October 17th 2013

New APD installation

M.Battaglieri INFN-GE, Italy

APD replacement

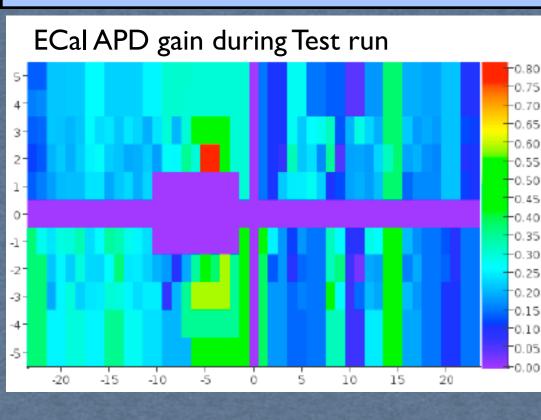
We want to replace the ECal S8148 0.5x0.5 cm2 (CMS-like) with new Hamamatsu Large Area APD S8664-1010 1.0x1.0 cm2

Hamamatsu APD (S8148) 5x5 mm²

Active area	$5x5mm^2$
Operating voltage(Vr)	~380V
Capacitance	70pF
Serial resistance	3Ω
Dark Current	<10nA
Quantum Efficiency	~72%@420nm
$1/M^{a} \times dM/dV(M=50)$	3.3%
1/M×dM/dT(M=50)	-2.3%
Excess Noise Factor (M=50)	2
Distance to breakdown (Vb-Vr)	(30-40)V
Effective thickness	~5µm
Gain range	Up tp 1000
^a M is a gain value, T-temperatur	e

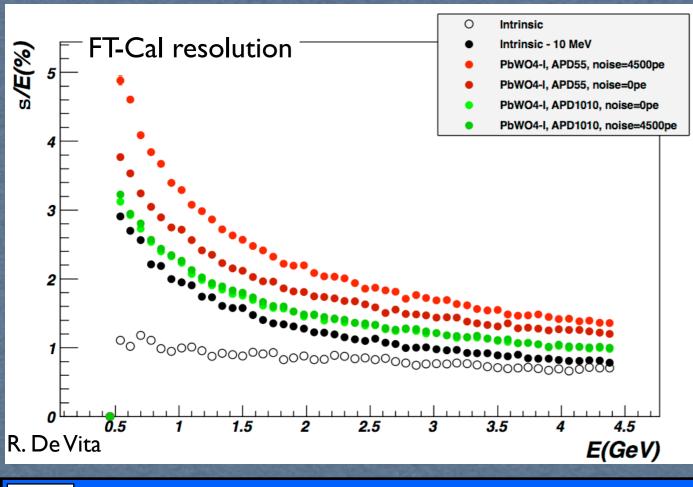
Hamamatsu LAAPD (S8148-1010) 10x10 mm²

Type No.		Peak * ³ sensitivity wavelength λp	sensitivity S M=1	Quantum efficiency QE M=1 λ=420 nm	Break volt Vi	down age βR)0 μΑ	Temperature coefficient of VBR	Dark * ³ current ID		current ID		current ID		current ID		Cut-off frequency fc	Terminal * ³ capacitance Ct	NOISE	Gain Μ λ=420 nm
					Тур.	Max.		Тур.	Max.										
	(nm)	(nm)	(A/W)	(%)	(V)	(V)	(V/°C)	(nA)	(nA)	(MHz)	(pF)								
S8664-02K								0.1	1	700	0.8								
S8664-05K]							0.2	1.5	680	1.6								
S8664-10K]							0.3	3	530	4								
S8664-20K	320 to	600	0.24	70	400	500	0.78	0.6	6	280	11	0.2	50						
S8664-30K	1000	000	0.24	10	400	500	0.70	1	15	140	22	0.2	50						
S8664-50K	Ι	[[[3	35	60	55								
S8664-55	Ι	[[[5	50	40	80								
S8664-1010]							10	100	11	270								


Advantages

- * 10% Gain-matched
- * 4 times more light
- * Lower electronic noise
- (when coupled to new IPN-Orsay preamps)

