SiiverLode™ Servo Family
User Manual

Revision 4.4
13 April 2006
For QuickControl Rev 4.4

SilverLode User Manual Rev 4.4 Page 1 of 149

Table of Content

HOW TO USE THIS MANUALuitireinrinnsamssssessssssanosssssssssssssssasssssssssssssssssasosssssssssssssssasossssssss 7
INOTATIONS ...ttt ettt ettt et et e ettt e et e e e e ab e e e eab e e e st e e e bt e e eabbeeeabbeesabeeesabeeenabeeenane 7
PERFORMING EXERCISESoiiiiiiiiiiiiiiieiiiieeiite ettt ettt ettt ettt s st st snneesneeesanee s 7
FOR FIRST TIME USERS ...ccuttttiitteiitteiite ettt ettt ettt ettt et e st e e bt e e bteesbteesbaeesabeeesaneeas 7
WHAT'S NEW FOR QUICKCONTROL 4.47 ...ooiiiiiiiie et eetee ettt e et e e e e evae e e e saaeeeesnnaaaeeensnes 8
APPLICATION RELATED INFORMATION ...coutiiiiiiiiiiieiaiieeaiteeeite et e et e esiteeeseteesiteesnaeesaneeesaneeas 9

WARNINGS c.ccvienneinniossnsssiossssssssosssssssssssssssssssssssssssssssssassssssssssssssssssssssssssssssasossssssssossassssssssasssss 9
TRADEMARKS ...eiinitteiitte ettt ettt ettt ettt ettt e ettt e ettt e sat e e s st e e e bt e e ebbeeeabbeesabteesabbeesabteesabeeesabeeenane 10
COPYRIGHT ...ttt ettt ettt ettt e b ettt e bt et e b e e et e e e bt e e abeesb e e s abeesateeabeesaeeeabeenaneens 10

CHAPTER 1 - INTRODUCTION AND GETTING STARTEDuccccvvercnrnrcssnnscssasscssasscsens 11
INTRODUCTION ...ttt ettt ettt ettt e sb e sttt st e e bt e sat e e bt e sate e bt e saaeebeenaneens 11
GETTING STARTED ...ccetutttiitteiitteetiee ettt e ettt e et e e sttt e sateeesateeeasbeeeaabeeebbeeebteesbteesabteesaneeesabeeenanes 11

SEIUD STAVE-UPD KLoooeieeie ettt e et e e eaae e s 11
InStall QUICKCOMIFOLccc.ooiiiiiieiiiee et 11
Run QuickControl 1st Time And Setup COMMUNICALIONSccceeeeveeeaiieeeieeeiieeeieeeennes 12
Initialization WiZardcccceeeemeie oo 13
JOZG SCFVO........oooiiiiee ettt e 13
Create and Run First PrOZFAML..............cccccciiiiiiiiiniiiieiieeit ettt 14
DESIGN GUIDE AND HARDWARE DESCRIPTIONSceeiutteeiieerireenieeenieeenieeeenireesnnneesneeesneeesanes 18
TYPICAL COMPONERES.......c..coeiiiiiiiiie ettt ettt 18
TYPIcAl CONFIGUIALIONSc..oooeveeeeeiieeieeee ettt e et e e beestaeesseeesaeeseesnne e 20
QUICKCONTROL® OVERVIEW ...iiiiiiiiitieeee e e e eeecitieeeeeeeeeeeiataeeeeeeeeeennssssseseaeeeeeassssssnasaeeesaannnes 22
PROGRAMMING OVERVIEW......cutiiiiiiiieeesiiieeeenierreeeassseeeessssseeeessssseeessssssssessssssessssssssessssssssessnns 22
QUICKCONTROL® INTERFACE ... veveeeeeeeeeeeeee e eeeseeeeseeeeeeeseeeseeseesseseeeesessseseseeessaeeseeeseeeneeeeas 23
MENUS BAF ... et e e e e et e e e et e e e et e e e e et e e e e e aaaaa s 24
TOOIDAT ...ttt 27
Program INfO TOOIDATccooocuiiiiiiiiii ettt 28
Program WiBAOWcccooioiiiiiiieecie ettt eeaae e s 29
Device StATUS MONILOT.................coeeeeieeeeiie e e e e e e e e eaaaea s 30
File Menu DEtAILSccccvoieeiiieeeeee e 31
Program File PrOPEItIescceeviuiiiiiiiiiii ettt et 31
Upload Program File.........c.oooiiiiiiiiiciiciieeie ettt ettt ssbe e eanaens 33
Programs Menu DEtails.................cc.cccooiiiiiiiiiiiiieeieee e 34
REGISEI INAIMES ...eeiiiieiiiieciie ettt et et e et e et e e sstaeeensaeesnaeeesnseeennseees 34

