
RCE/COB Gen3 
MiniWorkshop

Jim Panetta (panetta@slac.stanford.edu)

Software Development



2

Overview: What you should get from this talk

• Software Development Kits (SDK) are provided

• Host and target:  two different things (usually)

• Software consists of a set of shared libraries

• RCEs are distributed with software already in flash

• Updating RCE software is easy

• Development and production level code are supported



3

Software Development Kits

Software is  distributed in two forms

• Primary:  Binary files on μSD card which will boot an RCE   

• Secondary:  Software development kits

SDKs are monolithic and self contained 

• They may be placed anywhere

• As many as needed may be installed

• They are not a build system – they provide tools for building the 
software

Installed SDKs may be updated with new releases



4

Embedded System Development

Target The ultimate destination of software

Host Where software is written

SDK Software Development Kit.  Tools used to develop 
software on a host for a target

Embedded system development is different than developing 
for Linux

• Access to the target is limited

• Target working environment is limited

• Target is less powerful than host



5

Development model

• The majority of work is 
done on the host, 
compiling code which can 
run on the target

• Linking is done on the 
host against a copy of 
the target's software

• The final debugging and 
evaluation is done on the 
target

• This is the circle of code

Host/SDK

Design

Code

Compile

Link

Target/Flash

Deploy

Debug

Evaluate
N

etw
o

rk

Cross development is a split model 



6

Programming/Execution Environments

DAT provides SDKs for several computing environments:

• RTEMS on the RCE (ARM Cortex-A9)

• Host Linux

• RHEL 5/6 and Scientific Linux 5/6 (i86/32, x86/64 in dev)

• Embedded Linux

• ArchLinux (ARM Cortex-A9)

• In development:  Not currently supported



7

RTEMS SDK Contents

Items in blue are pre-loaded on the SD cards

Bootable Image

(RTEMS, C++, SD Driver, 
ShLib Support, MemMGT)

RCE Utilities

(Network Drivers, console, telnet, 
NFS, shell, DSL)

Bootstrap Items

(Bootstrap loader, FPGA image)

Host Tools

(Compiler wrappers, shared libraries, 
scripts, ATCA probes)

Configuration DB

Include Files

Example Code



8

Getting the RTEMS SDK

• Fetch core scripts via git using a tag provided by DAQ:

git clone -q --branch rtems-V0.0.0 \
  http://www.slac.stanford.edu/projects/CTK/SDK/rtems/common.git \
     <install_location>

• Install the cross compilation tools (if needed):

sudo <install_location>/tools/install-devtools.sh

• Finalize the install by fetching libraries, includes and 
compiling the template code:

<install_location>/tools/install-sdk.sh

• Last step is to add the DAT environment to yours:

source <install_location>/tools/envs.{csh,sh}



9

Micro-SD Flash Filesystem

• Six Partitions on 32 GB uSD card

• BOOT – Bootstrap, FPGA bit file (invis on RTEMS)

• SCRATCH – User writable partition (r/w)
(largest partition ~ 16 GB)

• RTEMSAPP – Application and configuration files (r/w)

• RTEMS – DAT RTEMS installation (r/o)

• ArchLinux – System files for ARM Linux (invis on RTEMS)

• LinuxKernel – Linux kernel files (invis on RTEMS)



RTEMS



11

RTEMS Real Time Kernel

Think of RTEMS as analogous to to the Linux Kernel

• Hard Real-Time:  Fully deterministic

• POSIX 1003.b API (incl. pthreads)

• Multithreading, Interrupts, Semaphores, IPC, etc.

• Networking stack (TCP, UDP, DHCP, NTP)

• File Systems (DOSFS, TFTP, NFS)

• Utilities:  telnet, simple shell

• Floating point & SMP (in development)

Documentation:

• http://rtems.org/onlinedocs/doc-current/share/rtems/html/



12

RTEMS – DAT's Added Value

DAT provides added services on top of RTEMS 

• Dynamic linker / Shared library support

• Task Management

• Symbol-Value Abstraction (SVT)

• Filesystem Abstraction (Namespaces)

• Lightweight Distributed Client-Server model (DSL)

• Console, telnet and shell support

• C++ support

Note: Currently, the DAT system is not based on an RTEMS release – 
4.10 does not have ARM support and 4.11 is not released yet.  When 
4.11 is released, we will use that.