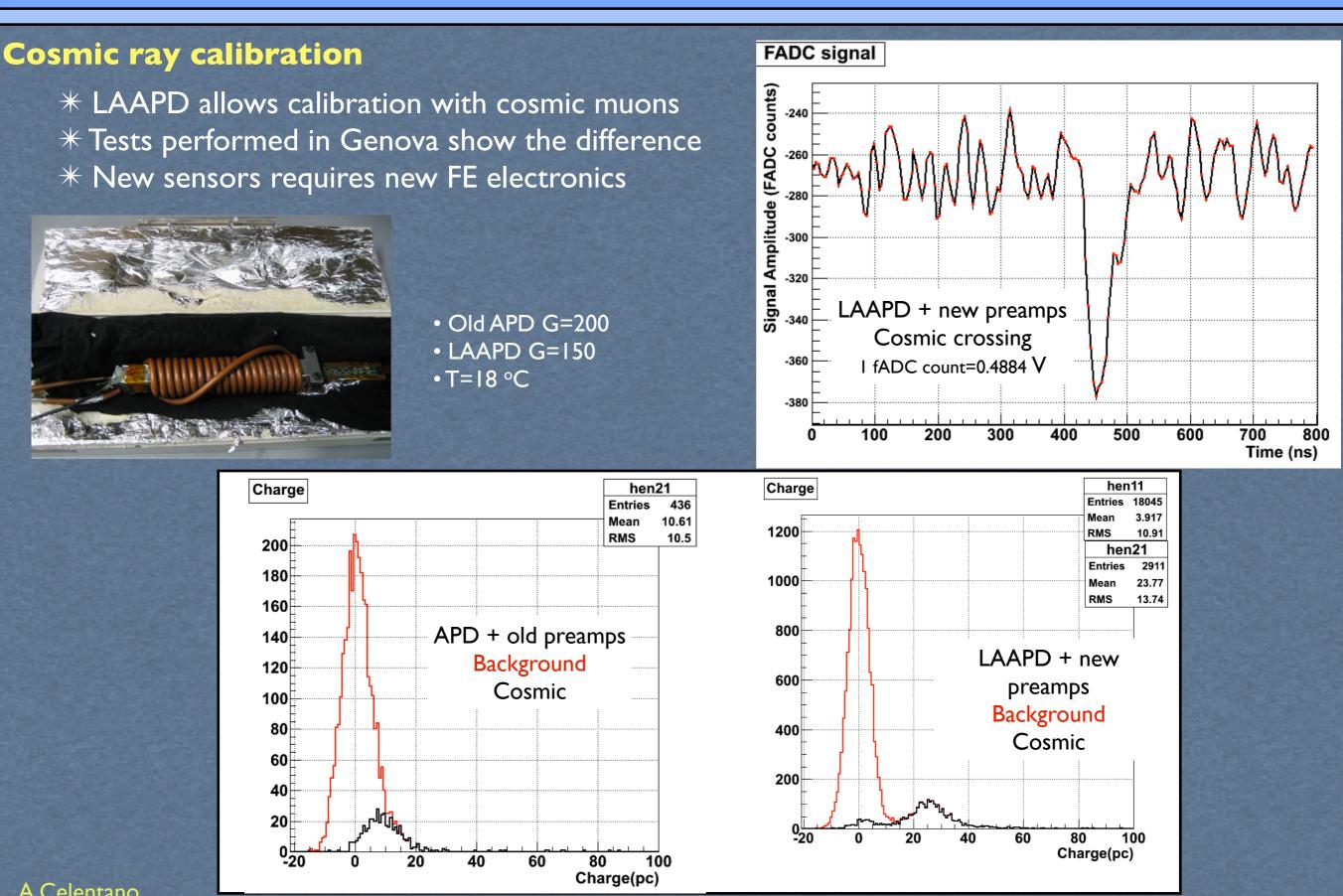
- * Lower threshold values (highest rate)
- * Better A'mass resolution
- * Cosmic ray calibration


2

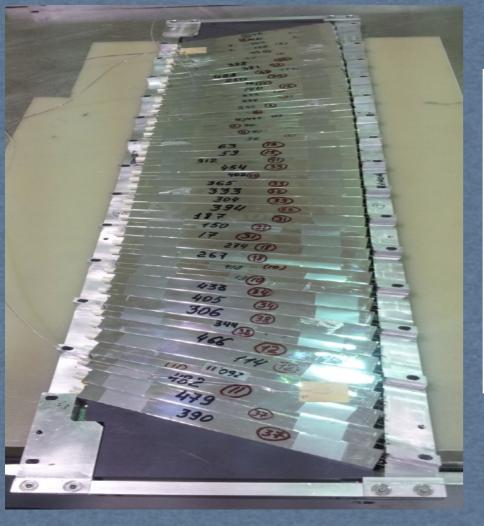
Gain-matching

* New APDs will be provided gain-matched at 10% level
* Best running condition selecting the G~150
* APD + crystal assembly will be tested for max uniformity

* Uniformity of trigger thresholds
 * Lower threshold values (highest rate)



Energy resolution


* 4x area provides 4 times more light
* Lower electronic noise when coupled to new IPN-Orsay preamps

* Better A'mass resolution

A.Celentano

Mechanical constraints Support PbWO4 crystal frame wrapped Stainless with VM200 steel APD Mother board foil wires Preamplifier **Optical fiber** connector Connector Avalanche Photo Diode Connection board Preamplifier + thermal screen support rails Flat cable

* LAAPDs match the back size of the PbWO crystals
 * No interference with the Al support grid
 * Clearance for new APDs checked with IPN-Orsay (pin position)

APD replacement phases

- Procurement
- APD Benchmarking
- ECal dissemble
- Crystal preparation: ungluing old APD
- Gluing LAAPD
- Test [Crystal + APD + LED-nose + wrapping] assembly
- ECal reassemble

