October 17th 2013

New APD installation

M.Battaglieri INFN-GE, Italy

APD replacement

We want to replace the ECal S8148 0.5x0.5 cm2 (CMS-like) with new Hamamatsu Large Area APD S8664-1010 1.0x1.0 cm2

Hamamatsu APD (S8148) 5x5 mm²

Active area	$5x5mm^2$
Operating voltage(Vr)	~380V
Capacitance	70pF
Serial resistance	3Ω
Dark Current	<10nA
Quantum Efficiency	~72%@420nm
$1/M^{a} \times dM/dV(M=50)$	3.3%
1/M×dM/dT(M=50)	-2.3%
Excess Noise Factor (M=50)	2
Distance to breakdown (Vb-Vr)	(30-40)V
Effective thickness	~5µm
Gain range	Up tp 1000
^o M is a gain value, T-temperature	2

Hamamatsu LAAPD (S8148-1010) 10x10 mm²

Type No.	Spectral response range λ	Peak * ³ sensitivity wavelength λp	Photo sensitivity S M=1 λ=420 nm	Quantum efficiency QE M=1 λ=420 nm	Break volt Ve ID=10	down age ^{BR})0 μΑ	Temperature coefficient of VBR	Dar cur I	rk * ³ rent D	Cut-off frequency fc	Terminal * ³ capacitance Ct	Excess * ³ Noise index λ=420 nm	Gain M λ=420 nr			
			[Тур.	Max.		Тур.	Max.							
	(nm)	(nm)	(A/W)	(%)	(V)	(V)	(V/°C)	(nA)	(nA)	(MHz)	(pF)					
S8664-02K								0.1	1	700	0.8					
S8664-05K						[0.2	1.5	680	1.6					
S8664-10K			[[0.3	3	530	4		[
S8664-20K	320 to	600	0.24	70	400	500	0.70	0.6	6	280	11	0.2	50			
S8664-30K	1000	000	0.24	10	400	500	0.70	1	15	140	22	0.2	50			
S8664-50K	Ι	[[1					3	35	60	55		[
S8664-55	Ι	[[[5	50	40	80		[
S8664-1010	I	[[[10	100	11	270					

Advantages

- * 10% Gain-matched
- * 4 times more light
- * better S/N
- (when coupled to new IPN-Orsay preamps)

- * Lower threshold values (highest rate)
- * Better A'mass resolution
- * Cosmic ray calibration

2

Gain-matching

* New APDs will be provided gain-matched at 10% level
* Best running condition selecting the G~150
* APD + crystal assembly will be tested for max uniformity

* Uniformity of trigger thresholds
* Lower threshold values (highest rate)

Energy resolution

* 4x area provides 4 times more light
* Better S/N ratio when coupled to new
IPN-Orsay preamps

* Better A'mass resolution

3

eelab12

Mechanical constraints Support PbWO4 crystal frame wrapped Stainless with VM200 steel APD Mother board foil wires Preamplifier **Optical fiber** connector Connector Avalanche Photo Diode Connection board Preamplifier + thermal screen support rails Flat cable

* LAAPDs match the back size of the PbWO crystals
 * No interference with the Al support grid
 * Clearance for new APDs checked with IPN-Orsay (pin position)

APD replacement phases

- Procurement
- APD Benchmarking
- ECal dissemble
- Crystal preparation: ungluing old APD
- Gluing LAAPD
- Test [Crystal + APD + LED-nose + wrapping] assembly
- ECal reassemble

ECal Review

LAAPD procurement

* Vendor (Hamamatsu) and model (S8664-1010) identified and contacted

* 528 pcs grouped by 12 (10 + 1 spare + 1 potentially rejected per 10 slot of each HV channel)

* Each group with a fixed $V_{Nominal}$ to provide the same gain (G=150 at 25°C)

*The order will be divided into two parts:

- 216 pcs to be ordered by INFN from Hamamatsu-Italy
- 312 pcs to be ordered by IPN-Orsay from Hamamatsu-France
- * The price per APD has been quoted 400 euro (for more than 500 pcs)
- * The two orders will be considered and processed together from Hamamatsu-Japan

* Expected time for LAAPD procurement:
3 months for paperworks
+ 100-120 days for delivery
+ 2-4 weeks contingency
= ~7 months

