Acute SVT Sensor Damage Test Beam

Pelle

1.1×10⁸ in 40 μsec of 450 nA 0.035 cm W (10% r.l.) Y (cm) -0.5 6.6 GeV e--1.5 ليتبيل بينيل بتبيل بتبيل بينيا X (cm) # e- / 60 μm in 40 μsec $\Delta x = 7.0$ cm 5 m σ = 0.32 cm Expect maximum of 8×10⁵ electrons/ strip / 40usec Spot size is ~0.32cm width

No time evolution – static for 40usec for this example (?) Are the SVT modules safe for this type of accident?

Y (cm)

Background: Collimator Scattering (Takashi)

Two major concerns

- Readout chip damage
- Breakdown of sensor strip implant capacitor

Atlas study by our Santa Cruz colleagues:

https://confluence.slac.stanford.edu/display/hpsg/08.27.2013+Weekly

Predicting vulnerability for <u>our</u> sensors is hard

- Depends on exact sensor geometry and bias network
- Exact beam loss scenario is also important: how many strips get hit simultaneously, time evolution, etc.

Conclusion is that we cannot say we are safe

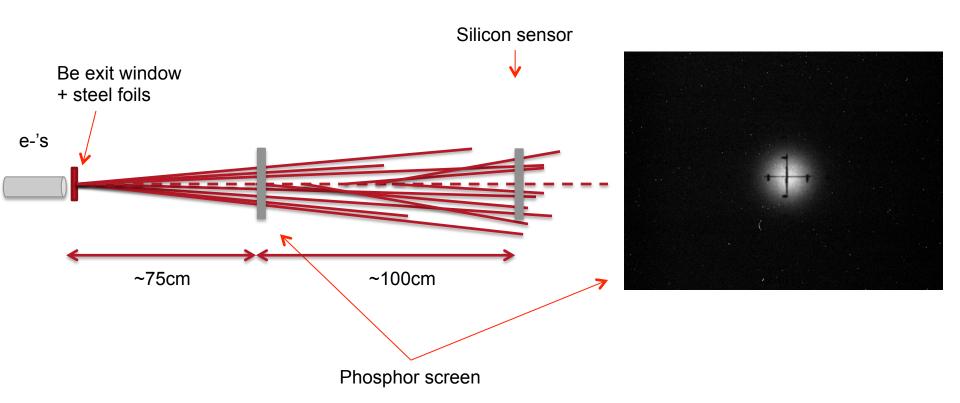
➔ Test susceptibility using beam test

NLCTA (Next Linear Collider Test Accelerator)

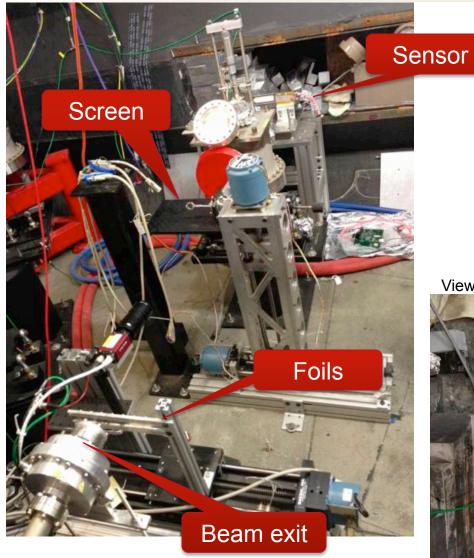
NLCTA provides good match for out purpose

- R&D accelerator: beam availability, flexibility
- High enough intensity

Wrong time constant; but short pulse is more dangerous


Use scattering in foils and air to vary intensity

X-ray contribution is relatively small


	NLCTA
Beam Type	e-
Beam energy (MeV)	120
(range)	60, 80-120
Repetition Rate (Hz)	10
(range)	1-10
Bunch Intensity (x10 ⁸)	1.2
(range)	0.06-12
Bunch Length (σ,μm) (range)	60
Beam Spot size (σ,μm)	150
(range)	100-300

