
Web Applications & Technologies 
 at LCLS 

Igor Gaponenko 



In this presentation 

• Revisiting the ideas which were proposed ~3 
years ago: 

• http://www.slac.stanford.edu/~gapon/TALKS/2011_Jan_PPA
_ComputingMeeting/AdvancedWebTechPCDS.pdf 

• Major applications 
• The deployment environment 
• Technologies 

– the main focus on the JavaScript ecosystem 

• Frameworks 
• On-going developments, plans and trends 

http://www.slac.stanford.edu/~gapon/TALKS/2011_Jan_PPA_ComputingMeeting/AdvancedWebTechPCDS.pdf
http://www.slac.stanford.edu/~gapon/TALKS/2011_Jan_PPA_ComputingMeeting/AdvancedWebTechPCDS.pdf
http://www.slac.stanford.edu/~gapon/TALKS/2011_Jan_PPA_ComputingMeeting/AdvancedWebTechPCDS.pdf


APPLICATION AREAS 



Managing Experiments 

• Experiment Registry 
– Configuring experiments at LCLS for DAQ &OFFLINE 

• POSIX groups @LDAP 
– Managing members of experiments 
– Tracking group management activities of users 

• Authorization Database 
– roles and privileges 
– Access to data (files) and metadata (via Web) 

• Experiment Switch 
– Experiment activation service for DAQ & OFFLINE 

new 

redesigned 



Managing Data and Metadata 

• File Catalog (iRODS) 
• HPSS operations 
• HDF5 Translation services 
• Electronic LogBook 

– A collection of Web-based instruments 
– Web services for: 

• “Grabber” UI tool (PyQt4) @ instrument control rooms 
• Command line messages/images injection tools 

• Run Summary Tables 
– To compete w/ Google Spreadsheets 

• … 
 

new 

redesigned 



Engineering Databases 

• PCDS Inventory for Electronic Equipment 
– 1000 items as of today 

– 11 active users 

• NeoCAPTAR – cable management system 
– Project-based approach (169 projects, 1123 cables as 

of today) 

– Workflow support: ordering, labeling, fabrication, 
deployment, maintenance, etc. 

– Special labels generation/printing 

– 17 active users 

 

new 

new 



Hosted third-party applications 

• TRAC (Wiki) 

• SVN (via Apache) 

• Buildbot 

– continuous code integration system 

– Release builds 

• Systems monitoring: 

– Ganglia 

– M/Monit 

new 

new 



THE DEPLOYMENT ENVIRONMENT 



24/7 (reliable infrastructure) 

1/7/2011 Advanced Web Technologies in LCLS/PCDS 9 

pswww1 pswww2 

pswww 

psdb1 psdb2 

psdb 

MySQL master-master replication 

pswebkdc1 pswebkdc2 

pswebkdc 

Interactive users 
(Web browsers) 

hot spare active 

Application data 
Web apps releases 

NFS 

MySQL backups 
from hot spare 
master 

Reliable network 
storage 

Programs, scripts 
(OFFLINE and ONLINE) 

active 

active 



Security of Web apps 

Apache 

SLAC UNIX accounts 

WebAuth (single sign-on) 

Kerberos 

Interactive users 
(Web browsers) 

Programs, scripts 
(OFFLINE and ONLINE) 

Apache basic authentication 

LDAP 

LCLS POSIX groups 

Kerberos authentication 

Web Applications Web Services Proxies 

.htpasswd 

AUTHENTICATION 

AUTHORIZATION 

MySQL 

Roles and privileges 



TECHNOLOGIES 



The Big Idea 
• A contemporary Web browser is a portable operating system 

– It can run complex applications (JavaScript) 

– The JavaScript language supports asynchronous processes (via timers) 

– Applications communicate with Web services to load/save data 

– JavaScript renders data to a browser’s window by modifying DOM (Document Object Model)  

• A computer on which a browser is run has plenty of resources to do more 
than just displaying a static HTML pages or images! 
– WebGL  (~=OpenGL) 

– WebCL  (~=OpenCL) 

• Implementation: 
– The markup is formed within the browser (NO HTML whatsoever generation on the server side) 

– Use Web server as a data source and a service provider 

– Single page (yet very complex) Web applications 

• Benefits: 
– (Much) faster and more dynamic user interfaces 

– Separate data from presentation (towards the MVC paradigm) 

– Less data to transfer between the browser and the Web server 

1/7/2011 Advanced Web Technologies in LCLS/PCDS 12 

The model has not 
fundamentally changed 
since 2011 



Why JavaScript 

• Billions of devices run JavaScript applications: 
– All Web browsers (desktops, tablets, smartphones) 
– Qt4, Adobe Acrobat, CAD tools, etc. 
– Web servers and distributed systems (Node.js) 

• Naturally complemented by JSON (BJSON): 
– THE data format for many NoSQL databases (MongoDB, CoachDB, etc.) 
– Web browser/ server communication 
– (much less) verbose compared with XML 

• Abundance of very fast interpretation engines: 
– Rhino, SpiderMonkey (Mozilla), V8 (Google), JavaScriptOne (Apple), Chakra (Microsoft), etc. 