- October 1st INFN/IPN money secured
- October 10th: bid paperworks started
- Mid December 2013: order placed
- Apr 23rd: LAAPD at JLab

LAAPD benchmarking (I)

*Once at JLAB the LAAPD need to be benchmarked * APD comes with V_{BD} , $V_{Nominal}$, for G=150 (T=25°C) certified by the vendor

* Characterization at 3 values of T (T=15°C,T=18°C,T=23°C) close to the working point; other T's obtained by interpolation

$$G(V,T) = \frac{I_{on}(V,T) - I_{off}(V,T)}{I_{on}(G=1) - I_{off}(G=1)}$$

- Dark current vs V_{Bias}
- Dark current vs G (expected linear)
- I/G x dG/dV vs G
- G(V,T)

LAAPD benchmarking (II)

* Largely reuse of the measurement facility used to characterize the 380 FT-Cal LAAPDs
* Automatic bias V-scan in a T-controlled environment
* The system only requires a new 110V/60Hz
powered chiller, working in the range T=10°C - 30°C
* 24 sensors-at-time, 2 batches per 24h = 48
working/day and 11 working day in total
* Real week: 4 working day + 1 day to analyze data for a total of 3 cal weeks

* Expected time for LAAPD benchmarking:

- 3 cal weeks
- +I contingency
- + I for a possible 2nd measurement of the 30% of the whole lot
- = 5 cal weeks

- Feb Ist: FT-Cal benchmarking facility at JLab
- February: interface with the new chiller
- March 1st: testing facility operational
- Apr 23rd: APD at JLab
- Jun Ist: all LAAPD characterized

ECal dissemble

* ECal dissemble procedure just started

- two ECAI parts on the lab desk
- remove preamplifiers (to be sent to Orsay for upgrade)
- * Team from Orsay in mid November
- * I week to remove frame
- * Few days to have all crystals ready for further processing (APD ungluing, re-gluing ...)
- * Vessel + frame ready to be sent to Orsay for modification before the end of the year

* Expected time for crystal preparation:

- 4 cal weeks
- +2 contingency
- +2 pause to wait for frnch
- = 8 cal weeks

Deadlines & Milestones:

- now Nov 1st: preamps ready to be sent to Orsay
- Dec 1st: all crystals ready for further processing
- Dec I5th: Vessel + frame sent to Orsay

9

Crystal preparation

- * Crystals assembly includes 4 parts:
 - plastic-nose
 - crystal
 - -VM2000 wrapping
 - APD To be replaced
- To be replaced Kept
- Kept

Crystal preparation

* To glue the new LAAPD the assembly needs to be taken apart

- carefully open the VM2000 wrapping for reuse
- disconnect the plastic nose (to be replaced with the LED-nose)
- unglue the old APD using thermal procedure (use an oven at T=85 for 1h)
- clean the crystal surface with isopropanol
- crystals ready for the LAAPD gluing

Crystal preparation

- * To glue the new LAAPD the assembly needs to be taken apart
 - carefully open the VM2000 wrapping for reuse
 - disconnect the plastic nose (to be replaced with the LED-nose)
 - unglue the old APD using thermal procedure (use an oven at T=85 for 1h)
 - clean the crystal surface with acetone
 - crystals ready for the LAAPD gluing
- * Two batteries of 20+20 crystals can be prepared per day by two TC
- * For the preparation of the whole set (440 crystals) 11 working days (3~4 cal weeks) expected *The procedure needs to be optimized to:
 - reduce the risk of damaging the wrapping
 - maximize efficiency
- *A procedure that not require un-wrapping is also under study

* Expected time for crystal preparation:

- 4 cal weeks
- +1 contingency
- + I for possible problems
- = 6 cal weeks

- now Dec 1st: ungluing procedure optimization
- Dec 1st: procedure established
- Dec 15th: beginning of the crystal preparation
- February 15th: all crystal cleaned and ready for LAAPDs

Gluing the new LAAPD

- * The new LAAPD will be glued to the back side of the bare crystal replacing the old APD * Silicone-glue: Dow Corning 3145 RTV-Clear
- * The procedure requires to:
 - place the crystal in a self-centering special holder where the LAAPD sits
 - the weight of the crystal is used to provide an adequate and reproducible pressure

Gluing the new LAAPD

* The new LAAPD will be glued to the back side of the bare crystal replacing the old APD * Silicone-glue: Dow Corning 3145 RTV-Clear

