HPS SVT Review, November 5, 2013

SVT Data Acquisition

Ryan Herbst

Overview

- Generic SVT data flow
- HPS Test beam DAQ
 - Major components
 - Lessons learned
- HPS requirements
- HPS DAQ configuration
- New work required for HPS
- Integration testing strategy
- Effort
- Schedule
- Budget

SVT Data Flow

- ADC RX
 - Convert ADC serial data to parallel samples
- Sample framing
 - Initial ADC data processing
 - Sync detect
 - Framing and reorganization of samples
- Data reduction
 - Firmware based edge detect
 - Baseline subtraction
 - Threshold compare
- Data buffer
 - Memory for storing N events

- Event Building
 - Combine event data from multiple sources
 - Add trigger/timing information
 - Combine multiple events into large blocks
- Timing and trigger
 - Receive timing and trigger data from JLAB
 - Distribute to front ends
- ROC application

۲

- State control
- Ethernet communication to JLAB DAQ
- Event record passing

HPS Test SVT Data Acquisition

RCE platform close to chamber

SVT Hybrid

- Incoming clock & trigger buffered, 2 loads per output (2.5V supply)
- I2C bus for APV25 configuration & temperature sensor readout
- Power inputs distributed to all parts
- Bias routed directly to wire bond pads with local bypassing
- Existing hybrid had loading options to allow AP25 outputs to be buffered
 - We determined this was not required
- Existing hybrid connects through twisted pair cables and DB25 connector
 - Defined by short schedule
 - Problematic for bias voltages above 500V

SVT HPS Test RTM

- HPS Test
 - 60 Channels of buffer and ADC
 - Power sourced from "dirty" ATCA distributed voltages
 - Option for JLAB trigger interface (disables 15 ADC channels)
 - First spin board with power reworks
 - DB50 connectors to interface to twisted pair signals from vacuum chamber

RCE Platform GEN2 COB

HPS Test Issues

- Reflections discovered in long run cables with vacuum flange
 - FPGA based FIR added to design
 - Downstream reflections on clock and trigger may cause stability issues
- Clock & trigger skews discovered in long run cables
 - ADC sample adjustment applied per FPGA instead of per hybrid
 - Hybrids on the same FPGA did not necessary want the same ADC phase adjustment
 - ADC sample phase adjustment did not cover full clock cycle (edge +7nS)
- Occasional noisy hybrids and lost sync during runs
 - Once per hour level problem
 - Possibly cause is cable reflections on clock & trigger lines
 - Possibly cause is noise pickup on long cables causing clock & trigger glitches
 - Longer duration system testing required
- ATCA power supply failure
 - Most likely due to radiation
- APV25 trigger rate limited to 43Khz (theoretical fixed rate trigger)
 - Limit is due to enforced dead time during APV25 readout
 - Trigger serialized with readout
 - FPGA firmware did not support APV25 burst capabilities
- Event building & ROC limitations
 - Linux PC based ROC was rate limited
 - Max data rate of ~16Khz at 1 event per APV per trigger (test mode data)
 - Limited by supported buffer depth (8 events)
 - ROC application did not support event bundling
 - Limited by Ethernet latency and bandwidth

Commissioning Issues

Requirements for HPS

Basic requirements for the SVT DAQ

- Continuous 40Mhz readout of 23'040 channels
- Triggered readout of up to 50Khz
- Low noise (S/N>20 to achieve high spatial resolution)
- Facilitate hit time reconstruction ~2ns
- High bandwidth: up to 100MB/s

Additional requirements

- 16 more hybrids to support additional layers
 - 40% increase in signal and power density & data bandwidth

SLAG

SVT Data Acquisition For HPS

Increase size of event blocks (reduce per event overhead)

Power Distribution Changes

- HPS Test provided all power from external supplies
 - Per hybrid:
 - DVDD: 2.5V (no sense)
 - AVDD: 2.5V (with sense)
 - V125: 1.25V (with sense)
 - Bias: 190V (no sense)
- HPS will distribute power at front end card
 - Per front end card
 - DVDD: 5-7V
 - AVDD: +/- 5-7V
 - 4 channels of detector Bias: 190V (design for up to 1KV)
 - Front end card provides hybrid power control & monitoring
 - Bridge to epics controls through DAQ
 - Per hybrid power on/off control
 - Per hybrid low voltage current monitoring
 - Bias control & monitoring done at supplies (direct link to epics)