• The language itself: 
– Easy to learn 
– Yet powerful enough to support multiple programming paradigms: 

• Dynamic programming 
• Functional programming 
• Modular 
• OOP 

• An explosive growth of really useful libraries 

Use of the language has 
dramatically expanded 
since 2011 

new 

new 

new 



3rd party JavaScript libraries in use 

• Jquery + plugins 

• Jquery UI + plugins 

• UnderscoreJS 

– for functional programming 

• RequireJS 

– for modular programming 

– Provides a convenient mechanism for  dynamic 
loading of modules 



PHP 

• PHP 5.3 
– Classes, interfaces, namespaces, functional programing 
– A huge collection of libraries for “everything” 
– Low threshold to learn and use 

• Used primarily to implement Web services: 
– The middleware for accessing databases, LDAP, etc. 
– Object/Relational Mapping (mostly into JSON) 
– Implementing “Business” logic 
– Enforcing authorization 

• 50k+ lines of code has been written (@LCLS) 
• Issues/limitations: 

– Performance (not as fast as Java) 
– (potentially) Scalability (haven’t tried the load balancing yet?) 



Python 

• Pylons (via Apache FCGI) 

• The framework for developing Web services 

• Provides routing for Web services URIs 

• Limited use @LCLS 

• Memory hungry 

• So-so performance 

• Questionable support status 



FRAMEWORKS 



What makes the development to scale 

• (Usually) The third Web application developed 
in a row triggers a search for a reasonable 
framework 
 

• Two types of frameworks needed (in line with 
the “Big Idea”): 
– For JavaScript applications 
– For Web services 

 
• Each addresses specific aspects of their domain 



Frontend Framework (JavaScript) 

• Developed in-house: 
– Inspired by existing frameworks: Yahoo UI 2.* and ExtJS 
– Both were evaluated, neither seemed to be suitable (more discussion if needed?) 

• Defines a clean separation between an execution environment and application 
modules 

• Provides managed viewports for the modules 
• Takes care of the tedious tasks: 

– Session management 
– General application layout management 
– Context management and navigation (tabs, menus) between modules 

• Provides services to the modules: 
– Simplified integration with the backend Web service 
– Common error reporting 
– Communication mechanism between modules 
– Timer services (to implement processes and asynchronous activities within the Web browser) 
– Persistent configuration for modules (via Web services) 



Visual Layout 

SESSION MANAGEMENT 
NAVIGATION AND CONTEXT SELECTION 

APPLICATION MODULE’S VIEWPORT (“SANDBOX”) 

TOOLBAR (OPTIONAL) 



Anatomy of the application module 
function MyApplModule (p1, p2, p3) { 

 

    // call the base class’s c-tor 

    FwkApplication.call(this); 

 

    // @overload 

    // the viewport is shown 

    this.on_activate = function () { ... }; 

 

    // @overload 

    // the viewport is hidden 

    this.on_deactivate = function () { ... }; 

 

    // @overload 

    // called on timer (1 Hz) 

    this.on_update = function () { ... }; 

 

    this.render = function () { 

        this.container.html( ‘<p>Show this in my viewport</p>’ ) ; 

    }; 

} 

Class.define_class (MyModule , FwkApplication); 



Configuring the Framework 
Fwk.build({ 

  [ name: ‘Tab 1’, 

      menu: [{ 

        name: ‘Appl 1.1’, application: new MyApplModule(…)},{ 

        name: ‘Appl 1.2’, application: new MyOtherApp()} 

      ]], 

  [ name: ‘Tab 2’, 

      menu: ... 

      ]] 

}); 



Toward a library of widgets 

• The core idea: 
– Making Web application to look & behave like the desktop ones! 
– Hence, no static HTML whatsoever 
– Replacing dynamically generated HTML with widgets 
– Keep using CSS to style the appearance and layout of widgets and applications 

• Why not to use an existing library? 
– It just doesn’t exist 
– Jquery UI: too low level and not so reach, bounds itself to DOM 
– ExtJS: is a great library which gave me a lot of inspiration. Sadly, it’s too business-oriented 

(tabular representation of data is the main focus). I have personal issues with their styling 
(BTW: “It’s About Time” is based on ExtJS). 

• Widgets wich has: 
– Widget (the base class) 
– Table, SmartTable, CheckTable 
– StackOfRows 
– RadioBox 
– Framework itself has many widgets in its implementation 

• Demos to follow… 



Server-side framework for Web 
services (PHP) 

<?php 

 

/** 

 * A simple Web service locating an experiment 

 * by its numeric identifier and returning 

 * a JSON object. 

 */ 

require_once 'dataportal/dataportal.inc.php' ; 

 

use \DataPortal\ServiceJSON ; 

 

ServiceJSON::run_handler ('GET', function ($SVC) { 

 

    $id = $SVC->required_int (‘id') ; 

 

    $e = $SVC->regdb()->find_experiment_by_id ($id) ; 

    if (!$e) $SVC->abort ('no such experiment') ; 

 

    return array ( 

        'id'   => $e->id() , 

        'name' => $e->name() 

    ) ; 

}) ; 

?> 



The framework for PHP 

• Parsing and de-serializing input parameters 

• Serializing results into JSON 

• Standard error reporting mechanism 

• Database connectors 
– Automatic transaction management 

 

• What’s missing: 
– Routing for Web services URIs 



ON-GOING DEVELOPMENTS, PLANS 
AND TRENDS... 
 



On-going developments 

• Migrating older applications to the new Framework 
model and widgets 

 

• Expanding a collection of Widgets 

 

• Migrating applications to the dynamic module loading 
model (RequireJS) 

 

• There are many requests to add more functionality to 
the Electronic Logbook & Run Summary tables 



Next steps 

• Three directions within JavaScript ecosystem: 
– Finalizing the Model-View-Controller (MVC) 

separation 
– Adding support for mobile clients 
– Addressing the growing number of use cases for the 

full-stack JavaScript: 
• NodeJS 
• MongoDB or CoachDB 

• More sophisticated server-side framework for 
the PHP-based Web services: 
– Dispatching and routing 


