Blazar 3C 454.3's Record Flare

November 3, 2009

Fermi Blazar and AGN Science Fermi Summer Science School

Lewes, Delaware 28 May 2014

> Dr. Charles D. Dermer Naval Research Lab, Code 7653 Washington, DC 20375 USA 202-767-2965 charles.dermer@nrl.navy.mil

Outline

"...curious straight ray...apparently connected with the nucleus by a thin line of matter." H. E. Curtis, 1918

The Radio Galaxy/Blazar Paradigm
 Problems with the Blazar Paradigm
 Steps forward with Fermi

M87 discovered and cataloged by Charles Messier on March 18, 1781 (233 yrs ago)

Distance; 16.4 Mpc Black hole mass: 6.6(±0.4) x10⁹ Solar masses

Blazars: Supermassive Black Holes with Relativistic Jets Pointed at Us

Radio Galaxies, Blazars, and Unification

Classifying Fermi AGNs

6

Blazar Spectral Energy Distributions

FSRQs: cutoffs at GeV with VHE episodes

Spectral Energy Distribution and Spectral Index Distribution

γ -Ray Spectral Index vs. γ -Ray Galaxy Luminosity

Fermi blazar divide (Ghisellini et al. 2009)

Misaligned AGNs (host galaxies of blazars)

Star forming galaxies

Spectral Index vs. Peak Synchrotron Frequency

> 100 MeV γ -ray photon index vs. peak synchrotron frequency

Standard AGN/Blazar Paradigm

AGN: active galactic nucleus

Accretion Disk

- Molecular Torus
- Shakura-Sunyaev Disk
- Magneto Rotational Instability
- Modified Accretion Disks
- Hot Pair Plasma (T<10⁹ K)
- Fe Lines
- Broad Line Region/ Narrow Line Region

Nonthermal particle acceleration not evident in radio-quiet AGNs

Jets

- Formation and Collimation
- Relativistic Outflows
 - Compton catastrophe Apparent superluminal motion γγ opacity arguments
- Particle Acceleration Sites
 - Within BLR Pc scale Knots and hot spots Lobes

Urry & Padovani (1995)

Compactness

superluminal motion in 3C 120

Puzzle: how to get γ rays out of compact region? $\gamma\gamma$ opacity $\gamma + \gamma_1 \rightarrow e^+ + e^-$ Threshold: $\mathcal{E}\mathcal{E}_1 \equiv (\frac{hv}{m_a c^2})(\frac{hv_1}{m_a c^2}) > 2$ $n_{\gamma} \approx \frac{L_{\gamma}}{4\pi R^2 c E_{\gamma}}$ $\tau_{\gamma\gamma} \approx \sigma_{\gamma\gamma} n_{\gamma} R, \ \sigma_{\gamma\gamma} \approx \sigma_T$ Compactness parameter: $\ell \approx \frac{L_{\gamma}\sigma_T}{4\pi Rm_{\circ}c^3\varepsilon}$ $\ell \approx \tau_{\gamma\gamma} \approx \frac{\sigma_T L_{\gamma}}{4\pi m_e c^4 \Delta t_{\text{vor}}} \approx 10^3 \frac{L_{\gamma} / (10^{48} \text{ erg / s})}{\Delta t_{\text{vor}} (d)}$

Solution: Relativistic Bulk Motion

Emission size ~ Γ^2 larger than values inferred for stationary region

Relativistic Bulk Motion in Blazars

What is Γ , and why is it important?