* The procedure requires to:

- place the crystal in a self-centering special holder where the LAAPD sits
- the weight of the crystal is used to provide an adequate and reproducible pressure
- gluing
- visual inspection from the crystal front-side to recognize presence of air bubble/dust
- wait for 12h to harden the glue
- the morning after the crystal can be handle and the glueing tested using a dedicated facility
- * If necessary to repeat, the LAAPD can be easily detached by using alcohol
- * Two batteries of 24 + 24 crystals can be glued per day by two TC

* For the gluing of the whole set (440 crystals) 10 working days (2 real weeks) are expected *The procedure needs to be optimized

* Expected time for LAAPD gluing:

2 cal weeks

+ I contingency

- + I for possible problems
- = 4 cal weeks

- now Dec 1st: gluing procedure optimization
- Jan 1st: procedure established
- Jan 1st March 15th: tools preparation
- March 15th: gluing tools ready at JLab
- May 15th: beginning of the gluing procedure
- Jun 15th: all LAAPD glued

* After gluing the new crystal+LAAPD assembly needs to be tested with a know light source to check the light transmission

* The procedure requires to:

- place the assembly in a thermalized box to keep T constant (18±2°C) for the night (12h)
- same chiller used to benchmark LAAPDs
- assembly and LED at constant T

* After gluing the new crystal+LAAPD assembly needs to be tested with a know light source to check the light transmission

* The procedure requires to:

- place the assembly in a thermalized box to keep T constant (18±2°C) for the night (12h)
- same chiller used to benchmark LAAPDs
- assembly and LED at constant T

preamps	thermal rack	LED
specimen assembly		LED pulser
thermalized test bed LED pulser		

* After gluing the new crystal+LAAPD assembly needs to be tested with a know light source to check the light transmission

* The procedure requires to:

- place the assembly in a thermalized box to keep T constant (18±2°C) for the night (12h)
- use the LED testing facility to check light transmission (I KHz, 100ns, 500mV light pulse)
- record the mean value of the amplitude/charge by an oscilloscope (5mn per crystal)

Equivalent energy range

1600

1400

1200

1000

800

600

400

200

0 -

0

Input

Time resolution 0.9 0.8 0.7 0.6 500 1000 1500 2000 2500 3000 3500 Energy (MeV) 0.5 0.4 0.3 0.2 0.1 0 1000 10000 100 Energy (MeV)

• RED/BLUE single LED driver

- wired controlled
- same performance (energy range and time resolution) as LMS driver
- abs stability ~1%
- 4 drivers already available

* After gluing the new crystal+LAAPD assembly needs to be tested with a know light source to check the light transmission

* The procedure requires to:

- place the assembly in a thermalized box to keep T constant (18±2°C) for the night (12h)
- use the LED testing facility to check light transmission (I KHz, 100ns, 500mV light pulse)
- record the mean value of the amplitude/charge by an oscilloscope (5mn per crystal)
- overall 15mn are expected to fully characterize an assembly
- * Assembly out of specs will be unglued and re-glued again
- * Four batteries of $12x^2 + 12x^2$ crystals can be tested per day by two TC

* For the gluing of the whole set (440 crystals) 10 working days (2 real weeks) are expected *The procedure needs to be optimized

* Expected time for LAAPD gluing:

2 cal weeks

- +I contingency
- +I for repeating tests on rejected assembly
- = 4 cal weeks

- now Jan 1st: testing procedure optimization
- Jan 1st: procedure established, specs defined
- Jan 1st March 15th LED testing facility preparation
- March 15th: LED testing facility ready at JLab
- June 7th: beginning of the testing procedure
- July 7th: all assemblies tested

ECal reassemble

- * The full crystal assembly requires:
 - crystal+LAAPD
 - LED-nose with LED and wires
 - wrapping VM2000
 - Expected time: 2 weeks (+1 contingency)
- * Mechanical structure reassemble: vessel, supports, crystal assemblies, preamps, LMS
 - Expected time: 3 weeks (+1 contingency)
- * Final test after reassemble by using the LMS Expected time: 2 weeks (+1 contingency)

- * Expected time for ECal reassemble:
 2+1 weeks for final assembly
 + 3+1 weeks for reassemble
 + 2+1 weeks fro testing
 - = 10 cal weeks