T/O NAIMECS ... e et e e ettt e e e e tae e e e e baeeeeetaeeeeeeataeeeeennreas 35
Download and CRATT...........cccuieiiiiiieiecieecee ettt ee e beesaaeebeessaeenseesaaeens 35
TOOLS MU DELALLS ... 36
Initialization WIZardcccviiiioiiiiieee e et 36
Unknown Device WIZard............coooviiiiiiiiiiiiiiie et 40
CONLIOL PANCL ...ttt st e e be e s ab e enaeseaeennee e 41
Control Panel Strip Chart.........coc.ooiiiiiiiiiiiieeee et 44
Re@IStEr WatCR....coiiiiiiie e e e s 46
Data IMONIEOT ...ttt e e et e e ettt e e e ettt e e e e etaaeeeeeaaeeeeeeaaeeeeeeaaeeeeenreas 47

SilverLode User Manual Rev 4.4 Page 2 of 149

Firmware DOWNIoad WIZATd.........oooevviiiieeieeseeenenenenenennnanns 49

Setup Menu DELAILScc.cccueiiiiiiiiiiiiiiee ettt 49
COMIM POT ..ot ettt e st e st e e sbbeesbteesnbeee e 49
e 1) 1o W B 14 [T SRS 50
OPTIONIS .ttt ettt et e ettt et e st e e bt esteeebeeeseeesbeesseeenseessseenseesssesnseessseenseansnesnseensseenseannns 51

DEVICE INITIALIZATION DETAILScoouiiiiiiiiieiieeteeiee ettt een 52

PRasSe ALIGNIMENLooooueiiiiieee ettt e et e et e eateeenneeeenns 52
Start-Up Phase ALIZNMENTccoeiiiiiiiiieciieceeee e e e ee s 52
Index Phase ALIGNMENL........ccooiuiiiiiiiiiiiiieie ettt et sttt essbeesaeenseens 52
Automatic Index Phase AlGNmentcccooociiieiiieeiiiecie e 52
Manual Index Phase ALGNMENt..........c.ccciiiiiiiieiiieieeieete ettt e 52
Cyclic Phase ANGNMENT.........cc.oiiiiiiiiiieciie ettt e svee e siaeeeaaeeeeveeenaeeens 53

SilverDust IG/IGB With I-Grade Motor Memory Initializationcccoevveeevrennenne. 53

INIHALIZATION FILE ... et 54

Other INTALIZALION FIlES..............cccuveiiiiiaiii ettt 58

TROUBLESHOOTING COMMUNICATIONS ...ccuutiiiieiieniienieeeteenieeereesieeeneesieesneesineesneesnneeneennneens 58

SilverLode INAICAOr LEDScccccooiiiieiiii e vae e s 59

Green LED FIash Code......ccuoiiiiiiiiiiie et 60
CHAPTER 2 — BASIC MOTION AND PROGRAMMING FUNDAMENTALS................ 65
TRAJECTORY GENERATORoiiuiiiiiiiiiieiteeiteeettesiee et e st e ene e s steesneessneesanesneesaeeeneesaneeneennneens 65
COMMAND TYPES AND CLASSES.....cttiiiiiiiiiieniieiteie sttt sttt ettt sttt sre e s 66
COMMAND PARAMETERS ...ttt ett et ettt st s e eneesaneeneesaneenn 66

SCALITG. ...ttt ettt e ettt e ettt e et e ettt e et e e et e e et e e ennaeeennae s 66
RAW NUIMDETS. ...ttt ettt et et e st eebeesaeeens 66
POSItION/DISEANCEveeiieeiiieeiiieiie ettt ettt ettt e siee et e e st e e bt e s sbeeseesnseenseesnseeseesnsaens 67
TaATZEt VEIOCILY .oovvvieeiiie ettt ettt et e e st e e aaeeesabaeesaeeessaeeensseesnnaeenns 67
ACHUAL VIOCILY ...ttt et sttt sttt nae e 67
ALCCRICTATION ...ttt ettt et e et e e et e esbeeetbeessaessseesseeesseeseeesseensseasseeseennsaens 68
THIMIC et e e et e e et e e e st e e e e tb e e e taee e tbeeeabeeeabeeebaeeenbaeeenreeeenraeanns 69
TOTQUE ..ottt et e e e e et e e st ee e st ee e sbeeensseeensseeensaeeansaeeanneeennseeanns 69
FAIECT ettt e et e et e e et e e e ta e e e ta e e eba e e ebaeeearaeeeabaeeaareeas 69