ECal Review

LAAPD procurement

* Vendor (Hamamatsu) and model (S8664-1010) identified and contacted
* ~500 pcs grouped by 12 (10 + 1 spare + 1 potentially rejected per 10 slot of each HV channel)
* Each group with a fixed V_{Nominal} to provide the same gain (G=150 at 205°C)
*The order will be divided into two parts:

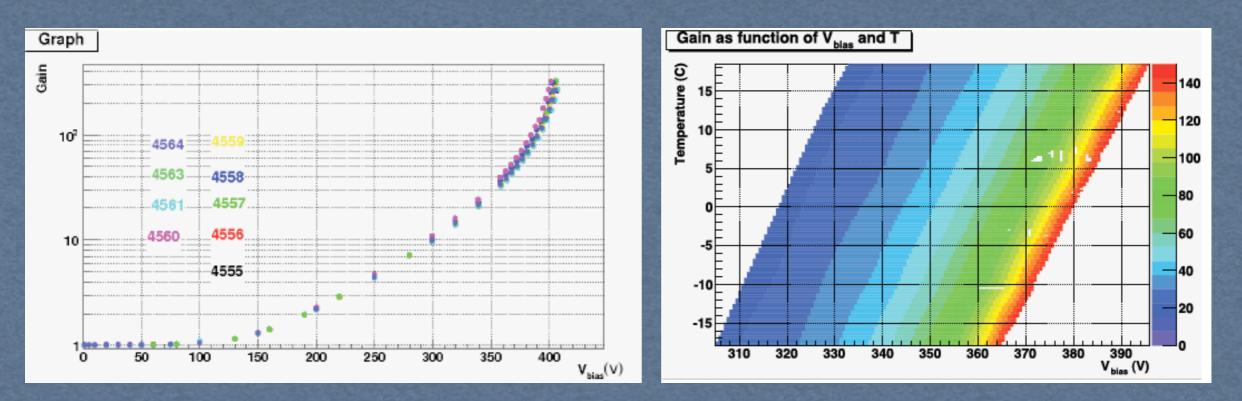
- 216 pcs to be ordered by INFN from Hamamatsu-Italy
- 312 pcs to be ordered by IPN-Orsay from Hamamatsu-France
- * The price per APD has been quoted 400 euro (from more than 500 pcs)
- * The two orders will be considered and processed together from Hamamatsu-Japan

* Expected time for LAAPD procurement:

2 months for paperworks

- + 100-120 days for delivery
- + 3 weeks contingency
- $= \sim 7$ months

- October 1st INFN/IPN money secured
- October 10th: bid paperworks started
- December 1st 2013: order placed
- Apr 23rd: LAAPD at JLab


LAAPD benchmarking (I)

*Once at JLAB the LAAPD need to be benchmarked * APD comes with V_{BD} , $V_{Nominal}$, for G=150 (T=20°C) certified by the vendor

* Characterization at 3 values of T (T=15°C,T=18°C,T=23°C) close to the working point; other T's obtained by interpolation

$$G(V,T) = \frac{I_{on}(V,T) - I_{off}(V,T)}{I_{on}(G=1) - I_{off}(G=1)}$$

- Dark current vs V_{Bias}
- Dark current vs G (expected linear)
- I/G x dG/dV vs G
- G(V,T)

LAAPD benchmarking (II)

* Largely reuse of the measurement facility used to characterize the 380 FT-Cal LAAPDs
* Automatic bias V-scan in a T-controlled environment measuring I
* The system only requires a new 110V/60Hz powered chiller, working in the range T=10°C -30°C
* 24 sensors-at-time, 2 batches per 24h = 48 working/day and 11 working day in total

* Real week: 4 working day + 1 day to analyze data for a total of 3 cal weeks

* Expected time for LAAPD benchmarking:

- 3 cal weeks
- +I contingency
- + I for a possible 2nd measurement of the 30% of the whole lot
- = 5 cal weeks

- Feb Ist: FT-Cal benchmarking facility at JLab
- February: interface with the new chiller
- March 1st: testing facility operational
- Apr 23rd: APD at JLab
- Jun Ist: all LAAPD characterized

ECal dissemble

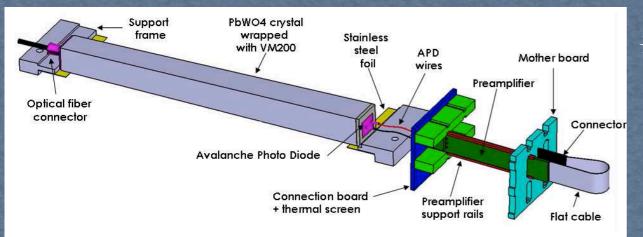
* ECal dissemble procedure just started

- two ECAI parts on the lab desk
- remove preamplifiers (to be sent to Orsay for upgrade)
- * Technicians from Orsay expected for mid November
- * I week to remove frame
- * Few days to have all crystals ready for further processing (APD ungluing, re-gluing ...)
- * Vessel + frame ready to be sent to Orsay for modification before the end of the year