13

Shared or Dynamic Libraries

RTEMS downloaded from rtems.org is linked statically

• Problem:  Constantly recompiling/relinking against core kernel

• Problem:  Removing unneeded code for prod. systems is hard

DAT provides a shared library system which allows 
modularity

• Mix and match for production and development systems

• Allows much simpler designs to interfaces

• Evolution of core is independent of user software

• No need to re-link on non-major changes 



14

Shared or Dynamic Libraries (cont.)

A shared library is simply user code and 
an optional prototype, all glued together 
with a linker script from the SDK.

On load, the core relocates the library and 
prepares it for execution.

The optional prototype (lnk_prelude) executes 
once, when the library is loaded, and executes in 
the context of the Task which started it.

Code is distributed as shared libraries on SD.

User Code

lnk_prelude

Linker Script

Shared
Library



15

Example: hello.so – A Simple Shared Library

On the host, this is compiled:

rtems-gcc --arm hello.c \
   -I $install/include/core \
   -I $install/include/rtems \
   -o hello.o

and then linked:

rtems-ld --arm -L$install/lib\
   -l:rtems.so \
   -Wl,-soname:examples:hello.so\
   -o hello.so

then copied to the target for use 
later.  Note the use of “examples”.  
This is an example of a namespace. 

#include <stdio.h>
#include “debug/print.h”

#define PRINT dbg_printv

int hello(void) {
  PRINT(“Hi! I'm a .so!\n”);
  return 0;
}
int goodbye(void) {
  PRINT(“Goodbye .so!\n”);
  return 0;
}
int lnk_prelude(void* arg,
                void* elf) {
  PRINT(“Hello prelude!\n”);
  hello();
  goodbye();
  PRINT(“Goodbye prelude!\n”);
  return 0;
}



16

Namespaces

Namespaces are used by shared libraries to abstract paths and 
mount points to allow a software system to advance without 
requiring a re-link.  Namespaces may not contain a colon (:)

They may be created in the RTEMS shell:

$ ns_assign examples /mnt/rtemsapp/examples

They also may be queried, renamed and removed:

$ ns_map examples:hello.exe
Path=/mnt/rtemsapp/examples/hello.exe

$ ns_rename examples murgatroyd

$ ns_remove examples
Error: Ldr_Remove(example) returned 0

$ ns_remove murgatroyd

All this can be done 
programmatically, too.  
See appendix for more 
info.



17

Why Namespaces?  Why not just use the path?

Namespaces allow design and organization to go forward without 
having to recompile all code. 

• Do you really want to hard-code the file path?

• … in eleventy-dozen places?

• What happens when the file system changes? 

A namespace means simply:

All things in this namespace are in the same place

They allow mixing, matching and shuffling of code around during 
the development cycle, without creating dependencies into the 
filesystem.



18

Tasks

Tasks are like Linux executables

• They have a well defined entry point

• They depend on (link against) other shared libraries

• They execute in their own context (they have their own resources 
such as a stack)

In this system, a task is implemented as a shared library 
with a well defined entry point, as well as a defined 
cleanup function.

These entry and cleanup functions are Task_Start and 
Task_Rundown.



19

Example: hello.exe – A simple Task  

The user implements Task_Start and 
Task_Rundown

Then compile and link:

rtems-gcc --arm hello.c \
   -I $install/include/core \
   -I $install/include/rtems \
   -o hello.o

rtems-task --arm hello.o \
   -L$install/lib -l:rtems.so \
   -l:hello.so 
   -Wl,-soname,examples:hello.exe\
   -o hello.exe 

#include <stdio.h>
#include “debug/print.h”
#include “task/Task.h”
#define PRINT dbg_printv
// Functions from hello.so
extern int hello(void);
extern int goodbye(void)

void Task_Start(int argc,
          const char** argv) {
  PRINT(“Hello from Task!\n”);
  hello();
  PRINT(“Return from Start.\n”);
  return;
}

void Task_Rundown() {
  goodbye();
  PRINT(“Goodbye from Task!\n”);
  return;
}



20

Running a Task

Once a task and its associated shared libraries are created and 
copied to the target (more on that later), it's time to run them!