BASIC MOTION COMMANDSoiiuiiiiiiiniieiietenieenteeetesttesteeitesieeaesseesteeneesnesaeesesanesueeneeanesaeenne 70

RelAIIVE MOTIOM ...ttt ettt et esaeenaaens 70

ADSOIULE MOTION ...ttt et enba e e eiba e e snbeeesnseeenns 70

VeloCity BaASEA MOLIONcceeieiiiieiieeeeee ettt 70

Time BASEA MOTIONocooueeeeiieeee ettt e e et e e e eaae s 70

VelOCTty COMIFOL...........cc.oeeeeiiee ettt 70

S=CUIVE FACIOF ..ottt e e et e e e ettt e e e sttt e e e enstaeesenssaeeeannes 71

IMEMORY MODEL......eiiiitiiiiteiiiteeite ettt ettt ettt e st e et e e st e e s bt e e s abeeesbbeeebbeesbbeesabeeesabeeenanes 73

Serial CommuniCAtions BUSFFcccoviiiiiiiiii e 73

Program BUfFerc..ocooiiiiiiiii oottt 73

DIQEA ROGISTOFS........oeeeeeeeeee ettt e ettt e et e e et e e e eateeeeeennsaeae s 74

NON-VOLALIIE MEMOTY.........oooiiiiie ettt e eas 75
Non-Volatile MEmMOTY MaAPccoviiiiiiiiiiiieiiecie ettt sve et ebe e saeebeesnaeesseenenas 75
Storing Data REGISTETScc.eeruiiiiriiiiiiiireeieetere ettt st 75
StOrING DIELAILSeeuviiiiieiieeieeieeee ettt ettt et er et e e et aeeraeenbeeeereenneas 76

FIPIUWATC.......oooiieeeee ettt 76

Memory MANGZEMENLcooeiiueiiieeeiiie et e et e e e e e e ee e entaeeeeeesaeaens 76
Program SiZe LAMILScc.eovuiiiiiiiiiiiirieeetetee ettt sttt 76

SilverLode User Manual Rev 4.4 Page 3 of 149

Multiple Programs in QCP Files........c.coooiiiiiiiiiieiieiie ettt 77

Managing Non-Volatile Memory Program Storageccccceeevvieeiiieeiieeeiee e 77
PROGRAM EXECUTIONciiiiiiiiiiiiiiiticiteie ettt sttt s s s 78
HOoW Programs OPEFQLe.ccccocuieiiuiicuiiiiiiiieeiieeteit ettt 78
MOtION COMMUANCSooeeeeiis ettt et e et e et e e enaaeeenseeeenns 79
FLOW COMMAIAS ... ettt e e 79
MoOde COMMEANCSoocoeeeiiieeii ettt et e et e saae e ennee e 79
Data Register COMMANGScccccciiiiiiiiiiiiiiiiieetet ettt 79
Miscellaneous and Initialization COMMANGS................c.c.ccccueeiiiiiiiiieniieeiee e 79
Program FIow CONIrolccccooviiiiiiiiiiiiitieitet et 79
Pausing Program FIOWcoooiiiiiiiiiiiiee et sttt 80
JUMP COMMANAS.......eieiiiieiiiieciee e e e e e et eesteeessbeeeessaeesssaeeenseeensseees 80
ENAbBIE COA@ ...ttt sttt 81
ENAbBIE Stateoouiiiiiii ettt et 83
Branching and LOOPING........cc.eevuiiiiiieiiiiiiierie ettt ettt ettt ebeeseneeseesaneens 84
Program Call and RetUINc..oieiiiiiiieceecee et e 86
FOI/INEXE (SDO4) ...ttt et e e e et e e e va e e saae e e s aseeeeareeeenseeeenreeas 86
HANASRAKING ... ettt ettt 86
PROGRAM DEBUGGING ...c.ceeutiiiiiiiiiiiitiiiieie ettt sttt st sttt e 87
DDUZ MOUe...............coeeiiii ettt 87
SINGLE SIEP/BIOAK ...t 87
SINGLE SLEP THACE ...ttt 87
REAI-TIME THACE.........cceoeeeieee ettt ettt e e s 87
CHAPTER 3 — UNIQUE FEATURES AND COMMANDS......cccocenruissrissserssaresssssssssssasssasese 91
STATUS WORDS ...ttt ettt st ettt sa e e e sae e 91
Polling Status Word (PSW)......cccooui ittt 92
POIl (POL) COMMANAueiiiiieiieiiieiieee ettt et sttt e e et esaeeeas 93
Clear Poll (CPL) Command............ccoouieeriieeiieeeiieeeiieesieeeeieeesieeesireeeereeesneesnnneesnsneenns 93