New Hardware For HPS

- Layer 4-6 Hybrid Boards
 - Required to support additional tracker layers
 - Low risk changes to existing hybrid schematics
- Front end board
 - Required to minimize in chamber cabling and shorten cable lengths
 - Analog portion uses existing RTM schematic blocks
 - Uses Xilinx Kintex-7 FPGA
 - Power conversion and distribution for hybrid boards based on existing designs
 - High speed digital serial outputs use miniSAS cables tested for LSST project
- Vacuum flex cables
 - Required to simplify in vacuum cabling
 - SLAC has experience with flex cables of this nature
- Vacuum flange board
 - Required to optimize vacuum flange feed through density
 - New development at SLAC being targeted towards multiple projects
 - Based on LSST R&D but custom board for HPS project
- Gen 3 RCE Platform
 - RCE components purchased from DAQ R&D
 - 1 simple custom RTM mezzanine board for HPS (timing & trigger interface)

New SVT Hybrid

- Existing Hybrids for layers 1-3
 - Bias voltages routed to separate connector
 - Testing on existing twisted pair shows we can operate at 1KV
 - Interface board to connect DB25 signals to flex cable
 - Short path from hybrid to flex cable
 - Flex cable design has not yet started
 - Still some outstanding interface questions
- New Layer 4-6 Hybrid Boards
 - Required to support additional tracker layers
 - Remove unused components to shrink board size
 - Schematic and layout complete
 - System review last week
 - Some minor changes related to GND and signals returns
 - Expect to release board within the week

New Front End Board

- New front end board supports up to 4 hybrids
 - 6 for layers 4-6, 3 top, 3 bottom (4 hybrid each)
 - 4 for layers 1-3, 2 top, 2 bottom (3 hybrids each)
- Schematic complete, waiting for layout

Magnetic Field & Vacuum Testing

- Concern with specific front end board components in a magnetic field
 - Metal encased oscillators
 - Solid core inductors used in modular switching supplies
- Front end board addresses these issues
 - Non-metal cased oscillators have been sourced
 - Air core inductor based switching supply has been designed and tested
- All components have been vacuum tested

SLAO

Flex Cables & Flange Boards

• Flex Cables

- Connectors at hybrid and front end board have been selected
- Exact mechanical form factors yet to be determined
- Schematics are very simple
- Flange Boards
 - Two separate types are required, power and signal
 - Flange board for signal penetration is complete, waiting for layout
 - 1 board to support 3 front end boards
 - 4 flange boards mounted in 6" flange
 - All active components are socketed
 - Power supplies
 - Optical modules
 - Flange board for power has not yet been designed
 - Need to pick internal and external power connectors
 - Bias power connectors may be a challenge

SLAC GEN3 RCE Platform

- Developed by SLAC under generic DAQ R&D program (Huffer, Haller, Herbst)
 - Core software and firmware with hooks for experiment specific software and firmware
 - Strong internal support for base platform as well as assistance with custom development
- COB (Cluster On Board)
 - Carries 1 DTM (Data Transport Module)
 - Single RCE for switch management & timing distribution
 - Carries 4 DPM (Data processing module) daughter boards
 - Each DPM supports 2 RCE (Reconfigurable Cluster Element)
 - RCE is Xilinx ZYNQ based FPGA
 with embedded ARM processor
 - Provides data processing firmware and software
 - High rate DAQ engine targeted towards > 100Khz trigger rates
 - Supports RTEMs & Linux ¹⁸

SLAC GEN3 RCE Platform

- Standard SLAC RTM
 - 12 bi-directional channels per RCE
 - Will use Fiber patch panel to interface to flange boards
- RCE/RTM Status
 - Rev1 COB, DTMs & DPMs tested
 - Rev1 DPMs had memory problems due to manufacturing defects
 - Rev 2 DPMs in house last week, manufacturing problems resolved
 - Rev2 COBs arrive this week (minor fixes and updated clock distribution)
 - Rev2 DTMs next month (minor fixes)
 - RTM due by end of the year
- HPS RTM Mezzanine Card
 - Due by end of the year

