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S Outline

Optimizing the LAT for Science

Instrument Response Functions (IRFs)

Review of LAT Performance and IRF Parameterizations

Validating and Calibrating the LAT IRFs

For more detail on the topics presented here see the LAT
Performance Paper: Ackermann et al. 2012, 2012ApJS..203....4A
[arXiv:1206.1896]



OPTIMIZING THE LAT FOR SCIENCE
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Wide Variety of Analysis Subjects
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Catalogs, Population Studies and
Contribution Estimation

No real “standard”
analysis, lots of
particular cases.
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Different data selections for different science cases.




Particle Rate Reduction and Event Selections

Event Rates over 1 Day
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Factor of > 10°in bkg. reduction is achieved in several stages.

About 50% y-ray efficiency inside fiducial volume from 1-100 GeV.




INSTRUMENT RESPONSE
FUNCTIONS
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Gamma-ray

/ Space Telescope
Measured Energy & Direction
/ Effective Area Energy Dispersion
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Expected Count Rate
Source Flux
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Instrument Response

Instrument Response Functions (IRFs) provide a translation between the true
flux of gamma-rays on the sky and measured distribution of energy and

direction in the LAT data.
We parameterize our IRFs as a function of gamma-ray energy and its arrival

direction in the LAT coordinate system.
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Effective area combines the
geometric cross section of the
LAT with the average detection

efficiency A «—
A" ‘geom

—
If the LAT was 100% efficient at
detecting gamma-rays this 0 R D ¢v
would be equal to the projected -—
geometric area of the LAT
(Ageom) v E

—
Product of effective area and Ay = Ageom x Efficiency

flux tells you the number of
gamma rays you expect to
detect per unit time Ry = Aetr X 0
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Gamma-ray

/ Space Telescope

 Whereas the effective area is a scalar the PSF and Energy
dispersion are both probability distribution functions (PDFs)

— PSF: Probability to measure an event with direction v’ given a
true direction v

— EDISP: Probability to measure an event with energy E’ given a
true energy E

« We generate the expectations for the measured distribution in E

and v by performing a convolution of the true source model with
each of these PDFs

« Note that the reverse process of deriving the true distribution from
the measured one (i.e. deconvolution) can be nontrivial
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Effects of LAT Pointing
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Crab: DEC = +22°, f = -1°

Each point in the sky
traces a complicated
path in the LAT frame
which depends on
declination and ecliptic
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The LAT response depends primarily
on the angle w.r.t. the boresight (0)
“Observing profile”: observing time as
a function of 6

The “effective” instrument response at
a point on the celestial sky is

computed by weighting the response
at each incidence angle by its livetime.
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 LAT response functions are derived from a detailed MC simulation
of the full LAT detector
— GEANT4 is used to model the propagation of particles in the
detector volume — this requires a detailed mass model for all
detector components (geometry, material composition, etc.)

— After simulation of particle interaction we simulate the LAT
trigger, filter, and data acquisition

— Reconstruction and Event analysis are then applied to the
simulated data in the same way as flight data

* |n practice we produce simulations of an isotropic gamma-ray
source in instrument coordinates that spans all energies

« Simulated gamma-rays are then binned in energy and incidence
angle and we fit/evaluate the response in each bin
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Gr"m

amma-ray
/ Space Telescope

ghost signals
(taken from periodic .
trigger) i

|| 1 x Z "

. _&}ﬂ .| simulated y ray

The LAT response also depends on pileup effects — ghost signals
which are left by out of time events

We model ghost signals in our simulations by injecting overlay events
into the MC

We take overlay events from a library of periodic triggers which sample
the quiescent state of the detector



LAT IRF MODELS AND
PERFORMANCE
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/S Tocion
. T Total resndual CRs 5
* In order to meet the requirements of | SOURCEanary CR protons |
different science analyses we provide 3 : L A g

event classes with different levels of

background contamination %10‘1
— TRANSIENT: short timescale =
analysis (< 200 s) 210_2

— SOURCE: point-source analysis and
diffuse-source analysis at low latitude

— CLEAN/ULTRACLEAN: diffuse- 107 il
source analysis at high latitudes Reconstructed energy [MeV]
. Fg Total reSIduaI CRs i
« Each event class has its own set of w1k CLEAN® - Primary G piotons |
response functions (effective area, PSF, 3 Rl i AC R g

and energy dispersion) — these are found
in the CALDB of the ScienceTools
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E x Count rate

* In general the event class influences the
PSF and EDISP response as well as the
effective area
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Classlﬂcatlgn tree out

Energy dependent cut rejects 5% of
event at all energies.

Classification tree output

Tuning Cuts for Background Reduction
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Cut rejects larger fraction of events.

P7SOURCE, P7CLEAN and P7ULTRACLEAN were developed w/ flight data
Too much background to use this method for P7TRANSIENT.
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Effective Area for
Front Events
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Angle at low energies and

(a) Front  |arge off-axis angles
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On-axis A4 [m?]