L/O Status WOrd (TOS)..........ooocueeaeieieeeeeeeeeeee et 94
Read I/O States (RIO) Commandc.oeoiieiiieiieeiiienieeieeeee et esee e see e e sneereesane e 95
Jump and Motion CommandScocueriiriiiiriinieiereeeeee e 95
Internal Status WOrd (ISW)..........oooueeioiieiie e 96
Read Internal Status Word (RIS) Commandcccoeiiiiiiiiiiniiiieieecee e 96
Internal Status Word 2(IS2) — (SD 06) ..ceeouvieeeiieeiieeiee et 97
Clear Internal Status Word (CIS) Command............ccoooeeriiieniiiiiinieiiieiece e 97
Check Internal Status (CKS) Command............ccceeevvieriiiiiieniieiienieeeeeie e sve e 97
Internal Status Word 2 (IS2) DeScription (SD03)..........ccccccoeioiieiiiiiiiiiieiiieiieeie e 98
ERROR LIMITS AND DRAG MODE......ccciiiiiiiiiiieiiiieiicieetese ettt 98
Error Limits Command PArametersccocccooecuoeiieiiieeiiieiieeieee et 99
Error Limits OPEFALIONcoeieeiieeiiiie ettt e e et e e e saaaeaeeenereeeeans 99
DFQG MO ... ettt 99
ANTI-HUNTT™ FEATURE ..ottt ettt et ettt et sae e st 102
USING AREI-HURT™ . ..ottt et e et e et e e s 102
ARLI-HUNE OPEFALION ...ttt et e ettt e e e e eaaea e e eneees 102
ANL-HUNE™ COMMUANAS.........oooiiiiiiieee e 103
Anti-Hunt Constants (AHC) COMMANGcccooovcuiiiiiiieeiiieeeiie e 104
Anti-Hunt Delay (AHD) COMMAN...................ccoocouiiiiiiiiiiiaiieeeeee et 104
Anti-Hunt Mode (AHM) COMMANG..................ccoeovvieaiiieaiiieeie e 104
Error Limits (ERL) and Torque Limits (TOL) Commandscc.ccccccuevvueeeraneeaenanne.. 105

SilverLode User Manual Rev 4.4 Page 4 of 149

IMIULTI-TASKING ..ottt et ettt e e e e e et teeaaeeeeeeeeeeeeaaaaaeeseeeeesasanaeseeesesasanesseeseranrnnnnnnes 105

Multi-TaSKing OPerationccccciieuiiiiiiiiiiiie ettt 105
SEIVO CYPCLE ..ottt e ae e 105
Multi-Tasking Operation RULES................c.ccccccoviiiiiiiiiiiiiiiiieieee et 107
Multi-Tasking EXamples.........ccoveiiiiiiiiiieiieeiieiie e 109
MULTI-THREAD (SD17) ittt ettt e et e et e e e et eeesae e ensaaeensaeesnsaeeenneeas 111
Using QuickControl To Launch Thread 2ccccocvevoiiieeiiiieiiieeeieeee e 112
CLC, CTVW, CLX, CLD, WCL, AND WCW COMMANDSccoiviiiiiiiiiiiiieeeee 114
WCW and WCL COMMANCSccceeeeiieeiii ettt s 116
CHAPTER 4 - MOTION CONTROL USING INPUTS AND REGISTERS..........cccceuuee. 118
USING INPUTS TO STOP MOTIONcoiiiiiiiiiiiiiiiieicieeie ettt 118
Standard Stop Conditions - QUICKCORIFOL................ccccooiioiiiiiiiiiiiiiiicc e 119
Standard Stop Conditions — Serial COMMUNICALIONS..............c..ccceuvereiueeeiieeniieeeiieeeieeeene 119
StOP ENADICoiiiiiieeiece e et s e e e e eree e 119