New Firmware For HPS

- Front end board firmware
 - Reuse configuration and ADC interface firmware blocks
 - Create Kintex-7 PGP2 GTP interface firmware (completed)
 - Reuse major PGP2 blocks (data transport, register read/write)
 - New I2C controller for improved stability (completed)
 - New register address interconnect (completed)
 - Improved ADC sample phase control (full clock cycle granularity) (completed)
 - Low risk firmware effort
 - Need simplified standalone version (Ethernet) for Hybrid testing
- Data processing firmware (RCE Platform)
 - Reuse major blocks (filter, sample packing, data reduction)
 - Add support for burst triggers in APV25
 - Add firmware support software event blocking & buffering
 - Low risk firmware effort
- Trigger firmware (RCE Platform)
 - Integrated official JLAB TI firmware
 - Modifications for new timing/trigger distribution structure
 - Low risk firmware effort

New SVT Data Flow

- RCE platform is fully configurable
 - 2 COB operating an independent units
 - 10 data RCEs and 2 ROC RCEs
 - 1 front end per RCE
 - 2 DTM RCEs for trigger interface
- Data RCE processes raw ADC data
 - Event builds data at full trigger rate (50Khz)
 - Packs events into blocks defined by buffer size
 - Estimate 32 40 events per block
 - Blocks are then forwarded to ROC DPM over Ethernet
 - May be able to run Linux but RTEMS will have better performance
- ROC RCE accepts event blocks from data RCE nodes and trigger RCE node (DTM)
 - Operates at lower rate of trigger rate / block size (~1 2 Khz)
 - Arm Linux

New SVT DAQ Software

- Readout List Application
 - Front end specific code developed by SLAC
 - Shared memory interface to control and data modules
 - Interface to JLAB
 - New version with minimal library requirements provided by JLAB (Sergey)
- SVT Control & Monitoring Core Software
 - Interface to data processing RCEs, front end boards & APV25s
 - Configurations pulled from XML files
 - Local control & monitoring GUI
 - Slave to ROC and readout out list applications during run
 - Based on existing generic DAQ software
 - Minor changes from test run version
- Event builder software
 - Interface to event building firmware layer
 - Hooks for SVT specific debug display
 - Handoff to read out list application
- Slow Controls
 - Provides bridge between front end board control and EPICs
 - Required for hybrid power supply control and monitoring
 - Thermal feedback

Integration Testing Strategy

- Phase 1: SLAC only software on ROC platform
 - Test data generators in firmware on each DPM
 - Trigger signal and data generators in firmware on DTM
 - Local readout list application without JLAB interface
 - Look for rate bottlenecks
- Phase 2: Add real JLAB trigger interface
 - Verify we can receive trigger information from JLAB at rate
- Phase 3: Add CODA and JLAB ROC application
 - Verify trigger rate holds up when transferring data to CODA event builder
 - Verify alignment of trigger data
 - Send as test platform to JLAB for testing against their system
- Phase 4: Add real hybrids
 - Start connecting real hybrids and SVT as modules become available

Summary of SVT DAQ

SVT DAQ for HPS based on HPS Test DAQ

- Repackaging of test run components
- Some new hardware

Effort Comparison

- HPS Test
 - Manpower
 - 1 FTE part time for 10 months
 - Ryan Herbst
 - R&D
 - Lots of new things to learn
 - APV25 operation
 - JLAB DAQ software and JLAB trigger hardware
- HPS
 - Manpower
 - 2 FTEs for 18 months
 - Ben Reese (full time)
 - Ryan Herbst (part time)
 - Layout and technician support
 - Tung Phan (layout)
 - Lupe Salgado (e-shop)
 - Additional software support from physicists
 - Sho Uemura
 - Per Hansson
 - Omar Moreno
 - R&D
 - Already familiar with all major hardware components
 - New hardware leveraged from SLAC DAQ R&D
 - Familiar with JLAB DAQ software & JLAB trigger interface
 - Repackaging of existing hardware and firmware
 - Bulk of effort in embedded ROC & event builder software

Total cost: 340k\$ Ave. 26% contingency

Started with keep alive funds

Project Overview

Project Budget

- BOM costs spread relatively evenly across sub-project
 - Total contingency of 33%
- High cost items has low risk
 - Power supplies are standard Wiener MPOD's
 - RCE platform components in prototype or production stage (expected Aug., need by by \$9,032 Nov.)
 - RCE platform purchased from SLAC DAQ group
- Keep alive funds used to keep early subprojects on schedule
 - Long lead-time items purchased (APV25 chips for hybrids)

SLAC

Total 264k\$ (w/o contingency & OH)