SiD LoI: Benchmarking

Andrei Nomerotski, University of Oxford TILC09, Tsukuba, 17 April 2009

From Physics Studies to Benchmarking

- In Lol the emphasis of physics studies shifted towards
 - Realities required by engineering: material (amount and distribution)
 - Realities required by reconstruction algorithms: tracking & PFA

- Answer questions:
 - With added realism will it still deliver physics?
 - How does it compare to other concepts ?

Benchmarking Processes for Lol

Six compulsory processes proposed by WWS Software panel in consultation with the detector concepts

1.
$$e^+e^- \to e^+e^-H$$
, $\mu^+\mu^-H$, \sqrt{s} =250 GeV;

2.
$$e^+e^- \rightarrow ZH$$
, $H \rightarrow c\bar{c}$, $Z \rightarrow \nu\bar{\nu}$, $q\bar{q}$, \sqrt{s} =250 GeV;

3.
$$e^+e^- \rightarrow ZH$$
, $H \rightarrow \mu^+\mu^-$, $Z \rightarrow \nu\bar{\nu}$, $q\bar{q}$, \sqrt{s} =250 GeV;

4.
$$e^+e^- \to \tau^+\tau^-$$
, $\sqrt{s}=500 \text{ GeV}$;

5.
$$e^+e^- \rightarrow t\bar{t}$$
, $t \rightarrow bW^+$, $W^+ \rightarrow q\bar{q'}$, \sqrt{s} =500 GeV;

6.
$$e^+e^- \to \tilde{\chi}_1^+ \tilde{\chi}_1^- / \tilde{\chi}_2^0 \tilde{\chi}_2^0$$
, \sqrt{s} =500 GeV.

Additional SUSY process

7.
$$e^+e^- \rightarrow \tilde{b}\tilde{b}$$
, $\tilde{b} \rightarrow b\tilde{\chi}_1^0$, \sqrt{s} =500 GeV.

Standard Model Samples

- Generation of SM backgrounds
 - 250 and 500 GeV samples, 250 and 500 fb⁻¹
 - Large range of cross sections →
 Events are weighted
- All concepts used the same MC samples for benchmarking
 - WHIZARD Monte Carlo used to generate all 0,2,4,6-fermion and tquark dominated 8-fermion processes
- SiD used premixed inclusive SM samples in all analyses

Lol Data Analysis Flow

All analyses used:

- Java based org.lcsim framework
- Full simulation
 - GEANT4 based
 - Detector description consistent with Lol
 - Realistic amount of material
 - Some shape simplification
- Full reconstruction
 - Tracking: pattern recognition and fitting
 - SiD PFA
 - Lepton ID
- Data processing at SLAC, Fermilab and RAL using GRID
 - > 30 samples, ~ 50M events
 - Many issues encountered and efficiently resolved, many thanks to all involved!

Analysis Tools Tools

- Pythia jet clustering
- Marlin Kinematic Fitter
- Vertexing: LCFI package
 - NN based on flavour discriminants
 - Re-optimized for SiD
 - Beam-beam background study
 - One BC for Tracker, variable # of BC for VD

Pt Corrected Mass

Purity vs Efficiency

Highlights of Benchmarking Analyses

details will be discussed in five SiD presentations in the parallel session

Higgs at ILC

- Cornerstone of physics program
- Dominant production processes at ILC:

SM Higgs Branching Ratios

Higgs mass, GeV

Higgs Recoil Mass (1)

- Independent of Higgs decay modes
 - Sensitive to invisible modes
 - Precise determination of Higgs mass
- Reconstruct two leptons from Z decay, calculate invariant mass of recoiling object (Higgs)
- Lepton ID
 - Electron: track + EM object
 - Muon: track + MIP in CAL + stub in MUO
- Main selections
 - Two tracks
 - Acceptance selections
 - $-87 < M(I^+I^-) < 95 \text{ GeV}$
- Polarization: 80%R e⁻, 30%L e⁺
 - Suppress WW background but lower xsection