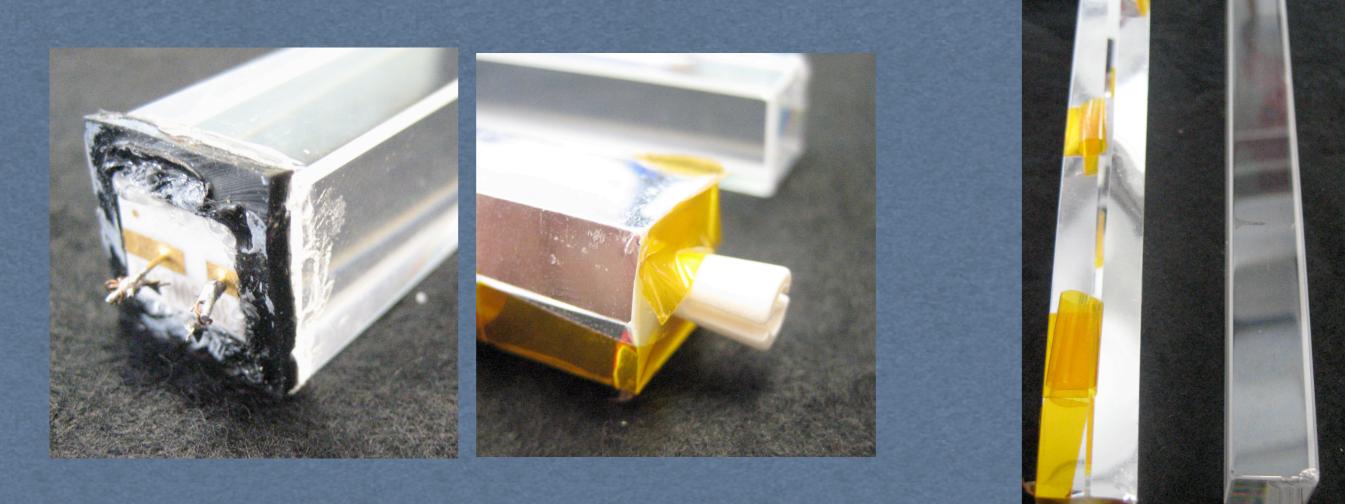
* Expected time for crystal preparation:

4 cal weeks

+2 contingency

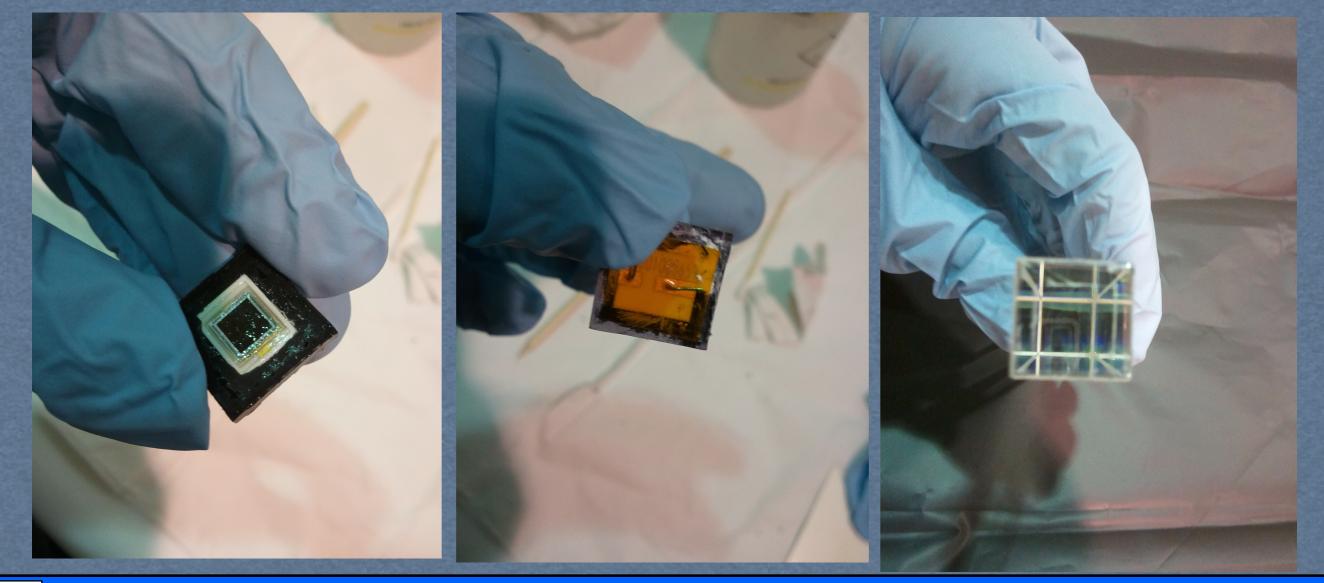

- +2 pause to wait for frnch
- = 8 cal weeks

Deadlines & Milestones:


- now Nov 1st: preamps ready to be sent to Orsay
- Dec 1st: all crystals ready for further processing
- Dec 15th: Vessel + frame sent to Orsay

9

Crystal preparation


- * Crystals assembly includes 4 parts:
 - plastic-nose
 - crystal
 - -VM2000 wrapping
 - APD To be replaced
- To be replaced Kept
- Kept

