The HPS SVT and SVT DAQ Projects

Tim Nelson - SLAC SVT/SVT DAQ Review November 5, 2013

Outline

- Requirements and Overview
- Working prototype: HPS Test SVT
- •HPS SVT for 2014-2015 running
- Tasks and project organization

Physics

Beam Backgrounds Dominate Occupancy

To minimize, run with DC beam and...

- use fast ECal to trigger on coincident pairs
- trigger readout of tracker at highest possible rate in short window
- use excellent time resolution in tracker to select hits in trigger window

SVT Requirements

Detailed simulation of physics performance for proposal determines requirements

- Material budget
 - 0 material along beamline (detector in vacuum)
 - 0.7% X₀ / 3d measurement in tracking volume
- Acceptance
 - >15 mr from beam axis
- Hit efficiency and resolution
 - >99% single-hit efficiency
 - position: $\sigma_x < 125 \ \mu m$, $\sigma_y < 10 \ \mu m$ (performance limited by multiple scattering / beam size)
 - time: $\sigma_{t0} \approx 2 \text{ ns}$
- Occupancy / speed
 - trigger rate > 20 kHz
 - peak occupancy \approx 4 MHz/mm²
- Radiation
 - Bulk damage from electrons equivalent to $> 1 \times 10^{14}$ I MeV neq.
 - Neutrons from backscattered beam
 - X-rays from target

HPS Test SVT

Proposed 3/11, In

- Develop techni
- Prove operation

• Capable of A' p

Linear shifts fo tracker/target mo

3/11, Installed 4/12		Layer I	Layer 2	Layer 3	Layer 4	Layer 5	
	z position, from target (cm)	10	20	30	50	70	l
technical solutions	Stereo Angle (mrad)	100	100	100	50	50	l
	Bend Plane Resolution (µm)	≈ 60	≈ 60	≈ 60	≈ 120	≈ 120	
perational principles	Non-Bend Resolution (µm)	≈ 6	≈ 6	≈ 6	≈ 6	≈ 6	
of A' physics	# Bend Plane Sensors	2	2	2	2	2	
	# Stereo Sensors	2	2	2	2	2	
	Dead Zone (mm)	±1.5	±3.0	±4.5	±7.5	±10.5	
	Power Consumption (W)	7	7	7	7	7	
shifts for rget motion	wire scanner target	Ve M	o r	g n e	Pattern Re	ecognition u m	
e	Motion	e lever	S	Suppo	ort plates	Hinge "C" sup	ed port 6

SVT Requirements:Test Run

Due to JLab Hall B schedule constraints, test run did not include high intensity electron beam:

- Material budget
 - 0 material along beamline (detector in vacuum)
 - 0.7% X₀ / 3d measurement in tracking volume
- Acceptance
 - >15 mr from beam axis
- Hit efficiency and resolution
 - >99% single-hit efficiency
 - position: $\sigma_x < 125 \ \mu m$, $\sigma_y < 10 \ \mu m$ (performance limited by multiple scattering / beam size)
 - time: $\sigma_{t0} \approx 2 \text{ ns}$
- Occupancy / speed
 - trigger rate > 20 kHz
 - peak occupancy \approx 4 MHz/mm²
- Radiation
 - Bulk damage from electrons equivalent to > 1×10^{14} I MeV neq.
 - Neutrons from backscattered beam
 - X-rays from target

Met and verified Met, not verified not met by design

SVT Overview - SLAC, UCSC, FNAL

Details in next talk ...

SVT DAQ Overview - SLAC

Details in Ryan's talk...

Everything Else - SLAC, JLab, UCSC

Many other things required for success!

- Controls and Interlocks
- Beam protection
- Software
- Testing and integration with JLab DAQ
- Alignment, calibration, commissioning

Details in Pelle's talk...

Schedule, Budget, Resources

- Schedule: detector tested and ready for shipping 8/15/2014
- Budget:
 - SVT: \$506K + \$149K contigency
 - SVT DAQ: \$608K + \$174K contingency
- Resources: three strong silicon groups
 - SLAC: Nelson (SVT), Herbst (DAQ), Hansson, Jaros, Maruyama, Reese, Oriunno + designers, techs, students
 - UCSC: Grillo, Fadeyev, Martinez-McKinney + techs, students
 - Fermilab: Cooper + techs

Details in final talk...