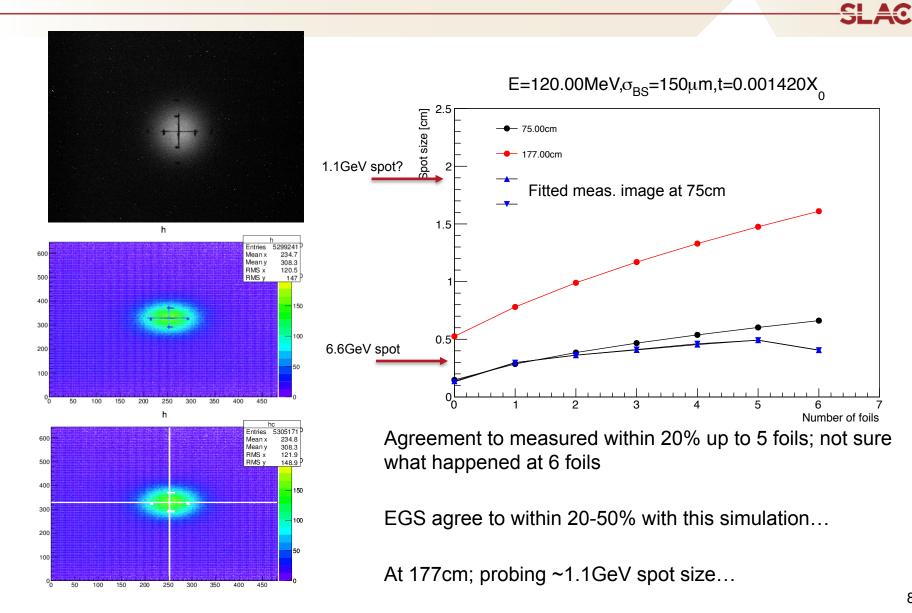
Setup

Setup

View from top

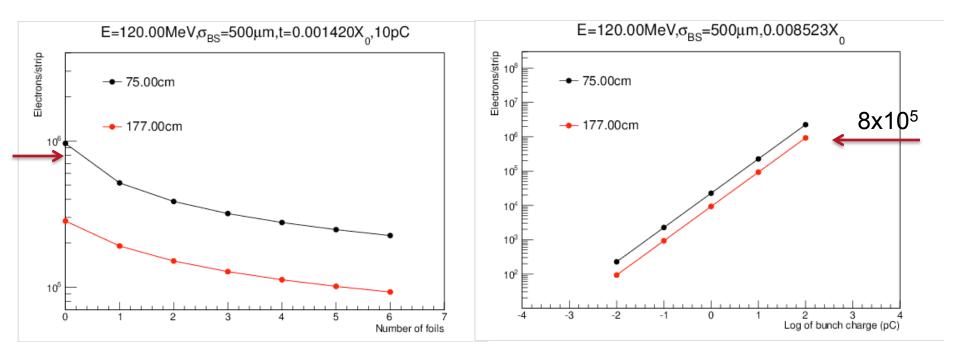
NLCTA Simulation

Setup


- 120 MeV electron beam
- 150um beam spot (estimate)
- 50um Be window, steel foils 25um thick
- 1" aperture not included (no real effect since spot is small)

"Gaussian" approximation

- Core multiple scattering description
- Foils and window on same "z"-position
- The effect from scattering in air is taken into account


Cross-check with full EGS5 simulation

Estimated and Measured Beam Spot

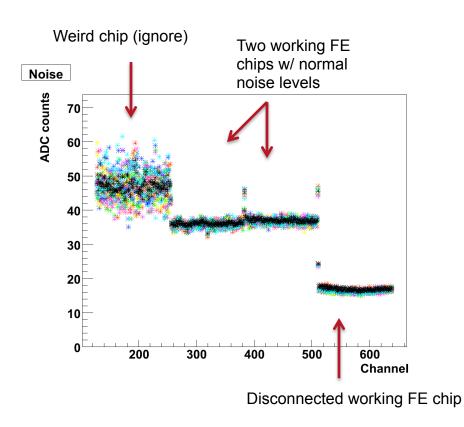
Estimated Hit Density per Strip

Scan orders of magnitude using beam current

Start at a safe level

- Beam energy: 120MeV, 10Hz,
- Start at 180V bias voltage on sensor and ~1pC bunch charge (no measurement below that)
- Use 6 foils

Then scan bias voltage and beam current

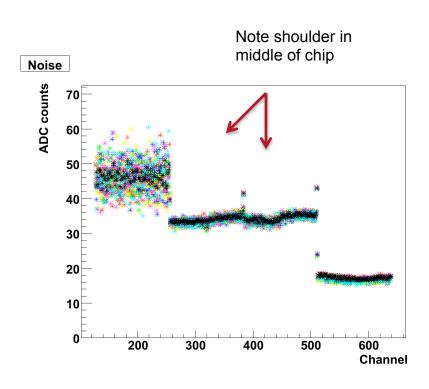

For each setting of bias voltage and beam current:

