National Aeronautics and Space Administration

D D esc D

The Fermi Bubbles

Dmitry Malyshev Anna Franckowiak, Vahe' Petrosian on behalf of the *Fermi*-LAT Collaboration

AAS 2014 January 8, Washington DC

Fermi Large Area Telescope – pair conversion gamma-ray space telescope • 5 years of data available for public use (since August 2008) Maximal mission: 10 years or more • 2.8 tons • 1.8 m x 1.8 m x 0.7 m 650 watts

20 MeV to above 300 GeV Energy: PSF: < 1° above 1 GeV Solid angle: 2.4 sr at 1 GeV Eff. area: 6500 cm² at 1 GeV

D. Malyshev, Fermi bubbles

Anticoincidence Detector (background rejection)

Conversion Foil

Particle Tracking Detectors

Calorimeter (energy measurement)

• In the Fermi bubbles analysis, we use: – 50 months of Pass 7 reprocessed data 100 MeV to 500 GeV (in 25 logarithmic energy bins) - Ultraclean class – Mask |b| < 10 deg</p> – Zenith angle cut < 90 deg (to avoid the Earth limb)</p>

Data selection

D. Malyshev, Fermi bubbles

 $10^{-6} E^2 \frac{dN}{dE} \left(\frac{GeV}{cm^2 s sr} \right)$

Sermi

Gamma-ray

Space Telescope

Inverse Compton (GALPROP)

Fermi-LAT data (3 years, >10 GeV) (adaptively smoothed)

Isotropic background

D. Malyshev, Fermi bubbles

Fermi bubbles The bubbles are visible in Fermi-LAT data at high energies without foreground subtraction.

Point sources

Sermi Gamma-ray Space Telescope

1. Hadronic and bremsstrahlung:

- - Leptonic CR
- point sources
- 4. Loop

π⁰ and brems (GALPROP)

GALPROP Template Analysis

CR source distribution (pulsars, supernova remnants) diffusion in Galaxy (diffusion height and radius) • Target gas (H I, H II, H₂ in Galacocentric rings) 2. Inverse Compton (IC) scattering

Interstellar radiation field

3. **Isotropic:** CR contamination, extragalactic diffuse and unresolved

 $10^{-6} E^2 \frac{dN}{dE} \left(\frac{GeV}{cm^2 s sr} \right)$

D. Malyshev, Fermi bubbles

All sky fit including all templates BUT bubble template (signal region and the Galactic plane are masked)

Integrated residual map from 6.4 to 300 GeV

D. Malyshev, Fermi bubbles

GALPROP: azimuthal symmetry around GC, specific IC model Separate the sky in local patches. In each patch, model – gas-correlated components as a combination of gas templates (21cm, CO) non gas-correlated components ____ (isotropic, IC, Loop I, bubbles) as a linear combination of polynomials in local coordinates Fit the data in 24 local patches, merge the patches together

Local Templates Analysis

 $10^{-6} \mathrm{E}^2 \frac{\mathrm{dN}}{\mathrm{dE}} \left(\frac{\mathrm{GeV}}{\mathrm{cm}^2 \, \mathrm{s} \, \mathrm{sr}} \right)$

Gas-correlated

D. Malyshev, Fermi bubbles

Local polynomial, E = 6.4 - 9.1 GeV

Subtract the gas-correlated component from the data Model the residual as a combination of - isotropic template – two 2D Gaussians: Gaussian along the Galactic plane models the IC emission, Gaussian perpendicular to the plane is a proxy for the Loop I and the bubbles

Data minus gas correlated components (data - gas correlated components), E = 6.4 - 9.1 GeV

Subtract gas-correlated, isotropic and IC emission from the data and define the bubbles and the Loop I templates

Local Templates Analysis

 $10^{-6} \mathrm{E}^2 \frac{\mathrm{dN}}{\mathrm{dE}} \left(\frac{\mathrm{GeV}}{\mathrm{cm}^2 \,\mathrm{s} \,\mathrm{sr}} \right)$

D. Malyshev, Fermi bubbles

Gaussian model

Gauss model, E = 6.4 - 9.1 GeV

8

 $10^{-6} \mathrm{E}^2 \frac{\mathrm{dN}}{\mathrm{dE}} \left(\frac{\mathrm{GeV}}{\mathrm{cm}^2 \,\mathrm{s} \,\mathrm{sr}} \right)$

Fermi bubbles spectrum

D. Malyshev, Fermi bubbles

energies: Loop I, foreground

Spectra have similar shape • There is a shift in normalization

Comparison with Su et al (2012)

D. Malyshev, Fermi bubbles

The shift in normalization is due to: Different foreground modeling Different masking of the Galactic plane (10 vs 20 deg) **Different definition of the** bubble template resulting in different area of the template

10

A paper is in preparation within the Fermi-LAT collaboration Systematic uncertainties: - Galactic emission model Definition of Loop I and bubbles templates Study of the spectral shape (power law, power law with an exponential cutoff, log parabola) Morphology and variation of spectrum: - Spectrum in latitude stripes - Cocon spectrum - Search for a jet Estimation of the width of the boundary Physical interpretation in terms of hadronic and IC gamma-ray production. Comparison of associated synchrotron emission with WMAP and Planck haze.

11