Crystal preparation

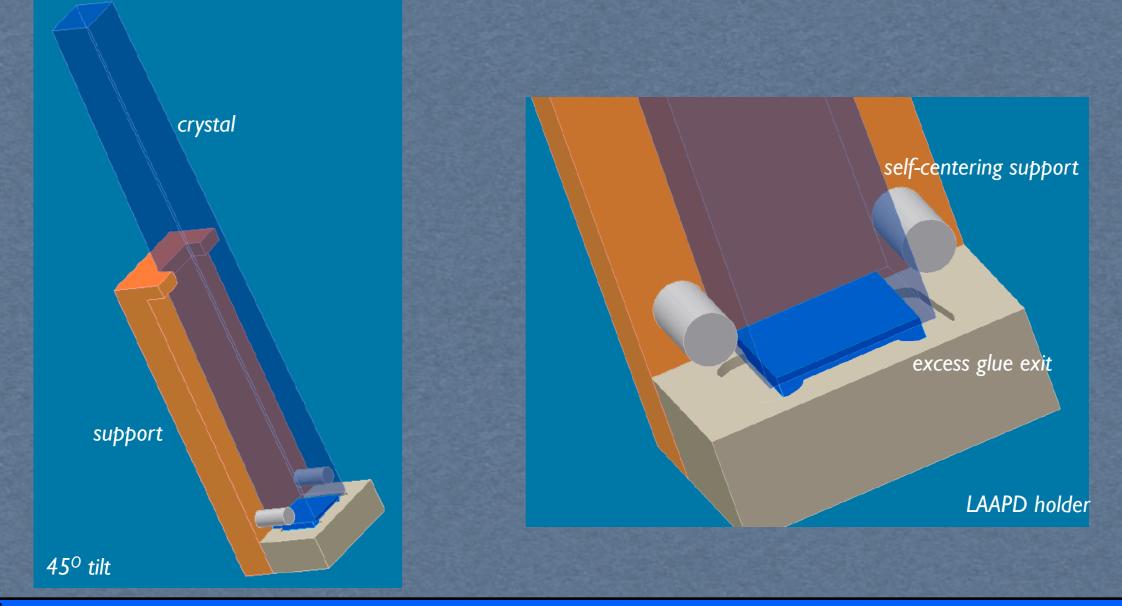
* To glue the new LAAPD the assembly needs to be taken apart

- carefully open the VM2000 wrapping for reuse
- disconnect the plastic nose (to be replaced with the LED-nose)
- unglue the old APD using thermal procedure (use an oven at T=85 for 1h)
- clean the crystal surface with acetone
- crystals ready for the LAAPD gluing

Crystal preparation

- * To glue the new LAAPD the assembly needs to be taken apart
 - carefully open the VM2000 wrapping for reuse
 - disconnect the plastic nose (to be replaced with the LED-nose)
 - unglue the old APD using thermal procedure (use an oven at T=85 for 1h)
 - clean the crystal surface with acetone
 - crystals ready for the LAAPD gluing
- * Two batteries of 20+20 crystals can be prepared per day by two TC
- * For the preparation of the whole set (440 crystals) 11 working days (3~4 cal weeks) expected *The procedure needs to be optimized to:
 - reduce the risk of damaging the wrapping
 - maximize efficiency
- *A procedure that not require un-wrapping is also under study

* Expected time for crystal preparation:


- 4 cal weeks
- +1 contingency
- + I for possible problems
- = 6 cal weeks

- now Dec 1st: ungluing procedure optimization
- Dec 1st: procedure established
- Dec 15th: beginning of the crystal preparation
- February 15th: all crystal cleaned and ready for LAAPDs

Gluing the new LAAPD

- * The new LAAPD will be glued to the back side of the bare crystal replacing the old APD * Silicone-glue: Dow Corning 3145 RTV-Clear
- * The procedure requires to:
 - place the crystal in a self-centering special holder where the LAAPD sits
 - the weight of the crystal is used to provide an adequate and reproducible pressure

Gluing the new LAAPD

* The new LAAPD will be glued to the back side of the bare crystal replacing the old APD * Silicone-glue: Dow Corning 3145 RTV-Clear

* The procedure requires to:

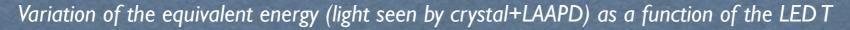
- place the crystal in a self-centering special holder where the LAAPD sits
- the weight of the crystal is used to provide an adequate and reproducible pressure
- gluing
- visual inspection from the crystal front-side to recognize presence of air bubble/dust
- wait for 12h to harden the glue
- the morning after the crystal can be handle and the glueing tested using a dedicated facility
- * If necessary to repeat, the LAAPD can be easily detached by using alcohol
- * Two batteries of 24 + 24 crystals can be glued per day by two TC

