Test run analysis

Pelle

We never did a careful "analysis" i.e. looked at all aspects of the data

Another attempt before paper is published

- Better ECal calibration
- Derive uncertainty from calibration (should dominate)
- Alignment of ECal and SVT
- Angular distributions with the SVT
 - Need to understand Tracking efficiency

Not clear what is needed for the paper.

Today only show Ecal calibration stuff; tracking stuff for another meeting

Also: I only "really" look at top half here (bottom is just...there...)

ECal Calibration

Calibrate ecal gains based on E/p for each crystal

- Iterate and change gains to match E/p for data and MC
- Using all clusters (single hit clusters would be better, I think)

Manually

- No automation between iteration, 2-3 iterations feasible
- Existing automatic code doesn't work well somebody should go back to this and do it properly. Perfect task for ECal group?

Issues

- Very low statistics in both data & MC (I'm using ~1/4 of the statistics here)
- Some crystals show reasonable E/p but x2 higher rate in data

ECal E/p average

-SLAC

ECal E/p Top Left Quadrant

ECal E/p Top Right Quadrant

6

Ecal Cluster Energy Top Left Quadrant

v6gain_2

Ecal Cluster Energy Top Right Quadrant

Ecal Normalized Count Rate (/90nC)

Discrepancy dominated by circled area.

Data

MC

Ecal Cluster Position (X) Top Left Quadrant

Ecal Cluster Position (X) Top Right Quadrant

Ecal Cluster Position (Y) Top Left Quadrant

Default

Ecal Cluster Position (Y) Top Right Quadrant

13

SLAC

Further iterations could (should?) improve things. But more stats and automation is required...

These are "nice" examples...

Summary

SLAC

Manual Ecal gain calibration worked

- At least for some regions
- Others need more iterations and/or statistics (both data & MC)

Perhaps someone in the Ecal group can take this up?

- Best practice to get; and what the Test run is for (to some extent)
- We are not close to the limit of what we can do with this data...

Next steps for me

- Derive systematic based on calibration
- Decide if it's good enough for paper
- Work on tracking efficiency (next talk)