STOP STALE ..eeeneieeeiiie ettt ettt et e et e e bt e e etb e e sbteeenbeeennbeeenabeeenabeenn 119
Advanced Stop CONAILIONScccccciiviiiiiiiiiiiiiiii et 119
REGISTER BASED MOTION COMMANDScoiiiiiiiiiiiiiiesiieie ettt ettt 119
REGISIOH MOVES ...t 120
Extended RegiSter MOVEScccoovouiiiiiieeie e 120
PrOfIle MOVES ...ttt 120
Registered Step and Direction (RSD)cccuiiiiiiiiieiiiieeeee e 120
INPUE MOAES ...ttt 120
CHAPTER 5 — ADVANCED TOPICSuucourivenrinrersensnessnnsessanssasssessssssases 124
TECHNIQUES FOR STOPPING IMOTION........ciiiiiiiitiieeeeeeeetteiiiee e e e e e eeetaaaeeeeeeeeesaaannneseeeeesssnnnns 124
SOfIWATE SLOP OPLIONS.ccoeeieieiieeie ettt se et eseeenseennees 124
Hardware Stop: Drive Enable feature.................cccoocouiiiiiiiiiiiniiiiiiiiiiieneeeeeeees 125
PROFILE MOVE OPERATIONeeutiiiiiieieeniteeniteeteenieesteesteesteesaeeseneenaeesaneesanessneensnesmneenanesnneenans 125
Related Profile Move COMMANGSc.c..cccueeeieeieiiieeiie et 127
INTERPOLATED MOTION CONTROL ...cuueiiitieiieriteniieeieesieeeteesieeeereenieesneesireeeneesenesneenaneenneenane 127
REGISTER FILES ...ttt ettt s e st 127
CAMMING <.ttt ettt ettt e st e s ettt e s ae e et esae e et e e saeeeaneeseneeabeesaneenneennneeanees 127
TORQUE CONTROLcooiiiiiiiiiiii e 127
SHUTDOWN AND RECOVERYotiiiiiiiiiiiieiienieeeteeniee et eiee st eteesareeteeseneeseeseneeneesaneeseesaneens 128
SERTAL COMMUNICATIONSttiuiiiientiniretieteeitenteenteseeesttetestsesaeemsesusesueessesaeesaeennesneenseennesueenne 128
SERVO TUNING ...ttt ettt sttt st ettt ettt et st e e e seteeneesaneeneesaneens 128
CHAPTER 6 — INPUT AND OUTPUT FUNCTIONS......coovviiniinrninsrissnncsnecsssnssassssssssssssssne 129
INPUT AND OUTPUT OPERATIONcttiiiiriiieieenieenieeeteenieesteesieesereenaeesneesinessneeseeesneenanesnneenane 130
L/ LIT@S........ooeeeeee ettt et ettt et e eaaeeerae e 130
L/O FUNCHIONS ...ttt ettt ettt et e eaeeenseeenseenneas 130
Digital INPULS ANA QUIDULS............c.c.ooeeeeeieiiieeeiie ettt e e e iaeean 131
ARGLOG THPULS ...ttt ettt ettt e e e enee 132
High-Speed I/O FUNCLIONScc..coccueeieiiieeiie e et e saee e 132
L/O CORPTICES ..ottt ettt ettt et e ettt e e s e eneeenneas 133
USING DIGITAL INPUTS ...ttt ettt s 134
General Digit@l INPULSc.cocouieiuiiiiiee ettt 134
MOtiON CONMIFOL IIPULS. ..ottt et eeaae e enaae e 134
KGll MOTOT O IHPUE ...ttt 135

