Web Applications & Technologies
at LCLS

In this presentation

Revisiting the ideas which were proposed ~3

years ago.

e http://www.slac.stanford.edu/~gapon/TALKS/2011 Jan PPA
ComputingMeeting/AdvancedWebTechPCDS.pdf

Major applications
The deployment environment

Technologies
— the main focus on the JavaScript ecosystem

Frameworks
On-going developments, plans and trends

http://www.slac.stanford.edu/~gapon/TALKS/2011_Jan_PPA_ComputingMeeting/AdvancedWebTechPCDS.pdf
http://www.slac.stanford.edu/~gapon/TALKS/2011_Jan_PPA_ComputingMeeting/AdvancedWebTechPCDS.pdf
http://www.slac.stanford.edu/~gapon/TALKS/2011_Jan_PPA_ComputingMeeting/AdvancedWebTechPCDS.pdf

APPLICATION AREAS

Managing Experiments

Experiment Registry
— Configuring experiments at LCLS for DAQ &OFFLINE

POSIX groups @LDAP

— Managing members of experiments

— Tracking group management activities of users | new

Authorization Database
— roles and privileges
— Access to data (files) and metadata (via Web)

Experiment Switch redesigned

— Experiment activation service for DAQ & OFFLINE

Managing Data and Metadata

File Catalog (iRODS)
HPSS operations
HDF5 Translation services

Electronic LogBook redesigned

— A collection of Web-based instruments

— Web services for:
e “Grabber” Ul tool (PyQt4) @ instrument control rooms
 Command line messages/images injection tools

Run Summary Tables new

— To compete w/ Google Spreadsheets

Engineering Databases

* PCDS Inventory for Electronic Equipment

new

— 1000 items as of today
— 11 active users

* NeoCAPTAR — cable management system

new

— Project-based approach (169 projects, 1123 cables as

of today)

— Workflow support: ordering, labeling, fabrication,
deployment, maintenance, etc.

— Special labels generation/printing
— 17 active users

Hosted third-party applications

TRAC (Wiki)
SVN (via Apache)
Buildbot

— continuous code integration system
— Release builds

Systems monitoring:

— Ganglia

— M/Monit

new

new

THE DEPLOYMENT ENVIRONMENT

24/7 (reliable infrastructure)

Programs, scripts
Interactive users H_—(ym‘ I

(OFFLINE and ONLINE)
PSWWW (Web browsers) E\T
hot spare active
=" /

pswwwl | pswww2 I

Application data
Web apps releases active pswe bkdc

psdb /~_‘

active
-y
AE/\ N pswebkdcl pswebkdc2

debl € . debZ from hot spare

master

MySQL master-master replication

S S N Reliable network
storage

1/7/2011 Advanced Web Technologies in LCLS/PCDS

Security of Web apps
(i«

Programs, scripts Interactive users
(OFFLINE and ONLINE) (Web browsers) Q\T
AUTHENTICATION
| | | || || | | | || | || || || | | | | || || || |
Apache basic authentication Kerberos authentication WebAuth (single sign-on)
.htpasswd <€ Apache Kerberos
SLAC UNIX accounts
Web Applications Web Services Proxies

AUTHORIZATION

TECHNOLOGIES

The model has not
. fundamentally changed
The Big ldea sinceoon

A contemporary Web browser is a portable operating system

— It can run complex applications (JavaScript)

— The JavaScript language supports asynchronous processes (via timers)

— Applications communicate with Web services to load/save data

— JavaScript renders data to a browser’s window by modifying DOM (Document Object Model)

A computer on which a browser is run has plenty of resources to do more
than just displaying a static HTML pages or images!

— WebGL (~=OpenGL)
— WebCL (~=OpenCL)

Implementation:
— The markup is formed within the browser (NO HTML whatsoever generation on the server side)
— Use Web server as a data source and a service provider
— Single page (yet very complex) Web applications
Benefits:
— (Much) faster and more dynamic user interfaces
— Separate data from presentation (towards the MVC paradigm)
— Less data to transfer between the browser and the Web server

Use of the language has
dramatically expanded

Why JavaScript ez

Billions of devices run JavaScript applications:
— All Web browsers (desktops, tablets, smartphones)
— Qt4, Adobe Acrobat, CAD tools, etc.

— Web servers and distributed systems (Node.js) new

Naturally complemented by JSON (BJSON):
— THE data format for many NoSQL databases (MongoDB, CoachDB, etc.)
— Web browser/ server communication
— (much less) verbose compared with XML

Abundance of very fast interpretation engines: new
— Rhino, SpiderMonkey (Mozilla), V8 (Google), JavaScriptOne (Apple), Chakra (Microsoft), etc.

The language itself:
— Easytolearn
— Yet powerful enough to support multiple programming paradigms:
* Dynamic programming
* Functional programming
* Modular
* OOP

An explosive growth of really useful libraries new

3" party JavaScript libraries in use

Jquery + plugins

Jquery Ul + plugins
UnderscorelS

— for functional programming

RequirelS
— for modular programming

— Provides a convenient mechanism for dynamic
loading of modules

PHP

PHP 5.3
— Classes, interfaces, namespaces, functional programing
— A huge collection of libraries for “everything”
— Low threshold to learn and use
Used primarily to implement Web services:
— The middleware for accessing databases, LDAP, etc.
— Object/Relational Mapping (mostly into JSON)
— Implementing “Business” logic
— Enforcing authorization
50k+ lines of code has been written (@LCLS)

Issues/limitations:
— Performance (not as fast as Java)
— (potentially) Scalability (haven’t tried the load balancing yet?)