- Jun 15th: full crystal assembly begin
- July 7th: ECal reassembly begin
- August 7th: ECal assembled and ready for testing
- September 1st: Ecal ready for installation

ECal APD replacement time schedule

		we eks		Oct Nov Dec		Ja	an		Fe	b	٢	1 ar	A	pril	12 14 10 10	May		Ju	n		Jul	Aug
LAAPD	paperwork	8				1802 1995		1000		ALC: N	Teners.		1910			11.84 2010 1	19.55	2000				
procurement	production and delivery	20	208															10 C	12.1			
	FT-Cal benchmark facility refurbishing	2														195		1910	2.00	300	1 KU	
APD benchmarking	US-compliant chiller interfacing	4			AN A						Test in	100							No.	100		
	LAAPD benchmarking	5				No.4		200														
	preamps			100		1000		N. D.Y.			100	18.0										
Ecal dissemble	frames						3131	1000			Sill.											
	crystals		200			1000	3.00	202		No.			100			100	800	19 1 C				5. 15 15 15
	Procedure optimization	8				100					100		S.S.			No.	N.S.N	No.				
Crystal preparation	Tooling	8		1.000							THE REAL			0.05		No.	SW S				SUO SUO	
	Ungluing	4	No. 14	200					Π	10 0	100	Call R				12.55		6.00 m	1.1	19.45		1.45
	Procedure optimization	12					1000	1000		2.00	N.N.N		1005			100	1000					
Gluing	Tooling	8		19.00	N. S.								1000	100		14.18	1	10 E.S.			States of the	1000 C
	Gluing	4	A Stall			Real of the second		1000			W.S.					Koli (C			1000			
	Procedure optimization	12				No.	(2015a	1000					N		Sul -	522.6			No. 1	2000	114	
Assembly test	Tooling	8											100			1.3	288.0	50155				5000 0.000
	Assembly tests	5	A STATE	101		1000		0.000		1000	PANNI A COLORED			100	ALC: N		000					
	Full crystal assembly	4	0.4			100	CASA C						100			A COLOR						
ECal reassemble	ECal mounting	5	140		-											1000		A				
	Full ECal test with GMS	4	2.25			191	100				100		1997			100	No.					

Resources

* All funds were allocated and secured fro FY2013/14

LAAPD Hamamatsu S8664-1010			
	216	INFN	€90k
	300	IPN-Orsay	€125k
LED holders	450	INFN	€I0k
LED drivers for crystal tests	4+1	INFN	€I0k
Tools for crystal assembly	2	INFN	€I0k
Tooling for LAAPD benchmarking	I	INFN	€5k
Shipping		INFN	€5k
Consumables		INFN	€5k
ТОТ			€260k
TOT (VAT+Cont)			€275k

*Funds only includes equipment **No contingency and VAT on Hamamatsu purchase requisition

* Travel money were also allocated to cover this proposal 60k (+ 20k for shifts)

Backup & Details

	Tasks a	ind	manpow	er	
		Allocat ed weeks	INFN resources FTE-days	Orsay/JLab resources FTE-days	Work site
	FT-Cal benchmark facility refurbishing	2	Ix5 EE + Ix5 TC		GE/RM2 - Italy
APD benchmarking	US-compliant chiller interfacing	4	Ix8 EE + Ix3 TC	Ix3 EE + Ix3 TC	JLab
5	LAAPD benchmarking	5	Ix5 EE + Ix6 TC	1×20 TC	JLab
	two halves apart	4		Ix15TC	JLab
Ecal dissemble	preamps	2		Ix5 EE	JLab
	crystals	2		2×15 TC	JLab
	Procedure optimization	8	Ix5 EM + Ix5 TC		GE/CT/CA - Italy
Crystal preparation	Tooling	8	3x3TC		GE/CT/CA - Italy
	Ungluing	4	Ix5 EE + Ix5 TC	2×15 TC	JLab
	Procedure optimization	12	Ix5 ME + Ix5 TC		GE/CT/CA - Italy
Gluing	Tooling	8	I x5 ME + 4x5 TC		GE/CT/CA - Italy
	Gluing	4	1x5 EE + 3x5 TC	2×15 TC	JLab
	Procedure optimization	12	Ix8 EE + Ix7 TC		GE/CT/CA - Italy
Assembly test	Tooling	8	I x8 ME + 3x5 TC		GE/CT/CA - Italy
	Assembly tests	5	2x5 EE + 3x5 TC	4×15 TC	JLab
	Full crystal assembly	4	2x5 TC	2×10TC	JLab
ECal reassemble	ECal mounting	5	2x5 TC	1x5 EE + 2x15 TC	JLab
	Full ECal test with GMS	4	3x5 EE	1×10 EE + 2×10 TC	JLab

