SVT requirements for slow controls

Sho Uemura

SVT subsystems

- Voltages
- Interlocks
- Cooling
- Motion

Voltages

- MPODs supply HV directly to sensors, LV to frontend and flange boards
 - Standard equipment at JLab; MPODs are controlled over SNMP and EPICS interface exists (MPOD testing and integration: Sho and Pelle)
 - Requirements: On/off and voltage control, voltage and current readout
- Regulators on frontend boards supply LV to hybrids
 - Frontend boards controlled by DAQ; EPICS CA server to be implemented by SVT DAQ group (Ryan)
 - Requirements: On/off control (voltage setpoints fixed), voltage and current readout, watchdog timer
- SVT voltage GUI from test run is a good starting point; probably want more automation and sequencing

Interlocks

- Requirements: protect SVT with response time <1 second, record and monitor conditions
 - Loss of vacuum
 - Loss of cooling/break in a cooling line
 - Beam accident
- Inputs:
 - Vacuum chamber pressure and temperature
 - Beam FSD signal
 - Coolant temperature (RTDs at inlet and outlet)
 - Coolant flowmeter
 - Software input from EPICS
- Outputs:
 - SVT power: interlock input on MPOD chassis controller
 - SVT cooling: solenoid valve at inlet (outlet has check valve)
- Use Allen-Bradley PLC flexible, used at JLab, can read out all inputs and status to EPICS
- Logic and procedures by SLAC SVT group (Pelle, Sho)

Cooling: chiller and SVT temperatures

- Single chiller (Affinity P-series) for all SVT heat loads (hybrids and frontend boards)
- RS-232 control through EPICS
 - Requirements: setpoint control, alarm status readout, possibly other internal sensors
 - Interlock functions (external sensors and isolation valves, automatic low level shutoff) do not rely on RS-232
- Setup and testing (including RS-232 control) at SLAC (Marco)
- Hybrid and FE temperatures from thermistors are read by SVT DAQ and CA server (Ryan)
 - Interlock does not rely on this

5/6

Motion

- Linear stages for SVT top, SVT bottom, target (requirements for target discussed under beamline talk)
- Requirements: control position, readout rotary encoder and contact switches (in-limit and out-limit)
- ullet Reproducible (25 μ m at layer 1) and adjustable run position
- Wire scans using wires on SVT
- Stages already in hand but need to be tested at SLAC (Takashi, Sho); need JLab motor drivers and EPICS-in-a-box system

SVT Slow Control: Power and Temperature

SLAC

Power to SVT from Wiener MPOD power supplies

General requirements from slow control

- · Control and monitor all power supplies channels
- · Monitor temperature and status
- · Provide hardware and software interlock signal to power supplies

EPICS control and monitoring requirements

- Power to FE- and flange boards and high voltage bias through MPOD crate
- Control of hybrid power through SVT DAQ EPICS bridge
- Monitor hybrid and FE board temperatures and status

Schedule

- Week 12/16: SLAC receives power supplies
- Week 1/15: pass basic tests at SLAC [Hansson, Uemura]
- Week 3/17: EPICS bridge for SVT tested [Herbst]
- Week 5/19: EPICS control power for DAQ tests at SLAC [Egyian, Hansson, Uemura]
- Week 7/14: interlock integration tests [Egyian]

EPICS variables

Hybrid	Туре	Variables
AVDD	SVT CA server	Set: ON/OFF Read: V, I
V125	SVT CA server	Set: ON/OFF Read: V, I
DVDD	SVT CA server	Set: ON/OFF Read: V, I
Temperature	SVT CA server	Read: T
FE Boards	Туре	Variables
FE Boards AVDD+	Type MPOD control	Variables Set: ON/OFF, V Read: V, I
		Set: ON/OFF, V
AVDD+	MPOD control	Set: ON/OFF, V Read: V, I Set: ON/OFF, V
AVDD+	MPOD control	Set: ON/OFF, V Read: V, I Set: ON/OFF, V Read: V, I Set: ON/OFF, V

Flange Boards	Туре	Variables	
DVDD	MPOD control	Set: ON/OFF, V Read: V, I	

Bias voltage	Туре	Variables
HV	MPOD control	Set: ON/OFF, V Read: V, I

1

SVT Cooling Requirements

SLAC

Hybrids	
Operating T	-30C to RT
Cooling cap.	100W@-30C
Mass flow	>50g/s

Affinity P-series RC50222G1

- Water cooled: use Hall-B water
- Compatible with water-glycol -40C-RT
- 3kW@-30C
- 85psi@60a/s
- RS232 software interface Budget & schedule: \$30k (budget is \$X)

FE boards	
Operating T	RT+-10C
Cooling cap.	100W@20C
Mass flow	>50g/s

Affinity FAA-015D-DD01CA

Used in the test run!

