Cosmic Ray Instrumentation & Scientific Ballooning

Scott P. Wakely University of Chicago

Goals?

In the absence of pointing, rely entirely on other measurements:

- Overall composition and how it changes with energy
 - Atomic Mass, A

**

- Or, as a proxy, the atomic charge, Z
- Particle Energy, E

Goals?

Variation in primary components Secondary to Primary Ratios

Challenges

 Above a few GeV – fluxes are quite low: need big detectors.

- But, can't do it from the ground: need to get above atmosphere.
 - Some options available at higher energy, but precision is much worse
 - Except Direct Cherenkov

Achieving BOTH is difficult

Why Ballooning?

Quick Turnaround

- Can hope to do more than 1 per career
- Often used as satellite pathfinders (e.g., GFEM in 2001)

Cost

- Standard Space Launch
 - Shuttle: >\$450M
 - Space-X Dragon: \$55M
- Entire NASA BPO Budget for FY13: ~\$35M
 - * 10-15 launches per year (domestic & foreign)

Drawbacks:

- Short exposures
- Still have a residual 0.5% of atmosphere overburden

Ballooning

Ultra-long duration balloon program (NASA/CSBF)

- Up to 40 million ft³ He-filled
- Altitudes > 40km
- Payloads up to 8000lbs
- Yearly domestic and Antarctic campaigns (sometimes others)

Why Antarctica?

 Because the Sun never sets during Antarctic summer: power & fluctuations
 Stratospheric wind pattern is circular around pole.

Measurements

To determine particle characteristics, we leverage our knowledge of how particles interact in matter and fields, and how those materials respond.

- Example Interaction Processes:
 - Ionization
 - Cherenkov Radiation
 - Transition Radiation
 - Lorentz Forces
 - Nuclear Interactions
- Often have to use more than one of these to extract single particle properties
- Also have to apply different methods for different energy regions

7 Approaches to Iron Nuclei

Particle Charge

- A common way to determine particle charge is to utilize <u>ionization</u>
 - When a charged particle enters a volume of material, its electric field can strip some electrons from atoms
 - In some materials this can be used to infer some properties of the incoming particle

Bethe Formula (ions)

 $-\frac{dE}{dX} = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \gamma^2 \beta^2 T_{max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$ [MeV/(g/cm²)]

Some points:

- ☆ ∝ Incoming particle z²
 - Can't tell sign!
- * Low-energy: $\propto 1/\beta^2$
- Minimum energy loss occurs at βγ~3 [MIPs -Minimum Ionizing Particles]
 - dE/dX ~ 2 MeV/(g/cm2) for most materials

Bethe Formula (ions)

 $-\frac{dE}{dX} = K z^2 \frac{Z}{A} \frac{1}{\beta^2} \left[\frac{1}{2} \ln \frac{2m_e c^2 \gamma^2 \beta^2 T_{max}}{I^2} - \beta^2 - \frac{\delta(\beta\gamma)}{2} \right]$ [MeV/(g/cm²)]

Some points:

- At higher energy: dE/dX
 ∝ ln (βγ)²
 - Slow "Relativistic Rise" due to enhancement of the transverse E field
 - Eventually saturates in the "plateau" region
 Varies with material
 - NB! Lost energy does not always equal deposited energy

Similar (not identical) results apply for electrons

Some materials respond to ionization energy deposits by emitting light

- Excitation of molecules to elevated energy levels, and subsequent rapid (~ns) decay with the release of photons
- For a large range of deposited energy (i.e., before saturation), the light level will vary linearly (or can be linearized) with the energy deposit
 - Hence: light level tells you Z²

 The standard scintillator used in CR detectors is thin (~cm) slabs of plastic with organic scintillator dissolved in it

- Cheap, Lightweight
- Good light response (~10,000 photons for a 1 MeV electron)
- Fast (~2 ns)
 - Requires a fast detector
 - Can employ this as an instrument trigger

Cartoon 'Paddle' Setup:

Amplitude and timing can both be used

Light-tight wrapper

Light sensor

Scintillator

Real Designs more complex

 May employ 'light guides' to better map scintillator faces to photodetectors

Photon Detection

- Need something to convert those light pulses (back) into electronic pulses for readout
 - The standard for the last >50 years has been the photomultiplier tube (PMT)
 - Basically consists of a photon-to-electron conversion device (photocathode), plus an amplification device (electron multiplier)

PMT Sensitivity

"Quantum Efficiency" (QE) describes the sensitivity

- #PEs Emitted/#Photons Incident
 - A (wavelength-dependent) property of the photocathode
 - Want to match this to the emission spectrum of your scintillator
- PMT QE has not historically been great, but improvements are now appearing

PMT Characteristics

Pros:

- Good Gain
- Fast Operation
- Relatively quiet

Cons:

- Expensive (per unit)
- Fragile (evacuated glass tubes)
- Requires High Voltage
- Sensitive to magnetic fields

- New solid-state devices (SiPM) now starting to become an option
 - Cheap
 - High resolution
 - No <u>High</u> Voltage
 - Still very noisy

Charge Spectrum

The kind of cosmic ray data you get from such a scintillator system looks like this:

* (Some massaging required to achieve this!)

Other Options

- Another solid state device which can replace the entire scintillator/PMT chain: silicon strip/silicon pixel detectors
 - Thin (300-400µm) layers of silicon material with readout
 - Direct collection of ionization electrons freed by the passage of charged particles.
 - About 3.6 fC/Z² for MIPs in a 300um layer

Silicon Charge Detectors

- Can use this to collect charge information, AND, due to small pixels/strips – tracking info
 - Optimizations needed (dynamic range, channel counts, etc) for tracking vs for charge collection

Pros:

- Good resolution
- Comes with free tracking information

Cons:

- * Expensive!
- High to very high channel count
 - CREAM: 3000 channels vs <50 channels (TCD)</p>

What Next?

