Converter position and upstream background

Pelle

work in progress

Test Run Converter position

Is the converter where we think it is?

- Look at the y-position at our assumed converter position vs track angle
- Parallax effect will create a slope in the y-position

Where is "no target" background coming from?

- Conversion in 14 mm collimator ~ 8 " upstream of converter?
- Can be used as extra target to remove global alignment problem? Single point?
- Ties in with discussions for global alignment ambiguity
- Note: Test run had all planes on a hinge; new SVT has only 3 of 6 planes on the hinge => residuals will inform about pointing direction of upstream layers without target position!

Y converter position vs slope in Toy Simulation

Particles generated at single angle

Y converter position vs slope in Toy Simulation

Particles generated with different angles

Y converter position vs slope in Toy Simulation

Beam spot effect

0.001 mm

0.5 mm

2 mm

3 mm

Y converter position vs slope in Toy Simulation

Converter position

Slope in central region tells you about converter position and beam spot Parallax effect precision given by accurate distance between layers in the SVT

Y converter position vs slope (top+bottom)

SLAC

Track p>1GeV, Chi2<5

Where do tracks in no target run come from?

Cluster vertical position

Lots more tracks in the top half of the tracker

- Even taking into account more dead channels in SVT
- 20% clusters have a track in the top
- 2% clusters have a track in the bottom

Where do tracks in no target run come from?

Has slope at converter position (no surprise)

Track YZ scatter plot for data (bkg subtracted)

MC

Where do tracks in no target run come from?

- Top tracks in this plot
- Focus pretty spread out
- No charge separation in top vs bottom (charged particles from sweeping magnet ruled out)
$Z=-400 \mathrm{~mm}$

$$
\begin{array}{lr}
\text { Mean } & 1.34012 \mathrm{e}+01 \\
\text { Sigma } & 2.30930 \mathrm{e}+00 \\
& \text { ProjectionY of binx }=111
\end{array}
$$

$Z=-600 \mathrm{~mm}$
Mean $9.74383 \mathrm{e}+00$
Sigma $1.72501 e+00$

ProjectionY of binx=91

Projection Y of binx=91
\qquad

Where do tracks in no target run come from?

SLAC

Bottom tracks harder to figure out

Comments

Data/signal (bkg subtracted)

- Look good coming from the assumed converter position
- Show no obvious sign of slope in y-slope
- Indicates we have the position of the converter at the right place
- Doesn't tell us that we have global rotation around the converter position of SVT (need 2 ${ }^{\text {nd }}$ target)

Upstream background has interesting features

- About equal number of Ecal clusters, but many more top tracks than bottom tracks?!
- Top tracks seem to originate in z from between -800 mm to -600 mm i.e. around the converter region but less focused (?)
- Bottom tracks hard to say anything about

What is at those z's?

- -1524mm: clean up magnet with horizontal B-field (swipes beam up/down)
- -859 mm : 14 mm diameter collimator
- -674mm: converter target