After redshift z, Γ is the most important property to make the extreme behavior of blazars comprehensible

Doppler factor $\delta_D = [\Gamma(1 - \beta \cos \theta)]^{-1}$

$$L \approx \delta_{D}^{4} L' \approx 4\pi c R'^{2} \delta_{D}^{4} u'; \varepsilon \approx \Gamma \varepsilon'$$
$$R' \approx \delta_{D} c t_{\text{var}} \Longrightarrow L \sim c^{3} \delta_{D}^{6} t_{\text{var}}^{2} u'$$

$$u_{\gamma}' \propto \frac{L_{\gamma}'}{{R'}^2} \propto \frac{L_{\gamma}}{\delta_D^6}$$

To be optically thin to $\gamma\gamma$ absorption, $\Gamma > 10$ in Blazars

Particle Acceleration and Radiation in Leptonic Blazar Models

$$\frac{\partial n(\gamma;t)}{\partial t} + \frac{\partial}{\partial \gamma} [\dot{\gamma} n(\gamma;t)] + \frac{n(\gamma;t)}{t_{esc}(\gamma,t)} = \dot{n}(\gamma;t) \quad \mathbf{1.}$$

The synchrotron flux is then given by

$$f_{\epsilon}^{\text{syn}} = \frac{\delta_{\text{D}}^{4} \epsilon' J_{\text{syn}}'(\epsilon')}{4\pi d_{L}^{2}} = \frac{\sqrt{3}\delta_{\text{D}}^{4} \epsilon' e^{3}B}{4\pi h d_{L}^{2}} \int_{1}^{\infty} d\gamma' N_{e}'(\gamma') R(x).$$

$$\begin{split} f_{\epsilon_s}^{\rm SSC} &= \left(\frac{3}{2}\right)^3 \frac{d_L^2 \epsilon_s'^2}{R_b'^2 c \delta_{\rm D}^4 U_B} \int_0^\infty d\epsilon' \frac{f_{\tilde{\epsilon}}^{\rm syn}}{\epsilon'^3} \\ &\times \int_{\gamma_{\rm min}'}^{\gamma_{\rm max}'} d\gamma' \frac{F_{\rm C}(q,\Gamma_e) f_{\hat{\epsilon}}^{\rm syn}}{\gamma'^5}, \end{split}$$

$$f_{\varepsilon} = v F_{v}$$

- Inject power laws and cool
- 2. Separate acceleration and radiation zones
- 3. Single zone; exclude radio
 - Power law injection
- 5. Nonlinear losses
- 6. Adiabatic expansion
- 7. Light travel time effects
- 8. Cascading/ $\gamma\gamma$ pair production

Charles D. Dermer and Govind Menon

HIGH ENERGY

RADIATION FROM BLACK HOLES

> Gamma Rays Cosmic Rays

and Neutrinos

- 9. Multizone/spine-sheath
- 10. Anisotropic effects
- 11. Reverberation/echo

4.

Boettcher & Chiang (2002) Finke et al. (2008) Dermer & Menon (2009)

FSRQs: synchrotron/SSC + EC **Spectrum and Jet Physics** ۲ ເຂ 3C 454.3 BL Lacs: synchrotron/SSC model fits 3C 454.3 ٠ z=0.859 -9Abdo et al. 2011a Log νF_{ν} [erg s⁻¹ cm⁻²] 2005 flare 10^{-9} ביותר המתריד המנייר ביותר ב -10 10^{-10} EGRET vFv [erg cm⁻² s⁻¹] low 10^{-11} -11SAX 10^{-12} Bonnoli et al. 2009 -12 10^{-13} 10 15 20 25 Log ν [Hz] 10^{-14} 3C279 10^{10} 10^{12} 10^{14} 10^{16} 10^{18} 10^{20} 10^{22} 10^{24} 10^{26} 10^{28} MAGIC ▲ P1 (June 1991 flare) ν[Hz] 10¹⁴ • P2 (Dec. 92/Jan. 93) Abdo et al. 2011b • June 2003 10^{-8} **v** Jan. 15, 2006 original fit Feb. 23, 2006 $p_1 = 2.0 \gamma_{min} = 4e2$ 10¹³ 10-9 $p_1 = 2.4 \gamma_{min} = 1.6e3$ vF_v [Jy Hz] r^{-1} H^{-10} H^{-1 10¹² 10⁻¹³ 10¹ Böttcher et al. 2009 10^{-1} 10²⁹ 10^{14} 10²³ ⁷ 10²⁰ ν [Hz] 10^{26} 10¹¹ 10^{17} 10 10¹³ 10^{15} 10^{17} 10^{19} 10^{21} 10^{23} 10^{25} 10⁹ 10¹¹ ν [Hz]