SilverLode User Manual Rev 4.4 Page 5 of 149

Modulo Trigger Input (SilverNUugget OnlY)cccooovuieeiiieeiiieeciieeeiee e 135

Configure 1/O (CIO) COMMANG................ccccccuemiiiiiiiiiiiiiiietet et 135
Digital Input Filter (DIF) COMMANG...............cc.ocouiiiiiiiiiieeiiie et 135
USING DIGITAL OUTPUTS ...ttt s 135
General Digital QUIDULScc.oooeueeeeiieeeiee ettt saee e e e snseeennseeens 135
Configure 1/O (CIO) COMMANG................ccccccuimiiiiiiiiiiiiiiietee e 136
Configure I/O Immediate (CII) COMMANG.................cc.ccouevcuieiieaiiaiieeiieeieeeeee e, 136
Set Output Bit (SOB) COMMANG.cccoooouiiiiiiiiiiiiie ettt 136
Clear Output Bit (COB) COMMANG................cccouveiiiiaiiiieiiie e esee e 136
USING ANALOG INPUTS ..ottt 137
ANGLIOG TPULS ...ttt e e et e et e e et eeentaeeennaeeenneee e 137
Using Analog Inputs for Program Flow and Data Monitoring................c.ccccocceecnnenne.e. 137
Analog Read Input (ARI) COMMANG...............ccceoveieiaaiiieiieeeie e 138
Analog Read Continuous (ACR) COMMAN................c..ccoooiiiiiiiiiiiiiiiiieeee e 138
INPUT MODE COMMANDSouiiuiiiiiiiiiiiiiiiiie ittt 138
INPUt MOAE OPEFALION. ..ottt et 139
Velocity Input Mode (VIM)ccceeiiieiiiieee et 140
Position Input Mode (PIM).............c..cccoiiiiiiiiiiiiieie et 140
Torque Input MOAe (TIM)cccooeiueieiiiieeee ettt 140
USING ENCODER SIGNALS WITH DIGITAL I/Oc..ociiiiiiiiiiiiiiccccce 140
ENcoder SiGNal TYPESocoeieieiieeee ettt 141
Step and Direction SiQNALS................cccccociioiiiiiiiiiiiiiiieieet e 141
Step Up/Step Down Signals (SilverNugget Only)cccoocvevceiicieiiiaiieeieeieeee e 141

A and B Quadrature SIGNQALScccccciiiiiiiiiiiiiiiiii et 141
EXTERNAL (SECONDARY) ENCODER INPUTSooiiiiiiiiiiiiiiieeceiieeeeertee e e et e e e eevaee e 142
Direct Motion CORtrol INPULSc.cccocieiiiiiiiiiiiiiiii s 143
DUAl LOOPD CORIFOL. ...ttt 144
ENCODER OUTPUTS ...ttt s 145
Raw Internal Encoder Output (SilverNugget ORly).............cccoovvueeciaiiiiiiiiiiaiieieeeenene 145
Raw Internal Encoder Output (SilverDust-IGB Only).............cccccoveeeiiiiviieeniiieeiieeeieeenn, 145
Scaled Internal Encoder Output (Modulo Output)(SilverNugget Only)..............cc.ccoou..... 145
INDEX.cuciiuiiiuinsensinsnnssessnsssnssesssnsssssssssssssasssassssssssssssss 147

SilverLode User Manual Rev 4.4 Page 6 of 149

How to Use This Manual

How to Use This Manual

The SilverLode™ Servo Family User Manual is a technical reference designed to aid
users in the operation and programming of the SilverLode™ product family which
includes the SilverNugget™ and SilverDust™. QuickControl®, QuickSilver’'s software
interface, is used for programming, initializing and testing the SilverLode products. The
companion publication, SilverLode™ Servo Family Command Reference, provides
details on all commands. The User Manual frequently references the commands and
discusses their operation. For this reason, both publications are needed to understand
the SilverLode™ products.

The User Manual material is arranged in a textbook format. It begins with the
fundamentals of use and progresses into advanced topics that are application oriented.
Any new user can follow the material in a natural progression of product usage. In
addition, there are exercises throughout the text that provide users a hands-on
approach toward understanding the topics better. The manual is thorough, but not
exhaustive. Users that explore this material fully and complete the exercises should
gain the ability to operate, program, and prototype any SilverLode servo system into
working applications.

Notations

SDnn
This notation means the feature or command being described was introduced in
SilverDust rev nn.

Performing Exercises &9
The exercises in this manual are designed for use with one SilverLode servo,

a PC running QuickControl, an acceptable power supply, and a basic QCI Start-Up kit
(or comparable circuitry for I/O triggers). Many of the examples require the toggling of
inputs. To perform these exercises, the user will need to wire in a switch. The inputs
used are 1, 3 and 5. Alternatively, the user could purchase a Training Breakout (QCI-
BO-T) which already has these switches built-in. The Training Breakout connects to the
SilverLode's SMI Port using a SMI cable. See individual datasheets for more details.

For First Time Users
Chapter 1 gives step-by-step instructions on the hardware setup and first time
operation, including initialization and writing a simple program.

SilverLode User Manual Rev 4.4 Page 7 of 149

How to Use This Manual

What's New For QuickControl 4.4?