- Water cooled: use Hall-B water
- Compatible with water-glycol
- +4-+30C - 6kW
- RS232 software interface

Budget: Interlock signals from cooling system Chiller \$30k (budget is \$29.8k)

Same as test run

Ochicadic.					
-	Apr.	1st:	new	chiller	arrive

- May 1st: Passed basic op, test at SLAC [M. Oriunno]
- May 7th-Jun 7th: slow control program, and test at JLab
- [H. Egyian]
 - Jul.-Aug. interlock tests [H. Egyian]
- ⇒ Lead-time for chiller pushes schedule
- ⇒ Critical to get chiller to JLab <X

			- 16,
Signal	Туре	Signal	Туре
Low level	software	Flow meter	hardware
Low/high pressure	software	Check valve	harware
Solenoid valve	hardware	Temperature	hardware

Chiller Affinity P-series RC50222G1

SLAC

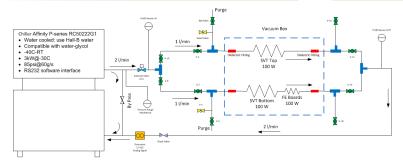
System Performance Characteristics Model Nomenclature PWG_060K_RF44CRD2 Part Number 900-50222-000 MET Listed to UL1995 Yes CF Marked Weight 575 lbs. shipping weight 29.0. 19.25. 45.75 Dimensions (I, w. h) 73.7, 48.9, 116.2 Ambient Temperature Range 41° F - 104° F (5° C - 40° C) -40° F - 194° F (-40° C - 90° C) Process Temperature Range Communications RS232 Nominal Cooling Capacity 2 kW @ -40°F Nominal Process Heater 2 kW at 240 Volt Pump Performance 3.5 gpm (13.2 lpm) @ 55 psi (3.8 bar), 60 Hz HFE 7500 Process Fluid Process Fluid Connections 1/2" Swagelok 3/4' Female NPT Facility Water Connections **Electrical Configuration** Voltage @ 60 Hz 208-230 Volts +/- 10% Voltage @ 50 Hz 200-220 Volts +/- 10% Phase Total Amps 37.2

Refrigerant R-507

Notes: Data @ 30°C/86°F unrestricted ambient air for air-cooled chillers.
Capacities decrease with increasing ambient temperature.
Data performed with HFE 7500 as the process fluid.

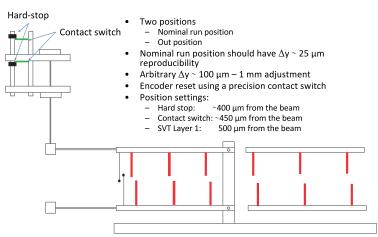
Cooling Capacity System F

Maximum Fuse Disconnect



60 Amp (required of customer)

SVT Cooling Requirements


SLAC

Slow Control Items :

- 2 x Pt100 Sensors
- 1 Flow meter 12 VDC, Analog Output
- 1 Check Valve
- 1 Solenoid Valve 24V interlocked with Sensors Temp., Flow, Vacuum Gauge Chiller Low/High Pressure via RS232 (monitor only)

SVT mover

Mover test

- Motor steps \leftrightarrow Encoder count \leftrightarrow SVT layer 1 Δ y
- Contact switch reproducibility
- Beam position reproducibility
 - Reproducibility without encoder reset
 - Reproducibility with encoder reset
- Encoder reset at in-position or out-position
 - Shorter travel from in-position, but probably the beam must be turned off.
 - Longer travel from out-position; takes longer; want to limit long travels.
- Mover speed
 - How fast can we move?
 - Speed-up/speed-down slowly.
- More?

Test at Jlab or SLAC?

Jlab

- VME Crate
- VME controller with VxWorks 5.5
- Stepper motor driver box
- Computer with EPICS software
- One stepper motor

SLAC

- Stepper motor and linear stage
- Vacuum box
- SVT support plate and connection to the linear stage
- C-support and base plate