HPS Trigger DAQ Review, JLAB February 25, 2014

TDAQ - SVT Integration

Overview

SLAC

- SVT DAQ Overview
- Trigger Implementation in SVT
- Trigger distribution in SVT
- ROC Instances in SVT
- CODA States

SVT Overview

- 36 hybrids
 - 12 in layers 0 3 (4 per layer, 2 top, 2 bottom)
 - 24 in layers 4 6 (8 per layer, 4 top, 4 bottom)
 - 3.33Gbps raw ADC data per hybrid
- 10 front end boards •
 - 4 servicing layers 1 3 with 3 hybrids per board
 - 10 Gbps raw ADC data per board
 - 6 servicing layers 4 6 with 4 hybrids per board
 - 13 Gbps raw ADC data per board
- RCE crate for event building and data reduction •

SLAC Gen3 COB (Cluster on Board)

- Supports 4 data processing FPGA mezzanine cards (DPM)
 - 2 RCE nodes per DPM
 - 12 bi-directional high speed links to/from RTM (GTP)
- Data transport module (DTM)
 - 1 RCE node
 - Interface to backplane clock & trigger lines & external trigger/clock source
 - 1 bi-directional high speed link to/from RTM (GTP)
 - 6 general purpose low speed pairs (12 single ended) to/from RTM
 - connected to general purpose pins on FPGA

RCE GEN3 COB

RCE (Reconfigurable Cluster Element)

- Two versions
 - 2 x Zynq XC7Z045 FPGA for DPM
 - 1 x Zynq XC7Z030 FPGA for DTM
- ARM (dual-core) A-9 @ 900 MHZ
 - 1 Gbyte DDR3
 - Micro-SD (removable)
 - 10-GE MAC
- Bootstrap configuration via IPMI
- Frame based Socket Interface for plugins
 - 10Gbps bandwidth into memory
- Software (bundled with CE):
 - Linux
 - Based on 3 series kernel
 - Archlinux distribution
 - RTEMs
 - Open Source Real-Time kernel
 - POSIX compliant interfaces
 - TCP/IP stack
 - Plugin socket library
- External serial interfaces
 - 12 GTX channels per RCE (96 per COB)
 - Up to 10Gbps

application specific plug-ins

SLAC

SVT RCE Allocation

- Two COBs utilized in the SVT readout system
 - 16 RCEs On DPMs (2 per DPM, 4 DPMs per COB)
 - 2 RCEs on DTMs (1 per DTM, 1 DTM per COB)
- 7 RCEs on each COB process data from 1/2 SVT
 - 18 Hybrids total per COB
 - RCE 0 = 2 hybrids (layer 0)
 - RCE 1 = 2 hybrids (layer 1)
 - RCE 2 = 2 hybrids (layer 2)
 - RCE 3 = 3 hybrids (3 from layer 3)
 - RCE 4 = 3 hybrids (1 from layer 3 / 2 from layer 4)
 - RCE 5 = 3 hybrids (2 from layer 4 / 1 from layer 5)
 - RCE 6 = 3 hybrids (3 from layer 5)
- RCE 7 on COB 0 manages all 10 FE Boards
 - Configuration and status messages
 - Clock and trigger distribution to FE boards & hybrids
- RCE 7 on COB 1 has does not have an SVT specific purpose

s ac

SVT Trigger Interface

- Replicates portion of JLAB TI Board
- Quad optics and PLL exist on RTM
- TI firmware implemented in RCE FPGA
- Fully allocated available signals between RTM and DTM
 - 1 high speed pair for trigger & SYNC
 - 1 low speed pair for SYNC
 - 2 low speed pairs for PLL SPI and Reset signals
 - 3 low speed pairs for PLL generated clocks (250/125/62.5 Mhz)

SVT Trigger Distribution

- DTM FPGA has ability to distribute clock and trigger to DPMs
 - Clock and trigger wired as fan out to DPMs
 - Individual feedback signals from each DPM
- 1 pair for clock fan out
- 1 pair for trigger fan out
 - 125Mhz serial protocol transfers 8-bit codes (easily expanded to longer words)
 - Used to distribute event codes to DPMs
 - System clock sync, APV25 sync & JLAB triggers
- 1 pair per DPM for feedback
 - Similar 8-bit op-code
 - Readout and trigger acknowledge
 - Busy
- Ethernet network used to distribute bulk trigger records to DPMs

Front End Timing Distribution

Control DPM forwards timing information to front end boards over PGP

- Clock encoded into serial data stream which the front end board recovers
- Fixed latency path for encoded PLL reset and trigger signals
- Upstream link echoes encoded clock and encoded signals back to DPM
- Round trip latency is measured and compensated for by adjusting delay elements in DPM
 - Front end boards aligned in time domain

ROC Instances On SVT

- Data DPM
 - Data processing ROC application
 - Builds event record for 2 or 3 hybrids
 - APV25 ADC Data
 - Hybrid environmental data
 - Operates as slave when interfacing to TI firmware
 - Clock and trigger received over COB signals
 - Busy and acknowledge passed over COB signals
 - Trigger event data passed over Ethernet from TI control software

ROC Instances On SVT

- Control DPM
 - FEB control and configuration
 - Trigger processing ROC application
 - Formats FEB environmental event data
 - Master ROC application for TI firmware
 - Register access over TCP/IP to local TI software
 - Clock and trigger received over COB signals
 - Busy and acknowledge passed over COB signals
 - Trigger event data passed over Ethernet from TI control software

TI Control Software

- TI Control Software
 - Direct access to TI register space
 - Slaves to control ROC application for CODA transitions
 - Bridge to data ROC applications
 - Sends out readout block trigger record to data DPMs & control DPM

CODA States

- Download
 - Control ROC
 - Opens link to control software application
 - Configures FEBs and Hybrids
 - Configures data processing DPM firmware
 - Configures TI firmware
 - Data ROC
 - Opens link to data path software
- Prestart
 - Control ROC
 - Generates APV25 sync command through TI bridge software
 - Monitors APV25 sync status
 - Data ROC
 - Registers with TI through TI bridge software
- GO
 - Data ROC
 - Retrieve trigger/block info from TI through bridge software
 - Enable local data path
 - Control ROC
 - Enable the TI to accept triggers when all data DPMs have retrieved trigger/block information

CODA States

- Trigger
 - Data ROC
 - Receives trigger mask from DTM over COB signals
 - Send acknowledge over COB signals to DTM
 - Receive associated trigger block data over TCP/IP
 - Control ROC
 - Send triggers and mask data over COB signals
 - Send trigger block data to data DPMs over network
- End
 - Control ROC
 - Request TI firmware to disable
 - Wait for ROCs to acknowledge last block
 - Disable triggers
 - Data ROC
 - Acknowledge last triggers
 - Disable data path