QuickControl 4.4 supports that latest SilverDust firmware rev 27.

e CANOpen now Supported on Silverdust IGB (rev 27)

o Supports Master, Slave And Peer Configurations

o Allows Interface To 3rd Party CANOpen Devices Such As Encoders And
1/O

o Allows Register And I/O Sharing With Other Silverdust IGBs

o See the new CANOpen User Manual for Details

e Multi-Thread now Supported on Silverdust IGB (rev 27).

o Launch 2™ Thread For Such Things As 1/0 and CAN Monitoring

o Thread 2 Runs Simultaneously With Thread 1

o See Multi-Thread in the User Manual for Details

o New Multi-Thread Commands:

= Thread 1 Force (T1F)
» Thread 2 Kill (T2K)
= Thread 2 Start (T2S)

e New or Enhanced Commands (see Command Reference for Details)

o Calculation, Extended (CLX,CLD): Added Pre-Save Accumulator Option

o Command Error Recovery (CER): Specifies which user programs to be
called on Command Errors.

o Control Constants 2/Filter Constants 2 (CT2/FL2): Servo Tuning
Constants for PVIA™ using our new Observer model to calculate actual
velocity and acceleration.

o End of Travel, Negative/Positive (ETN/ETP): Designate a set of inputs to
stop motion in both negative and positive direction.

o Registered Electronic Gearing/Error Limits, Remote (REG/ERR): Used for
enhanced electronic gearing using CANOpen.

o For/Next (FOR/NXT): Used for standard For/Next loops.

o JGE,JGR,JLE,JLT,JLE,JNE,JRE Added pre/post inc/dec

o Jump on Register Bitmask/Program Call on Register Bitmask (JRB/PCB):
Jump on the comparison of a given register to a Bitmask (i.e. AND, OR..)
or arange (i.e. -5 <reg < 10).

o Programmable Limit Switch/Programmable Limit Trigger (PLS/PLT):
Program an output to toggle based on a table of position trigger points.

o Velocity Limits (VLL): Limits servo loop velocity.

e Debug Tool Upgrade: The debug tools were upgraded to support Multi-Thread
debugging. Each thread can now be independently debugged (i.e. Trace, Single
Step, Breakpoint,...). See Program Debugging in User Manual for details.

e Default Initialization File: ACK Delay (ADL): Default (Auto) for RS-232 changed
from 0 to 1 to allow the default setting to support multiple drop RS-232
configurations.

e Display Error Code on Command Error

e Relative Jump Labels: In addition to jumping to a unique label, the user can now
specify the number of lines to jump up or down relative to the Jump command.
See Relative Jump Labels in User Manual for more details.

e Expanded 8 Bit ASCII Protocol: QuickSilver's ASCII protocol has been expanded
to include an optional packet checksum, decimal response packets and hex

SilverLode User Manual Rev 4.4 Page 8 of 149

How to Use This Manual

parameters. See Technical Document QCI-TD053 Serial Communications on
our website for details.

e Fixed Bug: InitWiz/Control Panel. Long file/path names (>100 chars) were being
truncated.

e Fixed Bug: Edit Motor: (PAC,MCT): If user selected Manual, Line Resistance
and K (under Advanced button) were being used instead of what was determined
in Initialization Wizard.

Application Related Information

Detailed application programming examples are available with the QuickControl
software. They are found in a subfolder of the main QuickControl install folder named
“QCI Examples”. QuickControl can be downloaded from the QCI website
www.QuickSilverControls.com. The website also contains QCI Application Notes that
offer the user details of operation in specific applications.

Warnings

The QuickSilver Controls, Inc (QCI) SilverLode servos are high performance motion
system. As with any motion system, it is capable of producing sufficient mechanical
output to cause bodily injury and/or equipment damage if it is improperly operated or if it
malfunctions. The user shall not attach a QCI product to any mechanism until its
operation is fully understood. Furthermore, the user shall provide sufficient safety
means and measures to protect any operator from misuse or malfunction of the motion
system. The user assumes all liability for its use.

A Do Not Hot Plug The SilverLode Product! Connecting or un-connecting hot

wires or plugs is defined as Hot Plugging. A hot wire is a wire with voltage on it.
When this occurs, the residual current in the power circuitry (motor windings, power
supply, voltage clamp, 5 Volt supply, communication power...) attempts to find the path
of least resistance to ground (before the proper ground connection is established). In
most cases this path is through the communication lines (but is not limited to
communication failure). The available protection devices are not rated for high transient
power spikes, or repeated spikes. Repeated spikes can weaken communication slowly
to the point of failure. In some cases, total communication failure can occur in the first
and only instance of Hot Plugging. In applications, this can be overcome by connecting
chassis ground to the power supply ground. With this direct ground implemented, the
path of least resistance for residual power is through the added chassis ground. In
applications where chassis ground is isolated from power ground, take EXTREME care
not to Hot Plug. Contact QCI if necessary.