A vs E at 6=0 deg
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15 V. Deadtime . Slope of (left plot) v. Energy
5 1.4f E T s E
H—E 1 35_ Mean fdead _E - ao -1.372 E
E RN a, -0.7523 -
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¢ dependence map @ 10GeV

A is affected by ghost signals °
and correlates with trigger rate
and “deadtime fraction”.

“Overlay” periodic triggers from
flight data on MC events to
estimate scale of effect as a
function of energy.
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We parameterize the LAT PSF as a
double King function

We use a King function instead of a
gaussian to model the tails of the
PSF —the King function reduces to a
Gaussian in the limit that y goes to
infinity

In order to remove the large
variation of the PSF with energy we
fit the IRFs in a dimensionless
parameter (scaled angular
deviation)

We store the representation of the
PSF as FITS tables with dimension
of energy and inclination angle for
the King function parameters (o,y)

LAT Point-Spread Function

King Function

1 1 T2
=(1-3) (o

K(z,0,7v) =

)

PSF estimate

P( ) fcore (J Ucore(E)~ Ycore ( E) )
+ ( — fcore)I\. (?F~0pta‘il(E)~A."ta‘il(E))
. MC PSF Dlstrlbutlon (E 5 GeV)
E ! E:|
F “t e 101989 3
1 [Peecoenenascomtnm. 0.08639
107 . Gere 0.5399 3
C Owil - 1.063 1
1072 E Ycore 2.651 =
- tail 2.932 3
10°F E
L[ Fitof PSF (on axis, 5GeV) to ]
107E" Double King function E
10° ?;
10° i " :

10* 1 0
Scaled angular deviation
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 LAT PSF approximately scales
as the sum of two terms
combined in quadrature

Multiple Scattering

Opsp X \/ :(91\-"18 E_'B)Q]JF 07 p

Instrument Pitch

« At low energies multiple
scattering dominates and the
PSF improves as ~E08

« At high energies the SSD pitch
dominates and the PSF is
approximately constant with
energy

« Due to larger thickness of
conversion foils the Back PSF is
~2x larger than the Front PSF

P7REP_SOURCE_V15 PSF at normal incidence
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/ Space Telescope

L

LAT PSF is generally better
on-axis but variation with
incidence angle is much
smaller than with energy

At high energies > 10 GeV the
tails of the PSF are
substantially larger due to CAL
backsplash effect — this will be
partially mitigated in Pass8
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95% to 68% containment ratio
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We use a piece-wise function to to fit
independently the low and high
energy part of the energy dispersion

LAT energy dispersion is highly non-
gaussian and asymmetric with a low
energy tail that is generally larger
than the high energy one

Fitting is performed in a
dimensionless variable (scaled
deviation) which removes the first
order dependence on energy and
inclination angle

As for the PSF we store the energy
dispersion representation using FITS
tables of the function parameters
versus energy and inclination

Energy dispersion estimate

Energy Dispersion

|

X — X0
R(x, xp,0,y) = Nexp (-5

)
if (x —x9) < —X
if (x —xp) € [—x, 0]

if (x — xp) € [0, x]
if (x —xo) > Xx.

(o

NLR(x, x0,0L, Y1)
D(x) = NiR(x, xo, 01, Y1)
B NFR(-X’X()’O—}” )’r)

NgrR(x, x9, OR, YR)

L L L
N  0.07687

. o, 0.7168
10 S, 05806
Xo  -0.1037

107 o, 0.08331

0.05593

Scaled deviation



Behavior of energy dispersion
over LAT phase space is quite
different than for the PSF

Variation with energy is much
smaller and not monotonically
improving with energy

At high energies the energy
dispersion actually improves off-
axis due to larger path length
through the CAL

On-axis energy resolution

cos(6)

Energy Dispersion

0.3rrrm - A .
r (a) -+- P7SOURCE_V6 Front ]
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VALIDATING AND
CALIBRATING THE IRFs



Vel
@, ermi Flight Data Calibration Samples

Gamma-ay

Spﬁtt’ Tt"P‘-fOPf‘ - 1
3 18051'Q3'|'---|----|--------|---'|'---|----|'---|'---_ o~ 4GX40-3-|---|---|---|'--|---|---|---_ ° o T e o T ]
& 160 # Signal ; N %signa 1 3 4 signal
Q F — Background 3 2 35 i — Background J > — Background
q 140f E 2 30f 4 5wk —limb-=
. Vela ED I AGN sample 7 5 Limbs
g 8o -
60 = i 10°F
20; — ;
061 02 03 04 05 06 07 08 08 1 e e 1077108 108 110 111 112 113 114" 115 il6 117
Pulse phase o3 6,[°]
5 45§'193'|"'|"'["'|"'"'"'l"'l"'l"'
Shown for PFTTRANSIENT event class A B ‘
% 35F
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Vela pulsar (2 years) Phase-gated 200 |
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Very clean bkg. subtraction but cuts off around 3 GeV i |
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Need small PSF for bkg. subtraction § B St — e
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Useful for optimizing selections, but not precise 10° 10° 10* 10°

Energy [MeV]