49

46

Log vL_v [erg s⁻¹]

Blazar Spectral Modeling

- Standard Approach
 - synchrotron/SSC + external Compton
 - Inject power laws + cooling

Equipartition Approach

- Log-parabola electron distribution
- Equipartition between magnetic field and nonthermal electrons

GeV spectral breaks in FSRQs, LSP/ISP blazars

Figure 10. γ -ray SEDs of three bright blazars calculated in five energy bands, compared with the power law fitted over the whole energy range. Left: 3C 454.3 (FSRQ). Middle: AO 0235+164 (IBL). Right: Mkn 501 (HBL).

Spectral Fits to 3C 454.3

□ Epoch A: August 2008 low state (Abdo et al. 2009)

Epoch B: November 2010 high state (Abdo et al. 2011; Wehrle et al. 2012)

	Input								Output						
Epoch ^a	L_{48}	t_4	ν_{14}	ζe	ζ_s	$\zeta_{Ly\alpha}$	ζ_{IR}	Ь	δ	В	R	γ'_p	$N'_e(\gamma'_p)$	$u_{Ly\alpha}$	L^b_{jet}
										G	10 ¹⁶ cm		cm^{-3}	$10^{-4} \text{ erg cm}^{-3}$	$10^{45} \text{ erg s}^{-1}$
A	0.8	10	0.03	0.6	0.07	1.2	0.96	1.0	22.9	0.76	6.86	204	0.15	1.57	10.1
B	2.4	3.5	0.03	3.5	0.12	10.5	8.4	1.0	39.3	0.56	4.13	180	0.56	2.56	25.1

Cerruti, Dermer, Lott, Boisson, Zech 2012

Predicts no VHE emission: made by separate (hadronic?) process

Extragalactic Background Light (EBL)

Infrared/optical EBL from past stellar activity and dust absorption and re-radiation (attenuates TeV radiation)

Difficult to directly measure

Provides a source of $\gamma\gamma$ opacity in intergalactic space through the process

$$\gamma + \gamma' \rightarrow e^+ + e^-$$

Gould & Schrder 1966 Stecker, de Jager, Salamon 1992

Fermi spectrum extrapolated into TeV range bounded by deabsorbed TeV spectrum– constrains EBL model

Blazars and the Extragalactic Background Light

Ajello/Fermi Collaboration 2012

Problems in Blazar Studies

- 1) Short variability times of luminous BL Lac objects
- 2) Unusual weakly variable BL Lac class
- Distinct spectral components revealed by deabsorption of blazar VHE spectra
- 4) Flattening at moderate redshift in the Stecker-Scully relation showing the GeV TeV spectral index difference versus redshift
- 5) Conflicting results for the location of the γ -ray emission site in blazars
- 6) VHE (> 100 GeV) emission from distant FSRQs γ rays formed by $\gamma\gamma \rightarrow e^+e^$ with photons of ambient radiation fields
- 7) The Synchrotron Puzzle

TeV BL Lac Objects

24

TeV BL Lac Objects

- □ Weakly variable class
 - Weak Fermi LAT fluxes

1ES 0229+200z = 0.141ES 0347-121z = 0.1861ES 1101-232z = 0.141ES 0548-322z = 0.069RGB J0152+0.17z = 0.08

Tavecchio et al. 2011

V/C

Compton-scattered CMBR from extended jet/lobe Böttcher et al. 2008

Stecker-Scully Relation and High-Redshift VHE Blazars

 GeV-TeV Spectral index difference ΔΓ
 Stecker & Scully (2006, 2010)