- 30s-60s of exposure to beam at each setting of bias voltage and bunch charge
- Run baseline (~pedestal run)
- Go back to 180V and run baseline
- Monitor leakage current

Time	Bunch charge (pC)	ADC1	Bias (V)
~11:00	~0.001	-	180
11:36	1.0	0.002	180
	1.0	0.002	250
	1.0	0.002	350
	1	0.002	400
	1	0.002	500
12:00	10	0.01	180
	10	0.01	350
	10	0.01	500
	100	0.135	180
	100	0.135	250
	100	0.135	350

Noise @ 1pC

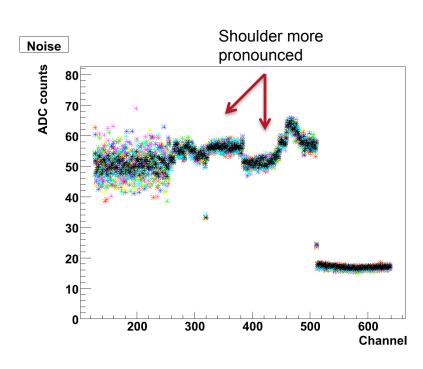
SLAC



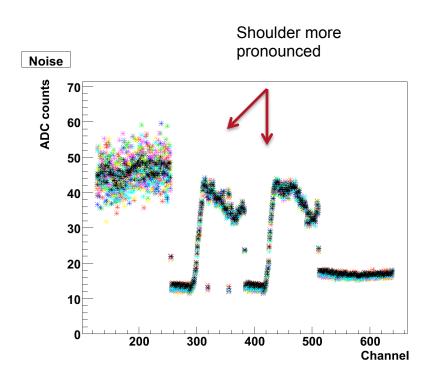
1pC and 500V: no problems

Time	Bunch charge (pC)	ADC1	Bias (V)
~11:00	~0.001	-	180
11:36	1.0	0.002	180
	1.0	0.002	250
	1.0	0.002	350
→	1	0.002	400
	1	0.002	500
12:00	10	0.01	180
	10	0.01	350
	10	0.01	500
	100	0.135	180
	100	0.135	250
	100	0.135	350

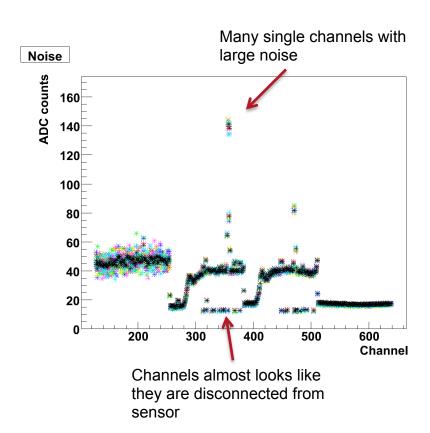
Noise @ 10pC, 350V


SLAC

Time	Bunch charge (pC)	ADC1	Bias (V)
~11:00	~0.001	-	180
11:36	1.0	0.002	180
	1.0	0.002	250
	1.0	0.002	350
	1	0.002	400
	1	0.002	500
12:00	10	0.01	180
->	10	0.01	350
	10	0.01	500
	100	0.135	180
	100	0.135	250
	100	0.135	350


10pC and 350V: first sign of issues

Noise @ 10pC, 500V


Time	Bunch charge (pC)	ADC1	Bias (V)
~11:00	~0.001	-	180
11:36	1.0	0.002	180
	1.0	0.002	250
	1.0	0.002	350
	1	0.002	400
	1	0.002	500
12:00	10	0.01	180
	10	0.01	350
→	10	0.01	500
	100	0.135	180
	100	0.135	250
	100	0.135	350

Noise @ 100pC, 180V

Time	Bunch charge (pC)	ADC1	Bias (V)
~11:00	~0.001	-	180
11:36	1.0	0.002	180
	1.0	0.002	250
	1.0	0.002	350
	1	0.002	400
	1	0.002	500
12:00	10	0.01	180
	10	0.01	350
	10	0.01	500
→	100	0.135	180
	100	0.135	250
	100	0.135	350

Noise @ 100pC, 350V

Time	Bunch charge (pC)	ADC1	Bias (V)
~11:00	~0.001	-	180
11:36	1.0	0.002	180
	1.0	0.002	250
	1.0	0.002	350
	1	0.002	400
	1	0.002	500
12:00	10	0.01	180
	10	0.01	350
	10	0.01	500
	100	0.135	180
	100	0.135	250
→	100	0.135	350