$ ns_assign examples /mnt/rtemsapp/examples

$ run examples:hello.exe
Hello prelude!
Hi! I'm a .so!
Goodbye .so!
Goodbye prelude!
Hello from Task!
Hi! I'm a .so!
Return from Start.
Goodbye .so!
Goodbye from Task!

Notice that the prelude executes 
when the .so is loaded

The task can use the functions in 
the .so.

When Task_Start returns, 
Task_Rundown is automatically run.



21

Symbol Value Tables:  Configuration Data

All this is fine for development, but what about production?

(Nobody wants to have to type at a shell on 2000 embedded systems.)

The Symbol Value Table (SVT) is a shared library construct 
which matches strings to data structures in code.  SVTs 
may be replaced without recompiling other .sos or .exes.

Example: startup services

You have a set of services that need to 
run at startup.  However, these will 
change as a function of time.

Solution: Define a list in an SVT and
modify it as needed. 

const char* 
INIT_STARTUP_SERVICES[] = {
  "system:nfs.so",
  "system:shellx.so",
  "system:telnet.so",
  "system:console.exe",
  "config:appinit.so",
  "system:dsld.exe",
  NULL
  };



22

Symbol Value Tables

Effectively, the SVT provides an answer to the question:                

Would you rather have your parametrization buried 
in code, or would you rather it be external?

● SVTs can contain any data 
structure.

● After boot, SVTs are read-only.
● There are 32 possible SVTs.
● SVT 31 is the System SVT. 

(network, default OS settings)
● SVT 30 is the Application SVT.

This is where the we put 
application startup info and 
user controls.  

● It is expected that users will 
modify the App SVT.  But you 
don't have to since...

● Users may install an SVT of 
their own.

● Example SVT contents: 
● Namespace definitions
● Defaults of any kind 
● Shared data between tasks



23

Example: hello.svt – Parametrize hello.so

hello_svt.c is very simple: two 
lines of code.  The two strings 
HELLO_MESSAGE and 
GOODBYE_MESSAGE will be available 
to the SVT interface, and 
reference the two char arrays.

Since hello_so.c needs to deal 
with SVTs, include the relevant 
header.

We're going to create our own 
table, let's choose number 15.  
We also need it as a bitmap.

Here's the lookup.  If the lookup 
fails, 0 is returned.

char const HELLO_MESSAGE[]= \
  "Hello from svt!";
char const GOODBYE_MESSAGE[]= \
  "Goodbye from svt!";

hello_svt.c:

#include <stdio.h>
#include "svt/Svt.h"
#include "debug/print.h"
#define PRINT dbg_printv
#define NUM 15
#define TABLE (1 << NUM)
int hello(void) {
  PRINT("Hi! I'm a .so!\n");
  const char* hm = Svt_Translate 
      ("HELLO_MESSAGE",TABLE);
  if(hm)
    PRINT("%s\n",hm);
  return 0;
}
// continued next slide

hello_so.c:



24

Example: hello.svt – Parametrize hello.so (cont)

Here's the lookup for the other 
symbol.

And then in lnk_prelude, we install 
the newly created SVT. 

