

PSR J2021+4026 in the Gamma Cygni region: the first variable pulsar seen by the Fermi LAT

Luigi Tibaldo <u>ltibaldo@slac.stanford.edu</u>

and

Massimiliano Razzano (University of Pisa/INFN)

on behalf of the Fermi-LAT collaboration

Texas Symposium 2013 Dallas (TX)

Pulsars: not always stable rotators

Radio/X-ray variability \rightarrow insights into magnetospheric physics

- measure charge density $\rho = 0.034 \text{ Cm}^{-3}$ (Kramer+ 2006)
- discrete metastable states (Lyne+ 2010)
- few-second reconfiguration (Hermsen+ 2013)

But not in gamma rays! Oh, well ...

- sizable fraction of \dot{E} in γ rays
- CGRO-EGRET: stability of pulsar γ-ray emission (Nolan+ 2003)
- no significant variability in 2-year Fermi-LAT source Catalog (Nolan+ 2012)

The Gamma Cygni pulsar

PSR J2021+4026

- discovered by LAT in blind search (Abdo+ 2009)
- $f \sim 4 \,\mathrm{Hz}, \ \dot{f} \sim -8 \times 10^{-13} \,\mathrm{Hz} \,\mathrm{s}^{-1}$
- no radio counterpart, X-ray detection (Lin+2013)
- same region
 - supernova remnant G78.2+2.1 at > 10 GeV (Lande+ 2012)
 - TeV source VER J2019+407 (Aliu+ 2013)

Fermi LAT E > 2 GeV, frontconverting events 408 MHz (CGPS)

Allafort et al. ApJ 777 L2 2013

Variability search

- IAGL J2022+4032
 - variable in 2007-2009 (Chen+ 2011)
 - coincident with PSR
 J2021+4026
 - variable source not firmly identified
- 52-month Fermi LAT observations (2008-2012)100 MeV to 300 GeV

Fermi LAT E > 2 GeV, frontconverting events

Allafort et al. ApJ 777 L2 2013

The variable gamma-ray pulsar PSR J2021+4026

5 of II

A flux jump

- > | GeV, > 100 MeV
- 30 days, 7 days
- point-like
- flux 20% < 1 week around MJD 55850
- steady increase before
 MJD 55850 (3σ), ~ 4%
 yr⁻¹
- PSR J2021+3651 stable
 → no instrumental effects

It was the pulsar!

Allafort et al. ApJ 777 L2 2013

Pulse profile changes

- PI-P2 lag: 0.505 ± 0.005 → 0.565 ± 0.006
- total constant/P2 amplitude: 1.83 ± 014 → 1.09 ± 0.06
- PI/P2 amplitude: 0.54 ± 0.06 → 0.24 ± 0.03

Allafort et al. ApJ 777 L2 2013

Phase-resolved spectra

 $\frac{\mathrm{d}N}{\mathrm{d}E} = k \ E^{-\Gamma} \,\mathrm{e}^{-\left(\frac{E}{E_c}\right)}$

- flux decrease phasedependent \rightarrow magnetospheric origin
- hints of spectral changes in PI?

9

What is going on?

Final remarks

- gamma-ray pulsars can have mode changes
- new avenue to understand magnetospheric physics
- continued survey by Fermi LAT

Backup slides

Variability statistical tests Likelihood likelihood $\sum \left[\mathcal{L}(P, M) - \mathcal{L}(P, \bar{M}) \right]$ time bins model photons source of interest fixed to long-term average

Kendall rank correlation test

Zoom around the jump

L.Tibaldo

Before and after the jump

Time Range (MJD)	54682-55850	55850-56273
Number of days	1167	423
$F_{\gamma}^{a} > 0.1 \text{GeV}$	8.33 ± 0.08	6.86 ± 0.13
$F_{\gamma}^{a} > 1 \text{ GeV}$	3.57 ± 0.05	2.74 ± 0.06
ŕb	-7.6978 ± 0.0007	-8.166 ± 0.002
$\delta_{\rm P1}{}^{\rm c}$	0.19 ± 0.02	0.13 ± 0.02
$\Delta_{12}{}^d$	0.505 ± 0.005	0.565 ± 0.006
$\delta_{P2}{}^{c}$	0.176 ± 0.007	0.174 ± 0.006
$\Delta_{1\mathrm{BR}}{}^{\mathrm{d}}$	0.229 ± 0.008	
$\delta_{\rm BR}{}^{\rm c}$	0.11 ± 0.02	
$P1/P2^{e}$	0.54 ± 0.06	0.24 ± 0.03
$BR/P2^e$	0.16 ± 0.03	
Constant/P2 ^e	1.83 ± 0.14	1.09 ± 0.06

J2021+4026's Properties Before and After the Jump

Notes. Statistical uncertainties only. For details on parameters, see Sections 4 and 5.

^a 10^{-10} erg cm⁻² s⁻¹.

^b At the reference epoch for the two timing solutions, 10^{-13} Hz s⁻¹.

^c Peak FWHM (E > 0.1 GeV).

^d Phase lag between peaks (E > 0.1 GeV).

^e Ratios of the peak amplitudes or constant-level-to-P2 amplitude (E > 0.1 GeV).

Doppler shift in binary system?

- circular orbit of radius 6
 (1) a.u. → Doppler shift
 10⁻⁵ (10⁻⁴)
- 0.04 Doppler shift → eccentric orbit with minor axis ~ 0.01 a.u. < massive star radius

~ 3 yr half orbit?