(cf. Sanchez et al. 2013)

Deabsorbed Blazar Spectra: Evidence for

Location of γ-Ray Emission Region

- 1. Radio- γ correlations
- 2. Optical polarization angle swings: 3C 279, PKS 1510-089, OJ 287
- 3. Rapid variability, large luminosity implies inner jet origin of γ rays

$$R < c\Gamma^2 \Delta t_{\text{var}} \approx 0.05 (\Gamma/100)^2 (\Delta t_{\text{var}}/10 \text{ min}) \ pc$$
$$R > R_{\gamma\gamma} \Longrightarrow R >> R_{BLR} \approx 0.1 \ pc \qquad \text{4C + 21.35}$$

The Synchrotron Puzzle

In Fermi acceleration scenarios, acceleration timescale > Larmor timescale Equating synchrotron energy loss time scale with Larmor timescale implies maximum synchrotron energy ~ 100Γ MeV (de Jager & Harding 1992)

Many orders of magnitude greater than peak or maximum synchrotron frequency of blazars!

Steps Forward with Fermi

- 1) Acceleration Physics
- 2) Hadronic Component: UHECRs
- 3) New Physics--Axions

Acceleration Physics

First-Order Fermi Acceleration

$$t_{I}\approx ft_{L}\propto f\gamma$$

Second-order Fermi Acceleration

 $t_{II} \propto \zeta \beta_A^2 \gamma^{2-q}$

Makes curved particle distribution

$$\gamma'^2 N'_e(\gamma'^2) = K(\frac{\gamma'}{\gamma'_{pk}})^{-b\log(\gamma'/\gamma'_{pk})}$$

Turbulent particle acceleration scenario (Lazarian et al.)

Magnetic Reconnection

Giannios, Narayan & Piran 2012

Jets within Jets

Marscher

Gamma-ray and Cosmic-ray Induced TeV emissions from Jetted Sources

UHECR protons with energies $\sim 10^{19}$ eV make $\sim 10^{16}$ eV e[±] that cascade in transit and Compton-scatter CMBR to TeV energies

Essey, Kalashev, Kusenko, Beacom (2010, 2011)

Limits on IGMF and Correlation Length

Lower Limits on the Intergalactic Magnetic Field

Electromagnetic Signatures of UHECRs

FIG. 1.— Spectra of VHE γ -ray-induced cascade emission for various source redshifts. We assume the total γ -ray luminosity of $L_{\gamma} = 10^{45}$ erg s⁻¹ with $\beta = 2/3$ and $E^{\max} = 100$ TeV. The low-IR EBL model of Kneiske et al. (2004) is used here.

UHECR-induced cascade in IGM

>10 GeV Sources Explained by Cascade Emission

- □ GeV-TeV sources
 - EBL effects greater on more distant blazars
- Model >10 GeV Fermi-LAT emission by cascades

$\gamma\gamma$ /Compton cascade

- Kneiske et al. (2004) EBL models
- Assume no suppression from IGMF (B_{IGMF} < 10⁻¹⁵ G)
- Intrinsic spectrum F(E_γ) ∞E_γ^{-1.76},
 5.6 GeV < E_γ < 100 TeV

UHECR-induced cascade

- Bethe-Heitler pair production
- Assume no suppression from IGMF (B_{IGMF} < 10⁻¹² G)
- UHECR proton spectrum:

$$F(E_p) \propto E_p^{-2.6} exp(-E_p/10^{19} eV)$$

KUV 00311-1938 (z = 0.61)

- Normalization imposed to fit > 10 GeV Fermi-LAT spectrum from cascade emission
- Definitive test of UHECR Hypothesis with CTA