Compile exactly as above: 

rtems-gcc --arm hello_svt.c \
   -I$install/include/core \
   -o hello_svt.o

Linking uses its own script, 
analogous to rtems-task & rtems-so:

rtems-svt --arm hello_svt.o \
   -L$install/lib -l:rtems.so \
   -Wl,-soname,examples:hello.svt \
   -o hello.svt

int goodbye(void) {
  const char* gm = Svt_Translate
      ("GOODBYE_MESSAGE",TABLE);
  if(gm)
    PRINT("%s\n",gm);
  PRINT("Goodbye .so!\n");
  return 0;
}

int lnk_prelude(void *arg, 
                void *elf) {
  PRINT("Hello prelude!\n");
  hello();
  /* install the hello SVT */
  Svt_Install(NUM,
       "examples:hello.svt");
  goodbye();
  PRINT("Goodbye prelude!\n");
  return 0;
}

hello_so.c (cont.):



25

Example: hello.svt – Parametrize hello.so (cont)

The new svt, exe and so are then copied to flash and run exactly 
as above:

[/] # run examples:hello.exe
Hello prelude!
Hi! I'm a .so!
Goodbye from the svt world!
Goodbye .so!
Goodbye prelude!
Hello from Task!
Hi! I'm a .so!
Hello from the svt world!
Return from Start.
Goodbye from the svt world!
Goodbye .so!
Goodbye from Task!

Notice that when hello.exe loads 
hello.so, the SVT is not loaded 
until after trying the hello() function 
in the .so.  Therefore, the lookup of 
HELLO_MESSAGE from of the SVT 
returns null.  
However, GOODBYE_MSSAGE is 
found, as it's lookup is after the SVT 
load.



26

Copying from Host to Target

Transferring shared libraries to the target in V0.0.0 of the code is 
slightly complicated:

• telnet to the RCE using the IP address from atca_ip

• reboot -t linux   to switch to ArchLinux

• Wait until the Linux side boots (< 30 seconds)

• scp your shared libraries to the directory you want (they're the same 
on both Linux and RTEMS).  u/p == root/root
scp <image> root@<IP>:/mnt/wherever

• ssh to the RCE and log in as root

• reboot_rtems   and wait for RTEMS (< 30 seconds)

• You are now back where you started



Other Operating Systems



28

Linux – Host and Target

Host:

• Red Hat Enterprise Linux 5/6  (i86-32)

• Scientific Linux 5/6 (i86-32)

• x86-64 compatible libraries in development

• Compiled under RHEL5 (for now for forward compatibility)

Target:

• Arch Linux (ARM Cortex-A9 on the RCE)

• Not real-time

• In development:  future support



29

Linux SDK Contents

The Linux SDK contains fewer constituents than the RCE 
SDK

The example code contains the code for the ATCA host tools

Host Libraries

Host Tools

(Compiler wrappers, scripts, 
ATCA probes)

Include Files

Example Code



30

Getting the Linux SDK

• Fetch core scripts via git using a tag provided by DAQ:

git clone -q --branch linux-V0.0.0 \
  http://www.slac.stanford.edu/projects/CTK/SDK/linux/common.git \
     <install_location>

• Finalize the install by fetching libraries, includes and 
compiling the template code.  Architecture is i86-linux-
32 or arm-linux-rceCA9

<install_location>/tools/install-sdk.sh <architecture>

• Last step is to add the DAT environment to yours:

source <install_location>/tools/envs.{csh,sh}



Appendix



32

Useful RTEMS Shell Commands

Namespace related commands:

• ns_assign <namespace> <path>

• ns_map <namespace>:<image>

• ns_remove <namespace>

• ns_rename <namespace> <path>

Task related commands:

• run <namespace>:<image> <image arguments>

• task  (Lists tasks by ID and name)

• stop [id/name]

• suspend [id/name]

• load <namespace>:<image>



33

More Useful RTEMS Shell Commands

Informational commands:

• ifconfig

• syslog [-c]    (dump syslog)

• sysinfo        (print system info)

Other commands:

• reboot [-t <rtems|linux|ramdisk>]



34

Shared Library API

• The API is primarily documented in the include files:

• SVT:   include/core/svt/Svt.h

• Task:  include/core/task/Task.h

• Loader: include/core/ldr/Ldr.h


	Slide14
	Slide 2
	Slide 3
	Slide9
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide19
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