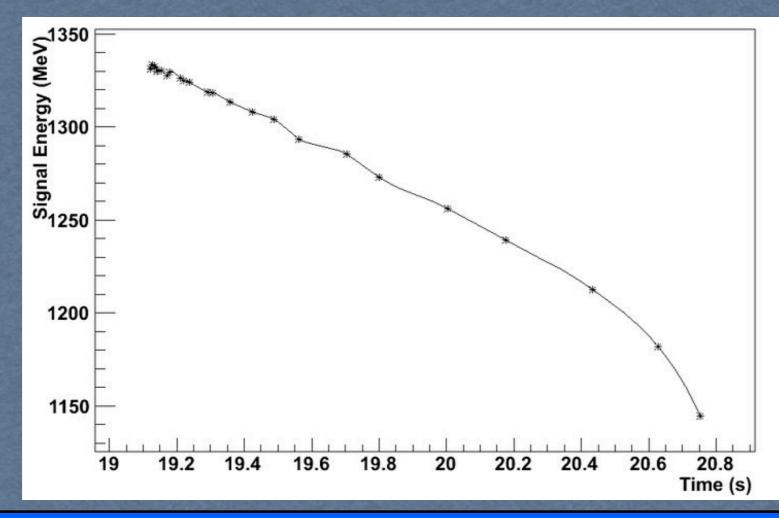
* For the gluing of the whole set (440 crystals) 10 working days (2 real weeks) are expected *The procedure needs to be optimized

* Expected time for LAAPD gluing:

2 cal weeks

+ I contingency


- + I for possible problems
- = 4 cal weeks


- now Dec 1st: gluing procedure optimization
- Jan 1st: procedure established
- Jan 1st March 15th: tools preparation
- March 15th: gluing tools ready at JLab
- May 15th: beginning of the gluing procedure
- Jun 15th: all LAAPD glued

* After gluing the new crystal+LAAPD assembly needs to be tested with a know light source to check the light transmission

* The procedure requires to:

- place the assembly in a thermalized box to keep T constant (18±2°C) for the night (12h)
- same chiller used to benchmark LAAPDs
- assembly and LED at constant T

* After gluing the new crystal+LAAPD assembly needs to be tested with a know light source to check the light transmission

* The procedure requires to:

- place the assembly in a thermalized box to keep T constant (18±2°C) for the night (12h)
- same chiller used to benchmark LAAPDs
- assembly and LED at constant T

preamps	thermal rack	LED
specimen assembly		LED pulser
thermalized test bed LED pulser		

* After gluing the new crystal+LAAPD assembly needs to be tested with a know light source to check the light transmission

* The procedure requires to:

- place the assembly in a thermalized box to keep T constant (18±2°C) for the night (12h)
- use the LED testing facility to check light transmission (1 KHz, 100ns, 500mV light pulse)
- record the mean value of the amplitude/charge by an oscilloscope (5mn per crystal)

1600

1400

1200

1000

800

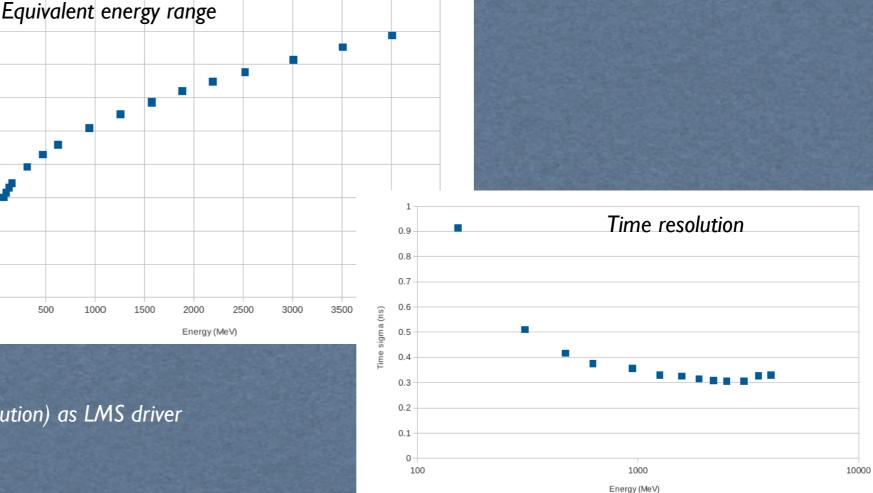
600

400

200

0

0


500

Input

• RED/BLUE single LED driver

- wired controlled
- same performance (energy range and time resolution) as LMS driver
- abs stability ~1%
- 4 drivers already available

17

* After gluing the new crystal+LAAPD assembly needs to be tested with a know light source to check the light transmission

* The procedure requires to:

- place the assembly in a thermalized box to keep T constant (18±2°C) for the night (12h)
- use the LED testing facility to check light transmission (I KHz, 100ns, 500mV light pulse)
- record the mean value of the amplitude/charge by an oscilloscope (5mn per crystal)
- overall 15mn are expected to fully characterize an assembly
- * Assembly out of specs will be unglued and re-glued again
- * Four batteries of $12x^2 + 12x^2$ crystals can be tested per day by two TC

* For the gluing of the whole set (440 crystals) 10 working days (2 real weeks) are expected *The procedure needs to be optimized