GeV-TeV Radiation in 4C +21.35 from Hadronic Processes

$$n + \gamma \rightarrow \pi^0 \rightarrow 2\gamma \rightarrow e^{\pm} + B \rightarrow \gamma'$$

Make synchrotron γ -rays

Detailed GeV and VHE studies with Fermi/CTA

Neutrino Production in FSRQs

 Evidence for High-Energy Extraterrestrial Neutrinos at the IceCube Detector Science, 342, Nov. 22, 2013

- Broad-line region (Ly α) radiation
- Threshold $\gamma_p \epsilon_0 > \sim 400$, so most neutrinos are made with energy $E_v \sim 0.05 m_p c^2 \gamma_p > \sim 0.05 x$ $10^9 \text{ eV} \approx 400 / \epsilon_0 \sim 10^{15} \text{ eV}$ for $\epsilon_0 \sim 2 \times 10^{-5}$ (Ly

Murase, Inoue, Dermer 2014

Axions

Axion: light DM particle introduced to solve the strong CP problem in QCD Photon-axion conversion in presence of a magnetic field

Oscillation of photons to axion-like particles (and vice versa) can lead to an enhancement of the received flux from a distant source. Mixing near source and in intergalactic space

Spectral features/GeV cutoffs in FSRQs (Mena & Razzaque 2013)

- Standard blazar paradigm: Supermassive black holes with jets explained by leptonic Compton-synchrotron processes in relativistic collimated plasma
- Problems with the blazar paradigm
 - Deabsorbed spectra of distant (z > 0.1) TeV blazars show unexplained hard emission component
 - $-~\Delta \Gamma = \Gamma_{\rm GeV} \Gamma_{\rm TeV}$ relation violated
 - Location of γ -ray emitting regions in blazars
 - Rapid variability in BL Lac objects
 - Existence of a weakly variable BL Lac class
 - VHE emission from FSRQs
 - Synchrotron puzzle
- **Directions forward**
 - New thinking about particle acceleration
 - UHECRs in blazar can potentially solve some of these problems
 - New physics

Fermi AGNs: All Radio-Loud

□ LAT Bright AGN Sample (LBAS); First year LAT AGN Catalog (1LAC)

3EG (EGRET): 10 >10σ |b|>10° sources 66 >5σ blazars

LBAS: subset of 0FGL/Bright Source List w/ 205 sources TS >100 (>10σ) 106 |b|>10° sources assc. w/ AGNs

1FGL TS >25 1451 sources 1043 |b|>10° sources

1LAC

TS >25 (> 4.1σ) 671 assc. w/ 709 AGN (663 hi-conf. associations) (300 BL Lacs, 296 FSRQ, 41 other AGN, 72 unknown)

2FGL TS >25

1888 sources 114 Pulsars 593 unaccounted 832 AGNs (+268 candidates) 60 SNR/PWNe 7 others

2LAC 360 FSRQs 420 BL Lacs (~60% with known z) 200 of unknown type ~20 other AGN

Coming soon: 3FGL/3LAC

2 year Fermi GeV sky

LBAS: 3 month source list: 2008 Aug 4 – Oct 30 1LAC: 1 year catalog: 2008 Aug 4 – 2009 July 4

42

Small number of radio galaxies

BL Lac and FSRQ: definition

classify an object as a BL Lac if the equivalent width (EW) of the strongest optical emission line is < 5 Å,</p>

e.g., [O II] λ 3727 and [O III] λ 5007 classification of higher-redshift sources will preferentially use lines at shorter wavelengths (e.g., Ly α λ 1216 and C IV λ 1549) than for low-redshift sources (e.g., Mg II λ 2798 and H α λ 6563).

- □ a Ca II H/K break ratio C < 0.4,
- Wavelength coverage satisfies (λ_{max} -λ_{min})/λ_{max}
 > 1.7 so that at least one strong emission line would have been detected if present
- Sources for which no optical spectrum or of insufficient quality to determine the optical classification are listed as "unknown type"