Higgs Recoil Mass (2)

$$e^+e^- \to e^+e^-H$$
, $\mu^+\mu^-H$, \sqrt{s} =250 GeV

Main backgrounds: γγ I+I-, W+W-, Z*Z

ee recoil mass, GeV

μμ recoil mass, GeV

Higgs Recoil Mass (3)

$$e^{+}e^{-} \rightarrow e^{+}e^{-}H$$
, $\mu^{+}\mu^{-}H$, \sqrt{s} =250 GeV

- Higgs mass:
 - linear least squares fit for 117< M_H< 137 GeV
 - Two template samples: 120 and 119.7 GeV Higgs mass
 - 60 MeV uncertainty with 250 fb⁻¹
- Cross section :
 - 4.7% uncertainty

80eR lumi	80eL lumi	Mode	$\Delta M_H \; ({ m GeV})$	$\Delta \sigma_{l^+l^-H}$ (fb)
$250 \; {\rm fb^{-1}}$	$0 \; { m fb}^{-1}$	e^+e^-H	0.102	0.620
$250 \; {\rm fb^{-1}}$	$0 \; { m fb}^{-1}$	$\mu^+\mu^-H$	0.075	0.388
$250 \; {\rm fb^{-1}}$	$0 \; { m fb}^{-1}$	$e^+e^-H + \mu^+\mu^-H$	0.060	0.329
$0 \; { m fb^{-1}}$	$250 \; {\rm fb^{-1}}$	e^+e^-H	0.090	0.812
$0 \; { m fb^{-1}}$	$250 \; {\rm fb^{-1}}$	$\mu^+\mu^-H$	0.077	0.558
$0 \; { m fb^{-1}}$	$250 \; {\rm fb^{-1}}$	$e^+e^-H + \mu^+\mu^-H$	0.059	0.460

Higgs→cc (1)

 $e^+e^- \to ZH$, $H \to c\bar{c}$, $Z \to \nu\bar{\nu}$, $q\bar{q}$

- Higgs couples to each particle in proportion to its mass
 - Discrimination between different BSM scenarios
- Signatures
 - 2 jets + Missing E
 - 4 jets
 - Two charm jets
- Preselections
 - Visible energy
 - No leptons with E > 15 GeV

Higgs \rightarrow cc (2)

- Neutrino channel selections
 - 20 < pT < 90 GeV</p>
 - Two jets, -log (ymin) < 0.8
 - Thrust < 0.95
 - 100 < angle between jets < 170
 - 100 GeV < inv. Mass < 140 GeV
 - Energy of isolated photon < 10 GeV
- Important: c- and b- tagging

Higgs \rightarrow cc (3)

- Hadronic channel
 - Kinematic and flavour tagging selections
 - Kinematic fit using mass constraints
- Variables combined in NN trained to discriminate
 - Inclusive Higgs and SM: NN Output 1
 - Signal Higgs and inclusive Higgs: NN Output 2

Higgs → cc : Results

Final selections

– NN Output 1 > 0.2

- NN Output 2 > 0.3

	Neutrino	Hadronic
# Sig. events	476	814
# SM events	570	569
# Higgs bk events	246	547
Signal efficiency	28%	47%
Signal o	6.8±0.7 fb	6.9±0.4 fb
Br (H->cc)	3.3±0.4%	3.3±0.2%
ΔBr/Br	~ 11%	~ 6%

NN 2 vs NN 1

Higgs $\rightarrow \mu\mu$ (1)

$$e^+e^- \to ZH$$
, $H \to \mu^+\mu^-$, $Z \to \nu\bar{\nu}$, $q\bar{q}$, $\sqrt{s}=250$ GeV

- Rare Higgs decay
 - Br= 0.01%
 - Need excellent mass resolution
- Main challenge: overwhelming background from SM two- and four-fermions
 - Total 19 signal events at 250 fb⁻¹
- Considered only neutrino and hadronic channels
- Muon selections:
 - Two muons with standard muon ID
 - $E_{\mu 1} > 50 \text{ GeV}$
 - $E_{u2} > 30 \text{ GeV}$

