused into surroundings

(Chernyakova et al. 2011)

One alternative: TeV PWN + Diffuse CRs

G2 cloud: A probe of AGN accretion?

- ~3 Earth mass cloud (around star?) identified in Br-\(\bar{Y} \)
 by Gillessen et al. (2012)
 - Pericenter of ~2000 R_s in ~2014.25
 - Close enough to probe accretion flow?
 Or be tidally disrupted and accreted?

What could Fermi say about G2 passage?

- G2 has led to largest coordinated MW obs of Sgr A*
- We attempted "cauldron free" estimates of activity SR Gal. Center white paper: confluence.slac.stanford.edu/x/Zb__C

"Sgr A* Storm"

- Estimates for current Bondi accretion rate M_B~10⁻⁶ M_{sol}/yr
- Estimates range for G2:
 M_{G2}~10⁻⁸-10⁻⁵ M_{sol}/yr
- Consider Y-ray production in:
 - hot accretion flow
 - relativistic outflow (jet)
- Cannot exceed GeV source

What could Fermi say about G2 passage?

- Detection of hot accretion flow (RIAF) very unlikely
- Detection of relativistic outflow is possible

Required for Fermi-LAT

- Jet forms (or exists)
- ≥10% current Sgr A* flux
- Accretion rate ≥10-6 (~M_B) is sustained for ~week-month

$$F_{\gamma} = F_{\gamma}(\dot{M}, \Gamma, \theta, p, \epsilon_{\gamma}).$$

$$F_{\gamma} = f F_{
m obs} rac{P_{
m jet}(\dot{M}_{
m Bondi} + \dot{M}_{
m G2})}{P_{
m jet}(\dot{M}_{
m Bondi})}.$$

Plausible scenarios for Fermi-LAT

Detection depends on:

- Accretion rate induced by infall
- Timescale of infall (variability)
- Fraction of current LAT flux due to steady-state accretion onto Sgr A*

False Alarm: SGR J1745-29

- 25 Apr 2013: Swift monitoring observed 10-fold increase in Sgr A* flux => brightest flare ever? No.
- A new magnetar, confirmed by NuStar

 Search for variability continues... expected ~ few months to 2 yr after G2 has been tidally disrupted.

Dark Matter Signatures

Dark Matter from the Galactic Center

 The brightest astrophysical source of dark matter should be at the Galactic center.

A 130 GeV dark matter line

Weniger (2012)

Tantalizing signal, that faded with time.

A GeV Excess?

Uncovering a gamma-ray excess at the galactic center

Unprocessed map of 1.0 to 3.16 GeV gamma rays

Known sources removed

Conclusions

 The GC is a complex region requiring detailed study, though some interesting initial conclusions have been drawn from GeV studies.

- GeV studies are particularly limited by resolution and an incomplete knowledge of Galactic diffuse foreground/background.
- The definitive study of GeV emission from the Galactic center has yet to be carried out with Fermi.