SW Review 1.27.2014

Per Hansson Adrian

1

Outline

- Hit reconstruction
- Track finding
- Track fitting
- Alignment
- Magnetic field
- Special runs
- Performance analysis

(Sensor) Hit Reconstruction

Build clusters from sensor strips

Nearest neighbor algorithm (1D)

- 1. Find seed strip (S>4× σ_{noise})
- 2. Add neighbors with S>3× σ_{noise} until strip found with S<3× σ_{noise}
- 3. Repeat 1,2 until no seed strips found
- 4. Reject clusters with S<4× σ_{noise}

Output strip clusters contains

- Position (pulse height weighted mean)
- Cluster time (pulse height weighted mean)
- \Rightarrow Need to worry about overlapping clusters
- \Rightarrow Currently, offline track selection on distance to neighbor

Test run stereo pair module

(Stereo) Hit Reconstruction

Build 3D hits from (2D) strip clusters

Stereo sensor cluster Stereo sensor cluster Axial sensor cluster

Take all combinations of clusters in adjacent stereo pair sensors to build "stereo hits"

- Starting 3D hit position is taken as midway between clusters
- Reject *very* bad combinations (not pointing to target)
- Stereo hit positions are updated with track direction in track finding/fitting

Track Finding

Inherited from linear collider simulation (lcsim "seed tracker")

- Seed-confirm-extend philosophy
- Very fast: test often, reject early
- Based entirely on stereo hits

Track finding is governed using a "Strategy"

```
<Strategy name="HelicalTrackHit Strategy">
   <!--Cutoffs-->
                                                      2. Reject if failing strategy cuts
                                                      3. Add hits from confirm layers
   <MinPT>0.050</MinPT>
   <MinHits>4</MinHits>
                                                      4. Reject if failing strategy cuts
   <MinConfirm>1</MinConfirm>
   <MaxDCA>80.0</MaxDCA>
   <MaxZ0>80.0</MaxZ0>
                                                      Reject if failing chi2 and # hits
   <MaxChisq>25.0</MaxChisq>
   <BadHitChisa>10.0</BadHitChisa>
                                                      Remove overlapping tracks (shared hits <=1)
   <!--Layers-->
   <Layers>
       <Layer type="Seed" layer_number="1" detector_name="Tracker" be_flag="BARREL" />
       <Layer type="Seed" layer_number="3" detector_name="Tracker" be_flaa="BARREL" />
       <Layer type="Seed" layer_number="5" detector_name="Tracker" be_flag="BARREL" />
       <Layer type="Confirm" layer_number="7" detector_name="Tracker" be_flag="BARREL" />
       <Layer type="Extend" layer_number="9" detector_name="Tracker" be_flag="BARREL" />
   </Layers>
</Strategy>
```

1. Fit a 3-hit track seed using stereo hits

5. Add hit from extend layers, reject if worse chi2

Track Fitting

Fit track in two independent views (const. magnetic field)

- Circle fit in the "bend plane"
- Straight line fit in non-bend plane

Both are fast non-iterative fit algorithms

- Parameter estimations
- Covariance matrix
- (Seed)Track finding uses these algorithms at each step
- Merge final fit into a "helix" track object together with the hits of the track

Multiple Scattering Model

Hit uncertainty at each layer

- Multiple scattering (MS) uncertainty and spatial resolution added in quadrature
- MS uncertainty from each previous layer are added in quadrature
- No account for correlations across scattering planes or energy loss

MS uncertainty is on average correct but not an optimal fit

- Good enough for an initial fit
- \Rightarrow Different (standard) ways to deal with this problem

Tracking works

Tracking software already exercised in Test run

- Used in both online monitoring and offline analysis
- Good performance
- Speed exercised fully in mock data challenge
- \Rightarrow The basic software for HPS operation is already there

SLAC

Test run proved that tracking software works

Topics we'd like to improve

- Better handling of multiple scattering
- Track-based alignment
- Inhomogeneous magnetic field

Performance analysis

- Momentum scale
- Momentum resolution

Generalized Broken Lines (GBL)

Generalized Broken Lines (GBL)

- A track fit with multiple scattering
- Widely used, e.g. CMS detector alignment

GBL is a track refit

- Initial fit to estimate residuals and momentum (using SeedTracker)
- Use residuals and estimated momentum, in a second fit that includes multiple scattering
- Covariance matrix of all track parameters are available (at each point)

Iteration needed for energy loss

Alignment software (Millepede-II) "supported"