Higgs $\rightarrow \mu\mu$ (2)

Hadronic channel: signature μμqq Main selections:

- Force two jets, $y_{min} > 0.05$
- Number of charged tracks > 5
- Visible E > 140 GeV
- Jet energy and momentum selections
- Muon isolation and angular selections
- Di-muon mass compatible with Higgs mass 120 ± 20 GeV

Signal E_{u1}, GeV

SM bkg E_{II1}, GeV

Higgs $\rightarrow \mu\mu$ (3)

- Higgs mass resolution
 - 120.07 \pm 0.30 GeV
- Di-jet mass resolution
 - $-90.8 \pm 7.6 \text{ GeV}$
- Main background: ZZ
- Construct chi2 to test ZH and ZZ hypothesis
 - Used for final selection
- Results
 - 7.7 signal events
 - 39.3 bkg events
 - Cross section
 - 0.074 ± 0.066 fb
- Expect considerable improvement with a NN approach, promising results with FastMC

Signal $M_{\mu\mu}$, GeV

tski

Final selections: M_{uu}, GeV

Tau Production

$$e^+e^- \rightarrow \tau^+\tau^-$$
, \sqrt{s} =500 GeV

- Tau ID is a challenge for Tracker and calorimeter
 - π^0 reconstruction
- Used five tau decay modes to validate tau ID and measure cross section, asymmetry and polarization
 - Re-optimized PFA for tau objects
 - π^0 defined as a pair of photons with inv mass [0.06 0.18 GeV]
 - Two passes to account for merged π^0 photons

decay mode	# 7	$\# \pi^0$	EPcut	other criteria
$e^- \bar{\nu_e} \nu_{ au}$	0	0	-	HCAL energy $< 4\%$ of track energy.
$\mu^- \bar{\nu_\mu} \nu_\tau$	0	0	-	identified as μ by PFA
$\pi^- \nu_{ au}$	0	0	2.5	-
$ ho^- u_ au ightarrow \pi^-\pi^0 u_ au$	1	0	2.2	$0.6~{\rm GeV} < M_{\rho} < 0.937~{\rm GeV},~~E_{\gamma} > 10~{\rm GeV}$
$ ho^- u_ au o \pi^-\pi^0 u_ au$	2	1	2.2	$0.4 \; {\rm GeV} < M_{ ho} < 0.93 \; {\rm GeV}$
$a_1^- u_ au ightarrow \pi^-\pi^0\pi^0 u_ au$	3	1	2.2	$0.8 \text{ GeV} < M_{a_1} < 1.5 \text{ GeV}, E_{\gamma} > 10 \text{ GeV}$
$a_1^- u_ au ightarrow \pi^-\pi^0\pi^0 u_ au$	4	2	2.2	$0.8 \text{ GeV} < M_{a_1} < 1.5 \text{ GeV}$
$a_1^- u_ au ightarrow \pi^-\pi^+\pi^- u_ au$	0	0	2.5	$0.8 \text{ GeV} < M_{a_1} < 1.7 \text{ GeV}$

Tau Cross Section

- Main selections for tau events:
 - Forced to two jets
 - Total # tracks <7</p>
 - 40 < Visible E < 450 GeV</p>
 - Veto if electrons or muons
 - Angle between jets > 178°
- Efficiency 17.9%
 - Clean tau sample for cross section measurement
- Cross section fit to

$$d\sigma/d\cos heta\propto 1+\cos heta^2+8/3\cdot A_{FB}$$
 Precision ± 0.28%

 $A_{FB} = 0.4704 \pm 0.0024$

+80e- -30e+ -> tau+tau-

Tau Polarization

- Sensitive to new physics, for example multi-TeV Z'
 - Relies on tau ID and good 4-vector reconstruction
- Consider all but a₁ decay modes
- Achieved high efficiency and good purity
 - SM bkg below 2%