Milestones

LAAPD money secured	October 1st
ECal disassembling start	October 15th
LAAPD order placed	Mid December
Crystal cleaning procedures defined	December 1st
Ecal disassembly done and ungluing start	December I 5th
Crystal assembly procedures defined	January Ist
Assembly test procedure defined	January Ist
All crystal ready for new APD	February 15th
All crystals unglued	March 1st
Benchmarking facility ready at JLab	March 1st
Gluing tools ready at JLAB	March 15th
Assembly test facility ready at JLAB	March 15th
LAAPD delivered at JLAB and benchmarking start	April 23rd
All LAAPD benchmarked	Jun Ist
LAAPD gluing start	May 15th
Assembly test start	Jun 7th
All LAAPD glued and full crystal assembly start	Jun 15th
All assemblies tested and ECal reassemble start	Jul 7th
Ecal assembly completed	August 7th
Ecal fully tested and ready for installation in the Hall	September Ist

					COLUMN TWO IS NOT
Activity	Workers	FTE (total)	Travel days	INFN Units	
Motherboards design	EE	30		GE	I
Motherboards tests	EE, TC	35	15	GE,TO	
	EE	15		GE	
	ME	5		GE	
	TC	5	5	то	
	TC	10	10	то	
LED LMS design/prototyping	EE, TC	35	5	GE, TO	
	EE	30		GE	
	TC	5 🗸	5	то	
LED holders design	ME	10		GE	
LED holders production	TC	20		CT	
LAAPD benchmarking tooling	EE, TC	11	10	GE,RM2,CT	
	EE	5	1	GE	
	EE	3	5	RM2	
	ŤC	> €]	5	CT	
Crystal cleaning tools and proc. optimiz.	TC	11	10	GE,CT,CA	
	TC			GE	
	TC		5	CA	
	TC	0,8	5	CT	
Crystal gluing tools and proc. optimiz.	TC	26	10	GE,CT,CA	
	ME	5		GE	
	TC	10		CA	
	TC	5		GE	
	TC	3	5	CA	
	TC	3	5	СТ	
Crystal assembly test tooling and proc. opt.	EE, TC	49	15	GE,CT,CA	
	ME/EE	25		GE	
	TC	10		CT	
	TC	5		GE	
	TC	3	5	CA	
	TC	3	5	СТ	
	EE	3	5	CT	
Total		140		GE	
Total		15	25	CT	
Total		20	20	TO	
Total		9	15	CA	
Total		3	5	RM2	
Total		187	65		

Workers FTE (total) Travel days INFN Units Activity APD benchmarking (500pcs) EE, TC 31 RM2,GE 21 1xTC 20JLab RM2 1xEE 5.510.510.5 GE 1xTC 5.5ECal disassembly 51.5 10.5 GE EE, TC 2xTC 40 JLab 1xEE 5 JLab 1xEE 5.5 10.5 GE Crystal cleaning (450 pcs) EE, TC 31.5 31.5 CT $2 \times TC$ 15JLab 2xTC 11 CT 211x EE5.5 10.5CT Crystal gluing (450 pcs) EE, TC 31.5 CA,CT 31.52xTC JLab 15 11 2xTC \mathbf{CA} 21 СТ 1xEE 5.510.5rystal assembly test (450 pcs) EE, TC 47 42 CA,CT,GE 2xTC 25JLab IXTC 10.5CA 5.51xTC 5.510.5CT **XEE** 10.5CT 5.51x EE 10.5GE 5.5ECal assembly EE, TC $\mathbf{25}$ 2xTC 20JLab 1xEE JLab 5 ECal final tests EE, TC 46.5 CT,GE 31.52 xTC20JLab 1xEE 10 JLab 1xEE 10.5CT 5.51xEE 10.5GE 5.51xEE 5.510.5CA JLab Total 175Total 38.573.5CT 22 42 CA Total 22 42 GE Total 5.510.5 RM2 Total 263 Total 168

Manpower

ECal Review

<u>e (8) lab12</u>