- Now that you know what your particles are made of, you need to figure out their energy:
 - You have a few options:
 - * Get velocity and determine energy: $E = mc^2/\sqrt{1 v^2/c^2}$
 - Cherenkov Detector
 - Measure energy directly:
 - Calorimetry
 - Measure Lorentz Factor and determine energy: E = γmc²
 Transition Radiation Detector

Cherenkov Detectors

Photon emission from charged particles <u>exceeding</u> the local speed of light

* Photon yield varies with Z^2 and velocity (β) of the particle

$$\frac{dN}{dEdx} \approx 370 Z^2 \left[1 - \frac{1}{\beta^2 n^2}\right]$$

Cherenkov Detectors

 Cosmic ray CER detectors generally take the form of integrating volumes of radiator material read out with photomultipliers

- (In some cases) structure is similar to a scintillator system
- Typical 'radiator' materials: acrylic, aerogel, gas

Cherenkov Detectors

- Yield saturates relatively quickly after threshold (β>1/n), so multiple radiators allow to extend the energy reach
 Examples: HEAO, TIGER
- But prior to saturation a measure of β can be obtained, and hence Lorentz Factor, and thus energy

Cross Correlations

The power of multiple detectors

Cherenkov Signal vs
 Scintillator signals –
 allows you to separate
 high-Z, high-E particles
 from low-Z, low-E
 particles

Cross Correlations

The power of multiple detectors

Cherenkov Signal vs
 Scintillator signals –
 allows you to separate
 high-Z, high-E particles
 from low-Z, low-E
 particles

Low-Z, Low-E

High-Z, High-E

Ring Imaging CHerenkov

- RICH detectors improve resolution (Δv/v) and energy range by also using angular information
 - Requires an imaging detector plane
 - Used on UC-RICH/CAPRICE, AMS experiments

Calorimeters

Generally work by having the particle smash in, initiating an EM cascade, and then absorbing the energy of daughter particles in a series of subsequent detectors

 A stack of scintillators and photo-detectors (LAT), or solid state ionization detectors (CRIS), etc.

Nuclear Calorimeters

Calorimeters are trickier to use with nuclei vs electrons & photons

- Nuclear Interaction lengths tend to be much longer than radiation lengths in most materials
 - LAT, e.g., is 8.6 X_o deep, but
 only 0.43 λ_{int} deep

material	X ₀ (g/cm ²)	λ_n (g/cm ²)
H ₂	63	52.4
AI	24	106
Fe	13.8	132
РЬ	6.3	193

Nuclear Calorimeters

- This has led to the introduction of "target" or "thin" calorimeters for CR studies.
 - These basically take an EM calorimeter and stick a non-instrumented high-λ_{int} target in front to 'jumpstart' hadronic cascades and allow shorter (lighter) detectors
 Examples: ATIC, CREAM

Calorimeters

General operational mode is simple:

 Count up all the deposited energy in your active components and this is the particle energy (or a value related to the particle energy)

Pros

- Sood energy resolution
- Simple?

Cons

- Can't calibrate for all energies/particles
- * Heavy! Generally have to be small

Calorimeters

 Probably worth mentioning that air shower arrays and ground-based gammaray instruments are calorimeters – use the atmosphere as absorber

Transition Radiation

X-ray radiation from dielectric transitions

- Varies with Lorentz Factor (γ) and charge Z²
- Electron and proton at same energy have much different γ

Detectors require multiple interfaces + thin gas detectors

Important points:

- Process not destructive to the particle
- Can be calibrated at beamlines [cf calorimeters]

Simulations vs CERN Calibration

CR Detectors

Examples: TRACER & CREAM

Magnet Spectrometry

 If you really want to measure the mass of the primary particles (e.g., isotope measurements), then using Z as a proxy for A will not be sufficient

- But how to make a detector which responds to mass?
 - Magnet spectrometers achieve this by measuring multiple particle properties and inferring the mass.
 - For instance, a simultaneous measure of momentum and velocity will give you the mass: p = βγmc

$$m = p\left(\frac{\sqrt{1-\beta^2}}{\beta}\right)$$

Magnet Spectrometry

In practice, you do this by measuring how the particle bends in a magnetic field, obtaining the rigidity (R = pc/Ze)

 Use tracking detectors like silicon strips or gas detectors

Then use, e.g.,
 scintillators to tell you
 the charge, which gives
 you momentum, p

Magnet Spectrometry

 Then you can use time-offlight or Cherenkov detectors to give you β (and thus γ)

Error Formula:

$$\left(\frac{\sigma_M}{M}\right)^2 = \left(\frac{\sigma_P}{P}\right)^2 + \left(\gamma^2 \frac{\sigma_\beta}{\beta}\right)^2$$

This term severely impacts energy reach

ISOMAX

 Most successful detector for highenergy isotope measurements was ISOMAX

- Multiple charge detectors
- Multiple Cherenkov detectors
- Gas ionization tracking chambers
- * 0.8T B-field

AMS: A TeV precision, multipurpose spectrometer

Summary

 To measure particle properties over a large range of particle types and energies, multiple techniques are required

 Need to understand how particles interact with matter to do this.

Other resources:

- * Particle Data Booklet
- * The Particle Detector BriefBook
- Longair's Book(s)
- Knoll's Book