* Expected time for LAAPD gluing:

- 2 cal weeks
- +1 contingency
- +1 for repeating tests on rejected assembly
- = 6 real weeks

- now Jan 1st: testing procedure optimization
- Jan 1st: procedure established, specs defined
- Jan 1st March 15th LED testing facility prepara
- March 15th: LED testing facility ready at JLab
- June 7th: beginning of the testing procedure
- July 7th: all assemblies tested

ECal reassemble

- * The full crystal assembly requires:
 - crystal+LAAPD
 - LED-nose with LED and wires
 - wrapping VM2000
 - Expected time: 2 weeks (+1 contingency)
- * Mechanical structure reassemble: vessel, supports, crystal assemblies, preamps, LMS
 - Expected time: 3 weeks (+1 contingency)
- * Final test after reassemble by using the LMS Expected time: 2 weeks (+1 contingency)

- * Expected time for ECal reassemble:
 2+1 weeks for final assembly
 + 3+1 weeks for reassemble
 + 2+1 weeks fro testing
 - = 10 cal weeks

- Jun 15th: full crystal assembly begin
- July 7th: ECal reassembly begin
- August 7th: ECal assembled and ready for testing
- September 1st: Ecal ready for installation

ECal APD replacement time schedule

		we eks		Oc No De	v		Jar		Fet)	1	1 ar		A	pri		M	lay		Ju	n		Jul		Aı	лg
LAAPD	paperwork	8				1993	No. Contraction	RUSS.	A PARTY	No. A	N.S.C.S.				10.00	SULLAND				No. Co		Contraction of the second	1000			
procurement	production and delivery	24	202	200					Τ							100 A			CONTRACT	19.63	10.04		80.00			
	FT-Cal benchmark facility refurbishing	2							1.55			199				S.M.S.	14.6	1961	1 Mail				100			
APD benchmarking	US-compliant chiller interfacing	4		100				110				100	10			1000									NON N	
	LAAPD benchmarking	5				X								100												
	preamps	20							2012	1000	100	110				1000		-					114			
Ecal dissemble	frames		-											No. No.	1	204	Sec.				No.		The second			
	crystals								1000					1000			A LON		11.15	2.0			1000			
	Procedure optimization	8				200	199	No.						No.		1993	1410			101						
Crystal preparation	Tooling	8	Call.	N.S.S.				Τ	0.00	202				197		300	100	1,188	SAN CO	000	1000		SUN SU	1997		
	Ungluing	4		196		Π				100		101		No.			19.37	1996	100		1000		2010	No.	100	
	Procedure optimization	12					Ser Se	100	1000	1.46				1000		1000	199		No.2				1000	1000		
Gluing	Tooling	8		10.00	Sk.			Т	Т	Π			No.	1000	10	183	100	N LE	N.S.C	N			TANK			
	Gluing	4	1			20.00	Sec. 1	0000		Sec.				and a		1988 I	200		Т	Π	100		120			
	Procedure optimization	12				100	Control of the second	100								1400		100	100		No.		Lo X S		Two of	
Assembly test	Tooling	8												2000									1000			
	Assembly tests	5	1000	10	100				1100							1000	Sec.					Π				
	Full crystal assembly	4												N.V.								П	10.00			
ECal reassemble	ECal mounting	5		11	22													11	1000	5						
	Full ECal test with GMS	4																								

Milestones

LAAPD money secured	October Ist
ECal disassembling start	October 15th
LAAPD order placed	December Ist
Crystal cleaning procedures defined	December 1st
Ecal disassembly done and ungluing start	December I 5th
Crystal assembly procedures defined	January Ist
Assembly test procedure defined	January Ist
All crystal ready for new APD	February 15th
All crystals unglued	March Ist
Benchmarking facility ready at JLab	March Ist
Gluing tools ready at JLAB	March 15th
Assembly test facility ready at JLAB	March 15th
LAAPD delivered at JLAB and benchmarking start	April 23rd
All LAAPD benchmarked	Jun Ist
LAAPD gluing start	May I5th
Assembly test start	Jun 7th
All LAAPD glued and full crystal assembly start	Jun 15th
All assemblies tested and ECal reassemble start	Jul 7th
Ecal assembly completed	August 7th
Ecal fully tested and ready for installation in the Hall	September Ist