GBL Already Implemented

Momentum resolution

Impact parameter resolution

Currently implemented in python (used here) and C++ \Rightarrow would like to port to Java, but not critical

SLAC

Alignment

Roughly, needs to be significantly better than single hit resolution (~<5um)

- Use survey + track-based alignment
- Test run alignment experience

Silicon module survey (optical)

⇒ Relate sensors to support plate

Support structure survey (touch probe, post-assembly)

⇒ Relates support plates to support structure

Beamline survey

- ⇒ Relate support structure to beam
- ⇒ Scheme worked (residuals < 300um) in Test run (w/ some pain)
- \Rightarrow Need to improve geometry description

Mean of biased track residuals vs tracker layer

Track-based Alignment

Tracking detector alignment is a standard problem; multiple ways to achieve similar performance

Our approach:

Residual z_i for measurement *i*:

- Do a least square fit of local (track) and global (alignment) parameters ۲
- Millepede-II can do this for us and is "supported" by GBL •
- Great support from C. Kleinwort (GBL/Millepede developer) •

Minimize a "chi2" from entire data sample

$$\chi^2 = F(\mathbf{q}, \mathbf{p}) = \sum_i \left(\frac{(y_i - f(x_i, \mathbf{q}_j, \mathbf{p}))^2}{\sigma_i^2} \right)$$

 \Rightarrow Newton minimization problem with large # parameters

V. Blobel, C. Kleinwort, F. Meier, Computer

Kleinwort, NIM A, 673 (2012), 107-110

Phys. Communications (2011)

Subset Ω of *n* alignment

constants

- \Rightarrow single iteration for **linear** least squares
- \Rightarrow Millepede's strength is reducing the dimension of the matrix to be computed to give alignment parameters corrections only

14

Track-based Alignment – Tools & Operation

Current status

Geometry

Special runs

tools

- All derivatives other inputs with GBL track fit is implemented
- It runs and we can update constants in • geometry...
- Next big job is to figure out minimal set of • global parameters -> bootstrap geometry
- \Rightarrow Test run detector is an ideal test bed used for this

٠

•

٠

•

٠

Operational procedures Monitoring – rapid feedback during run (beam spot, chi2, track matching) • Dedicated offline shifter •

SLAC

1.5" beam pipe cuts off at $\theta_x \sim 17$ mrad

3D Magnetic Field

Primary use case is vertexing

- Target sits in fringe field
- At a minimum we need (By)@(x,z)

Existing 3D magnetic field support

- Input (Bx,By,Bz)@(x,y,z) on cartesian grid
- Linear interpolation between box of points
- Geometry code to handle field map exists
- Track propagation in inhomogeneous field with Runge-Kutta method
- Need to be integrated and tested with vertexing software

 \Rightarrow Not clear we need <u>full</u> 3D map (needs testing)

Already have this

z (mm)

Momentum Scale and Resolution

Couple of ideas exists

- Beam energy electrons "easiest"
- Trident events "for free"; but kinematic fit may • be non-trivial
- Elastic peak? (dedicated targets and trigger)
- \Rightarrow All of them need more preparatory work/proof of concept...

Туре	Purpose	Trigger
Beam energy electrons	Scale, resolution	 Signal trigger (out of time tracks) Prescaled dedicated single trigger (for coverage)
Trident kinematic fit	Scale (,resolution)	Signal trigger
Elastic peak	Scale, resolution	Dedicated CH2/C targetSingle electron trigger

Summary

Tracking software was exercised in Test run

- Fast non-iterative fits speed should not be a problem
- Multiple scattering handled in refit with GBL
- Part of online monitoring for data-taking success
- Track-based alignment is ongoing work

Physics requirements are satisfied

- Test run: S/N (spatial res.), hit time res. and hit eff.
- Assumes track-based alignment is successful

Risks

- Operational success not very dependent on current developments
- Some risk if alignment framework not fully exercised

Manpower & liaisons

- Official overlap with SVT DAQ software
- Large overlap of people in SVT and beamline groups
- We need newcomers but not critical for operation!

Торіс	Manpower	
sw infrastructur e	McCormick, Moreno, Uemura	
General tracking	Graham, Hansson, Graf	
GBL	Hansson	
Alignment	Hansson, Graham, Nelson	
Geometry, B-field	Uemura, Graf, Graham, McCormick	
Liaisons		
Production	Uemura	
Monitoring	Moreno	
SVT DAQ	Hansson, Moreno	
SVT	Nelson, Hansson	
Beamline	Hansson (overlap)	

Backup

Overview of the track reconstruction chain

SLAC