Python

Pylons (via Apache FCGI)

The framework for developing Web services
Provides routing for Web services URIs
Limited use @LCLS

Memory hungry

So-so performance

Questionable support status

FRAMEWORKS

What makes the development to scale

(Usually) The third Web application developed
in a row triggers a search for a reasonable
framework

* Two types of frameworks needed (in line with
the “Big Idea”):
— For JavaScript applications
— For Web services

* Each addresses specific aspects of their domain

Frontend Framework (JavaScript)

Developed in-house:
— Inspired by existing frameworks: Yahoo Ul 2.* and ExtJS
— Both were evaluated, neither seemed to be suitable (more discussion if needed?)

Defines a clean separation between an execution environment and application
modules

Provides managed viewports for the modules

Takes care of the tedious tasks:
— Session management
— General application layout management
— Context management and navigation (tabs, menus) between modules

Provides services to the modules:
— Simplified integration with the backend Web service
— Common error reporting
— Communication mechanism between modules
— Timer services (to implement processes and asynchronous activities within the Web browser)
— Persistent configuration for modules (via Web services)

Visual Layout

.1 Experiment Switch : Activate Experiments for DAQ oggess gapon [wocou

AMO | SR | XPP

« Station 0
¥ History

b g-Log Access - amoopr

Cxl | XCS | MEC

Session enplnes In - 23056 28

ACTIVATE ANOFHER EXPERIMENT REFRESH
[Last update on: 2014-05-22 :13:14]
Name amaod3314
I 430
First run 201405815 13:27:58 (run: 1)
Last Run 2014-05-19 20:48:32 {run: 117)
Description Hetero-site-specific ferntosecond-time-resclved dynamics

Contact person

UNIX account of the Pl
PO 51X group

Switch time

Swritch made by

Picon, Antonic
bostedt

amod3814
2014-05-14 18:40:23

bostedt

Anatomy of the application module

function MyApplModule (pl, p2, p3) {

// call the base class’s c-tor
FwkApplication.call (this) ;

// Qoverload
// the viewport is shown
this.on_activate = function () { ... };

// Qoverload
// the viewport is hidden
this.on_deactivate = function () { ... };

// Qoverload
// called on timer (1 Hz)
this.on update = function () { ... };

this.render = function () {
this.container.html (‘<p>Show this in my viewport</p>’) ;
i
}
Class.define class (MyModule , FwkApplication);

Configuring the Framework

Fwk.build ({
[name: ‘Tab 1',
menu: [{

name: ‘Appl 1.1’, application: new MyApplModule(..) }, {
name: ‘Appl 1.2’, application: new MyOtherApp () }

11,
[name: ‘Tab 2',
menu: ...

1]

Toward a library of widgets

The core idea:
— Making Web application to look & behave like the desktop ones!
— Hence, no static HTML whatsoever
— Replacing dynamically generated HTML with widgets
— Keep using CSS to style the appearance and layout of widgets and applications

Why not to use an existing library?
— It just doesn’t exist
— Jqguery Ul: too low level and not so reach, bounds itself to DOM

— ExtJS: is a great library which gave me a lot of inspiration. Sadly, it’s too business-oriented
(tabular representation of data is the main focus). | have personal issues with their styling
(BTW: “It’s About Time” is based on ExtJS).

Widgets wich has:
— Widget (the base class)
— Table, SmartTable, CheckTable
— StackOfRows
— RadioBox
— Framework itself has many widgets in its implementation

Demos to follow...

Server-side framework for Web
services (PHP)

<?php

/**
* A simple Web service locating an experiment
* by its numeric identifier and returning
* a JSON object.
*/
require once 'dataportal/dataportal.inc.php' ;

use \DataPortal\ServiceJdSON ;
ServiceJSON: :run_handler ('GET', function (SSVC) ({
$id = $SVC->required int (‘id') ;

$e = $SVC->regdb () ->find experiment by id ($id) ;
if (!Se) S$SSVC->abort ('no such experiment') ;

return array (
rid! => Se->id () ,
"name' => Se->name ()

) s

?>

The framework for PHP

Parsing and de-serializing input parameters
Serializing results into JSON
Standard error reporting mechanism

Database connectors
— Automatic transaction management

What’s missing:
— Routing for Web services URIs

ON-GOING DEVELOPMENTS, PLANS
AND TRENDS...

On-going developments

Migrating older applications to the new Framework
model and widgets

Expanding a collection of Widgets

Migrating applications to the dynamic module loading
model (RequirelS)

There are many requests to add more functionality to
the Electronic Logbook & Run Summary tables

Next steps

* Three directions within JavaScript ecosystem:

— Finalizing the Model-View-Controller (MVC)
separation

— Adding support for mobile clients

— Addressing the growing number of use cases for the
full-stack JavaScript:
* NodelS
* MongoDB or CoachDB

* More sophisticated server-side framework for
the PHP-based Web services:

— Dispatching and routing