2~

S5, cr”m,i

Gar“ma ray

/' Space Telescoy

DE

To validate the PSF we use the Vela

at low energies (< 10 GeV) and a
sample of high latitude AGN at high
energies (> 10 GeV)

Since these sources have well-
measured positions at other
wavelengths we can measure the
‘true’ direction error of each gamma
ray

At each energy we construct the
cumulative distribution of the
gamma-ray excess and find the
radius containing X % of the
distribution

Counts / 0.0125 period

Counts / 0.2 ©2
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Validation and Calibration of the PSF
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@, ermi Validation and Calibration of the PSF
GJY"Y‘H ra'
/' Space Telescope

% 10 :_ PSF 68% containment (front) _: 03 10 : PSF 68% containment (back) _:
I = o 1 o 3 o 3
@ - \\\]\\NP‘ 1 & - \\\]\\\*P‘ .
g REV 1&g F RE- -
2 1k —=Vela(P7 data) ~ & 1= Vela(P7data) —
c E —e— AGN (P7 data) 3 E E e AGN (P7 data) 3
G " —a— Vela (P7REP data) 1 G " —a— Vela (P7REP data) =
= ~ —e— AGN (P7REP data) 1 ~ —e— AGN (P7REP data) N

o — PSF P7CLEAN_V6 o) — PSF P7CLEAN_V6
O 10" &= — PSF-P7REP_CLEAN. V10 O 10" - — PSF-P7REP..CLEAN.V10 =
E —— PSF P7CLEAN_V6NMG E —— PSF P7CLEAN_V6NMG 3

(%) - - ] © - -
s 1 4 = 1F ==
> 3 C ]
S 05 e oS o5 =
-0.5 - - : -0.5E - - - :
10? 10° 10* 10° 10? 10° 10* 10°

Energy [MeV] Energy [MeV]

One of the largest discrepancies seen in the IRFs after launch was in
the high energy PSF which was systematically broader than predicted
by the MC above ~1 GeV — this necessitated the creation of an in-flight
PSF which was fit to our PSF calibration samples (Vela and AGN)

The P7REP data release was generated with updated CAL calibrations
that improved the PSF relative to the P7 release and eliminated most of
this discrepancy

We developed a new in-flight PSF model for P7REP to fit the remaining
residuals above ~10 GeV

29
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« A useful way to check the

consistency of our effective area

model is to look at cut efficiency on

a pure gamma-ray sample TRANSIENT to SOURCE Efficiency
+ Cut efficiency analysis P

— Evaluate the ratio vs. energy
(N4ata) Of €vents passing two
selections where one selection

T I_L{:)_I

0.8"

Fraction of Events

0.61

—e— SOURCE Prefilters (1)

s a subset of the other (e.g. ~ *F T e
SOURCE and TRANSIENT)  SOURGEREA .
— Evaluate the same ratio from O
MC (r]MC) Energy [MeV]

— If the MC is consistent with
data then R=ng,../Nyc Should
be equal to 1
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« We generally find very a good

agreement in the efficiency ratio for

most selections (< 2-3% residuals
over the whole LAT energy range)

« Largest discrepancy observed in
the fraction of front-converting
events

« We attempt to correct for this
discrepancy in the P7/REP IRFs by
applying a symmetric correction on
the Front/Back ratio

« We use the magnitude of the front/
back discrepancy versus energy to
set the width of the systematic
error envelope

r 12gm
1.15F

1.05F

= 4t +++ i?t $¥:Tr

—

0.95k

0.85F

0.8_||||

1.1F
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Validation and Calibration of Effective Area

Ratio of Front-converting Event

Fraction to MC Expectatlon

R
Front convertlng

—e—\ela
—— AGN sample

—— Earth Limb
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10° 10°

10* 10°
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@, ermi Assessing Systematic Errors in Analysis

 We define a conservative systematic
error by drawing a symmetric
envelope that encompasses the
largest residual we observe in the
effective area validation at each
energy

« There are many ways to use this
envelope to test the impact of
systematics on your analysis — see

Uncertainty on Aeff

Systematic uncertainty on Ae

e.g. discussion of bracketing IRFs in R o S
the Performance Paper Energy [MeV]
* Note that instrumental systematics s 12p : ] : :

are only one component of the total @ 1150 - ex lased Sut E
systematic error — astrophysical k=T S IndexBiasedHard E
uncertainties in modeling the sky S E
can be as large or larger than £ 5 ]
instrumental systematics 0955_ 3
— Unmodeled point sources b e E
— Errors in the isotropic and 0,856 E
galactic diffuse templates N R IR R |

10? 10° 10* 10°
Energy [MeV]
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LAT data is used to study a many topics in the y-ray sky
— Flexibility is need to account for many types of analysis
— Huge amount of instrumental phase space to calibrate

Validation studies with gamma-ray calibration samples verify that
the IRFs provide a good description of the instrument

— Residuals in effective area and PSF models are generally at the
level of 2-3%

— We conservatively assess the systematic error on effective area
at 5-10% between 100 MeV and 300 GeV

Current analysis and IRFs provide tremendous potential

Work is ongoing to expand energy range, improve performance,
and reduce systematic errors (Pass8)