Tasks and manpower											
		Allocat ed weeks	INFN resources FTE-days	Orsay/JLab resources FTE-days	Work site						
	FT-Cal benchmark facility refurbishing	2	Ix5 EE + Ix5 TC		GE/RM2 - Italy						
APD benchmarking	US-compliant chiller interfacing	4	Ix8 EE + Ix3 TC	Ix3 EE + Ix3 TC	JLab						
	LAAPD benchmarking	5	Ix5 EE + Ix6 TC	Ix20TC	JLab						
	two halves apart	4		IxI5TC	JLab						
Ecal dissemble	preamps	2		Ix5 EE	JLab						
	crystals	2		2x15TC	JLab						
	Procedure optimization	8	Ix5 EM + Ix5 TC		GE/CT/CA - Italy						
Crystal preparation	Tooling	8	3x3TC		GE/CT/CA - Italy						
	Ungluing	4	Ix5 EE + Ix5 TC	2x15TC	JLab						
	Procedure optimization	12	Ix5 ME + Ix5 TC		GE/CT/CA - Italy						
Gluing	Tooling	8	Ix5 ME + 4x5 TC		GE/CT/CA - Italy						
	Gluing	4	1x5 EE + 3x5 TC	2x15TC	JLab						
	Procedure optimization	12	Ix8 EE + Ix7TC		GE/CT/CA - Italy						
Assembly test	Tooling	8	I x8 ME + 3x5 TC		GE/CT/CA - Italy						
	Assembly tests	5	2x5 EE + 3x5 TC	4x15TC	JLab						
	Full crystal assembly	4	2x5TC	2×10TC	JLab						
ECal reassemble	ECal mounting	5	2x5TC	1x5 EE + 2x15 TC	JLab						
	Full ECal test with GMS	4	3×5 EE	IxI0 EE + 2xI0 TC	JLab						

				distantial in the	
Activity	Workers	FTE (total)	Travel days	INFN Units	ALC: NO
Motherboards design	EE	30		GE	LA
Motherboards tests	EE, TC	35	15	GE,TO	
	EE	15		GE	
	ME	5		GE	
	TC	5	5	то	Contraction of the second
	TC	10	10	то	
LED LMS design/prototyping	EE, TC	35	5	GE, TO	and the second
	EE	30		GE	State State
	TC	5 🧳	5	то	
LED holders design	ME	10		GE	
LED holders production	TC	20		CT	
LAAPD benchmarking tooling	EE, TC	11	10	GE,RM2,CT	
	EE	5	1	GE	
	EE	3	5	RM2	
	ŤC		5	CT	
Crystal cleaning tools and proc. optimiz.	TC		10	GE,CT,CA	3 and
	TC	5		GE	Cr
	TC		5	CA	
	TC	$O_{\mathcal{A}}$	5	CT	
Crystal gluing tools and proc. optimiz.	TC	26	10	GE,CT,CA	
	ME	5		GE	
	TC	10		CA	
	TC	5		GE	
	TC	3	5	CA	
	TC	3	5	CT	
Crystal assembly test tooling and proc. opt.	EE, TC	49	15	GE,CT,CA	and an
	ME/EE	25		GE	The state
	TC	10		CT	
	TC	5		GE	
	TC	3	5	CA	
	TC	3	5	CT	
	EE	3	5	CT	
Total		140		GE	
Total		15	25	CT	
Total		20	20	ТО	State State
Total		9	15	CA	and the second
Total		3	5	RM2	
Total		187	65		

Activity	Workers	FTE (total)	Travel days	INFN Units
LAAPD benchmarking (500pcs)	EE, TC	31	21	RM2,GE
	1xTC	20		JLab
	1xEE	5.5	10.5	RM2
	1xTC	5.5	10.5	GE
ECal disassembly	EE, TC	51.5	10.5	GE
	2xTC	40		JLab
	1xEE	5		JLab
	1xEE	5.5	10.5	GE
Crystal cleaning (450 pcs)	EE, TC	31.5	31.5	СТ
	2xTC	15		JLab
	2xTC	11	21	CT
	1x EE	5.5	10.5	CT
Crystal gluing (450 pcs)	EE, TC	31.5	31.5	CA,CT
	2xTC	15	$\langle \vee \rangle$	JLab
	2xTC	11	21	CA
	1xEE	5.5	10.5	СТ
Crystal assembly test (450 pcs)	EE, TC	47		CA,CT,GE
	2xTC	25	0,/	JLab
	1XTC	5.5	10.5	CA
	1xTC	5.5	10.5	CT
	IXEE	5.5	10.5	CT
	1x EE	5.5	10.5	GE
ECal assembly	EE, TC	25		
	2xTC	20		JLab
	1xEE	5		JLab
ECal final tests	EE, TC	46.5	31.5	CT,GE
	2xTC	20		JLab
	1xEE	10		JLab
	1xEE	5.5	10.5	CT
	1xEE	5.5	10.5	GE
	1xEE	5.5	10.5	CA
Total		175		JLab
Total		38.5	73.5	CT
Total		22	42	CA
Total		22	42	GE
Total		5.5	10.5	RM2
Total		263	168	

Manpower

e. @Lab12

ECal Review

Resources

* All funds were allocated and secured fro FY2013/14

LAAPD Hamatsu S8664-1010			
	216	INFN	€90k
	300	IPN-Orsay	€125k
LED holders	450	INFN	€I0k
LED drivers for crystal tests	4+1	INFN	€I0k
Tools for crystal assembly	2	INFN	€I0k
Tooling for LAAPD benchmarking	I	INFN	€5k
Shipping		INFN	€5k
Consumables		INFN	€5k
TOT	-		€260k
TOT (VAT+Cont)			€275k

*Funds only includes equipment

**No contingency and VAT on Hamamatsu purchase requisition