decay mode	Correct ID	Wrong ID	ID eff	ID purity	SM bgnd
$e^-ar{ u_e} u_ au$	39602	920	0.991	0.977	1703
$\mu^- \bar{\nu_\mu} \nu_ au$	39561	439	0.993	0.989	1436
$\pi^- \nu_{\tau}$	28876	2612	0.933	0.917	516
$\rho^- \nu_{\tau} \rightarrow \pi^- \pi^0 \nu_{\tau}$	55931	8094	0.790	0.874	1054
$a_1^-\nu_\tau\to\pi^-\pi^0\pi^0\nu_\tau$	18259	11140	0.732	0.621	847
$a_1^- \nu_\tau \rightarrow \pi^- \pi^+ \pi^- \nu_\tau$	21579	2275	0.914	0.905	141

Tau Polarization

- Use optimal observable ω
 - For e or π decays: $\omega = E_e / E_{beam}$
 - For ρ decays: ω is a complicated function of ρ and π angles in τ and ρ rest frames
- Estimate the polarization using linear least squares fit of ω distribution
 - Dependence of ω on the polarization is obtained from an independent sample

Top Quark Properties

$$e^+e^- \rightarrow t\bar{t}$$
, $t \rightarrow bW^+$, $W^+ \rightarrow q\bar{q}'$, \sqrt{s} =500 GeV

- Consider only hadronic decay mode:
 - Six jet final state
- Main selections

	selection	value
	\mathbf{E}_{total}	$> 400~{\rm GeV}$
	$\log(y_{min})$	> -8.5
	number of particles in event	> 80
	number of tracks in event	> 30
$50~{\rm GeV} <$	W mass	$<110~{\rm GeV}$
	NN_{b-tag} output for the most b-like jet	> 0.9
	NN_{b-tag} output for the 2^{nd} most b-like jet	> 0.4
	Sum of NN_{b-tag} outputs for all jets	> 1.5

Top Mass Selections

- B-tagging is important
 - Powerful discriminant
 - Reduce jet combinatorics
- After all selections:
 - Efficiency 31%, purity 85%

Top Mass

- Used kinematic fitter
 - Constraints: E_{CM} , M_W , $M_{top1} = M_{top2}$
- Two methods to determine m_{top}
 - Curve fitting
 - G1+G2+BW+P2
 - $M_{top} = 173.918 \quad 0.053$
- Template method: 'Data' compared to two template samples with M_{top} shifted by 0.5 GeV
 - Calculate χ^2
 - χ^2 /NDF ≈ 1 for same M_{top}

$$\chi_1^2 = \sum_{i=0}^{Nbins} \frac{(y_{template1,i} - y_{data,i} + \delta_i)^2}{\sigma_{template1,i}^2 + \sigma_{data,i}^2 + \sigma_{SM,i}^2}$$

6 jet invariant mass, GeV

 \square χ^2 + 1 used to estimate δM_{top}

0.038 GeV

Top Forward-Backward Asymmetry

- Top anomalous coupling are sensitive to BSM physics
- Used combined discriminant sensitive to quark charge
 - Momentum weighted vertex and jet charges
- Plot cos
 ⊕ dependence, calculate A_{FB} for b- and t-quarks
 - t-quark requires correct pairing of b and W
 - Sensitive to performance of forward detectors, bins with extreme $\cos \Theta$ have large SM bkg

b-quark charge discriminant

$$A_{FB}^b = 0.272 \pm 0.015$$

 $A_{FR}^t = 0.342 \pm 0.015$

SUSY: Chargino/Neutralino

Select a particular SUSY model:

- Chargino/neutralino predominantly decay into on-shell W/Z
- W/Z energy distribution depends on the parent and LSP mass

- Signature:
 - 4 jets + missing energy
 - WW / ZZ separation tests PFA performance

Chargino/Neutralino Selections

Main selections:

- Force 4 jets
- Apply cuts:

cut	value
E_{jet}	$> 10~{ m GeV}$
Fraction of EM energy in each jet	< 80%
Number of tracks	> 20
Total visible energy	$<250~{\rm GeV}$
Thrust	< 0.85
$\cos \theta_{thrust}$	< 0.9
$\theta(1, 2)$	$>60^{\circ}$
$\theta(1, 3), \theta(1, 4), \theta(1, 3)$	$>40^{\circ}$
$\theta(2, 4), \theta(3, 4)$	$> 20^{\circ}$
Acoplanarity of two reconstructed gauge bosons	$>10^{\circ}$

Chargino/Neutralino Separation

- Kinematic fitting to improve energy and mass resolution
- Correlation of two m_V is a powerful selection criteria
 - C1 xsection is x10 N2 xsection

Chargino events signal

130 GeV < M(W1) + M (W2) < 172 GeV

Neutralino events signal

M(Z1) + M(Z2) > 172 GeV

C1/N2 Samples

- Purity
 - Chargino 75%
 - Neutralino2 34%
- Generated several template samples to determine masses

sample	$m_{\tilde{\chi}^0_1} \; ({ m GeV})$	$m_{\tilde{\chi}_1^{\pm}}$ (GeV)	$m_{\tilde{\chi}^0_2} \; ({\rm GeV})$
Reference	115.7	216.7	216.5
$m_{ ilde{\chi}^0_1}+0.5$	116.2	216.7	216.5
$m_{\tilde{\chi}_1^{\pm}} + 0.5$	115.7	217.2	216.5
$m_{\tilde{\chi}^0_2} + 0.5$	115.7	216.7	217.0

C1/N2 Mass Determination

- 'Data' compared to template samples
- χ^2 + 1 used to estimate mass uncertainty :
 - C1 95 MeV
 - N2 369 MeV

Sbottom Production

- Cosmology motivated SUSY predicts small mass split between LSP and NLSP
 - Small visible energy in the detector
 - Assume NLSP is sbottom
 - Two b-jets + MET
 - Jet clustering and b-tagging are challenging for low energy jets
- Huge jjγγ and jjγ backgrounds
 - Need to use forward calorimeter for rejection

Sbottom Production 5 105

- Main selections
 - Visible energy < 80 GeV
 - Number of particle
 - Forward EM veto, acceptance 10 mrad, E > 300 MeV
- Main discriminating variables combined in NN, also adding
 - Acoplanarity
 - Maximum pseudorapidity
 - $-\Delta R$
- Results
 - 15% Cross section measurement for

$$m_{\tilde{b}} = 230 \, \mathrm{GeV}$$
 and $m_{\tilde{\chi}_1^0} = 210 \, \mathrm{GeV}$

 Sensitive to sbottom-neutralino mass difference down to 10 GeV

Significance vs # signal events

Comments and Remaining Issues

- Analysis techniques are as important as properties of detectors
- Pleased to see little difference between fast and full simulations for one of the most difficult channels, top → 6 jets
- Focussed on compulsory Lol channels. Many analyses were limited by available time, resources and effort.
 - Some analyses could not be fully completed on this time scale;
 ex ZHH: have results but need more time to understand them
- Started but not finished studies of effects of beam beam background on
 - b-tagging studies: no effect if up to 10 BCs integrated in VD but need to add a point with 100 BCs
 - top mass measurement with 1 BC of beam-beam background
- Plan improvements for several analyses

Summary

- Benchmarking analyses were key new ingredients of the SiD Letter of Intent
- We performed seven analyses using full simulation and reconstruction
- Big effort to process all data and obtain results with very limited time and resources. Many thanks to all involved for long hours and heroism!
- Pleased to see good results in all cases, insignificant deterioration due to realistic material description and realistic reconstruction algorithms
- Will need to finalize several things
- Ready to move forward

Backups

SUSY Mass Templates

- Templates have different SUSY masses
- Difference between 'Data' and templates

Di-jet Mass Resolution

- For SUSY analysis
- Resolution
 - -~8 GeV before KinFit
 - -~4 GeV after KinFit