Summary of Notes, Observations, Ideas

Radiation is almost uniform on two working chips (~2cm spot); many adjacent strips will see close to the same intensity

First damage sign at 10pC (350V); roughly 10⁵ e-/strip

Shoulder on noise across both FE chip channels (not seen before); increasing with higher bias and bunch charge

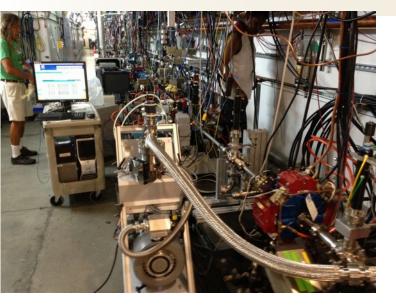
After 100pC and 350V, roughly 10⁶ e-/strip, see many individual channels with high noise (pinholes?) and some look disconnected

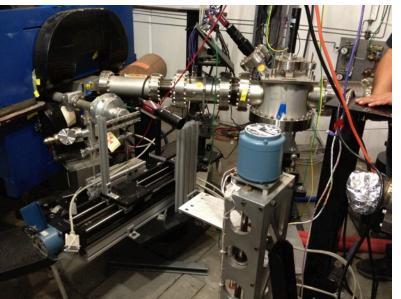
Bias voltage matters: threshold in noise seen at ~210V

Disconnected chip shows no sign of issues

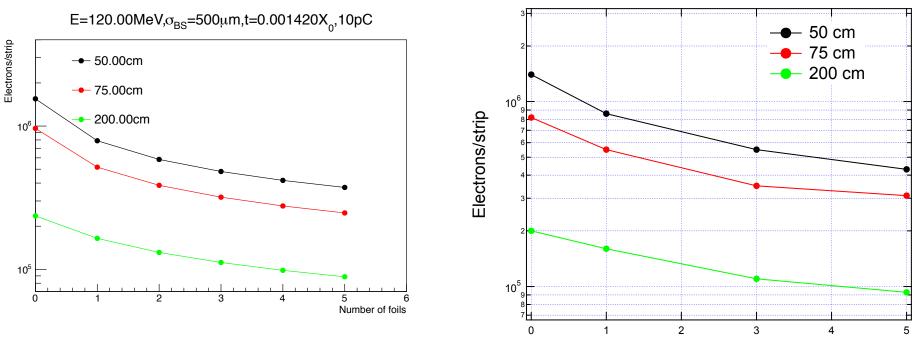
1 hypothesis: many adjacent pinholes may need chip to swallow large DC current which could affects the chips inner structure.

No definitive answer yet what the limits are: but we are definitely flirting with them!


Lab tests on irradiated module should give definitive clues to understand the cause of failure

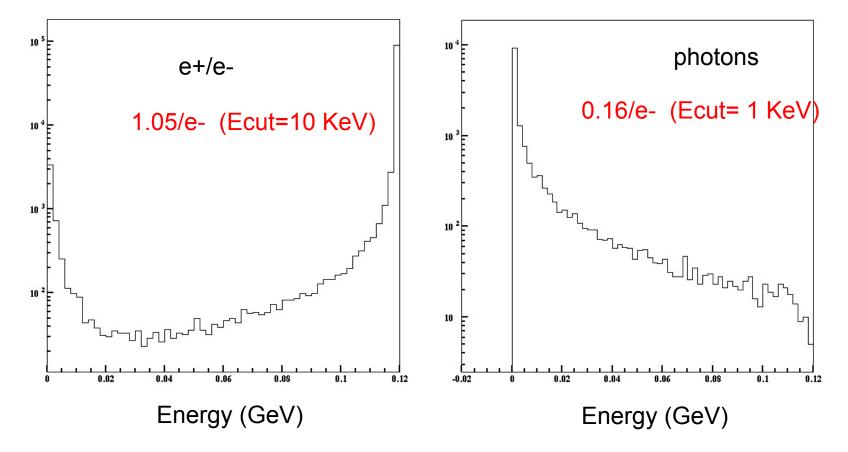

Consider the possibility of another beam test

Adapt tests/plans to new collimator studies and setups



EGS5 Full simulation

SLAC


Agreement to within 20-50%

Number of foils

EGS5 Full simulation – X-rays

200cm Air + 5 foils