A User must remove motor from load before initializing the servo or aligning motor
index pulse to prevent potential injury or damage.

A If Index Phase Alignment option is used, the user must re-run the Initialization
Wizard after replacing either motor, encoder, and/or driver; motor must be removed
from load prior to powering up system after changing any of these elements to prevent
potential injury or damage. Start the wizard with the power turned off, and turn on power
when instructed.

SilverLode User Manual Rev 4.4 Page 9 of 149

How to Use This Manual

A Units shall not be used in life critical applications without the signed authorization
of the President of QuickSilver Controls.

A User is responsible to provide safety interlocks for any application that may
cause injury or damage in either normal or abnormal operation of the unit.

A The SilverNugget N3 must be wired with a voltage clamp (i.e. QCI-CLCF-04)
between the N3 and the Driver power supply; the SilverNugget N2 and SilverDust D2
MG may require a clamp, according to the application. The voltage clamp must be
placed close enough to the SilverLode controller/driver to guarantee that the voltage
difference between the module and the clamp at maximum current never exceeds 1.5
Volts. (This includes the drop across both the power and ground conductors.)

A Do not mechanically back drive the motor of a SilverLode servo without a voltage
clamp present. The voltage generated may damage the electronics.

A User shall limit current to the SilverNugget N3 units to no more than 35A, or shall
fuse power to the SilverNugget N3 using a slow acting fuse rated at not more than 35A.

A These products are intended to be used with the appropriate power supplies,
motors, electrical protection components and other equipment to form a complete end
product or system. They must be installed by a professional assembler who is familiar
with the requirements for safety and electromagnetic compatibility (“EMC”). The
products are to be tested in the final application at the system level. The assembler is
responsible for ensuring that the end product or system complies with all the relevant
laws in the country where it is to be used.

Trademarks

® QuickControl® and QCI® are Registered Trademarks of QuickSilver Controls, Inc.
SilverLode™ SilverNugget™, SilverDust™, PVIA™ QuickSilver Controls™, and
AntiHunt™ are trademarks of QuickSilver Controls, Inc.

Copyright

The SilverLode servo family's embedded software, electronic circuit board designs,
embedded CPLD logic, and this User Manual are Copyright © 1996-2005 by
QuickSilver Controls, Inc.

SilverLode User Manual Rev 4.4 Page 10 of 149

Chapter 1 — Introduction and Getting Started

Chapter 1 - Introduction and Getting Started

Introduction

The chapter starts out with a Getting Started section that describes setting up and using
QClI’s Start-Up kits. This is a quick way for first time users to get up and running. The
remainder of the chapter details other hardware setups and documents the
QuickControl interface.

Getting Started

In order to facilitate designing a QCI® servo into an application, QCI has put together
several start-up kits. These kits include the most common items necessary to get things
started. When matched with a user supplied power supply, computer and
motor/encoder, the Start-Up Kit allows a user to immediately start programming and
testing.

WARNING: Read Warnings section at the beginning of this manual before connecting
any hardware.

Setup Start-Up Kit
Setup the hardware following the instructions included in the Start-Up Kit. A copy can
be downloaded from our website (www.QuickSilverControls.com).

Install QuickControl
After the hardware is setup, install QuickControl as follows:

Hardware Requirements
e Personal computer with a Pentium (at least 500Mhz) or higher processor running
Windows 9x, NT, Me, 2000, or XP.
e An unshared serial port capable of communicating at 57,600 Baud or better.
¢ QuickControl Software on CD.

Note: QuickControl can control a SilverLode™ product in “real-time”; it therefore needs
full access to PC resources. When installing QuickControl, it is necessary to close all
shared files and exit open applications. It is also highly recommended that applications
requiring large system resources be closed and any screen saver disabled.
Background tasks can cause interference and should be reduced to minimum
requirements.

Procedure
1) Insert the QuickControl CD into the CD ROM drive. If QuickControl setup
automatically runs, go to step 4.

2) From the Start menu select

Start > Run

SilverLode User Manual Rev 4.4 Page 11 of 149

Chapter 1 — Introduction and Getting Started

3) Type in the setup program:
[CD Drive Letter]: \setup
4) Follow the instructions on the screen.
5) Remove CD and reboot the PC. This can be done by selecting:

Start > Shut Down

Run QuickControl 1st Time And Setup Communications
Run QuickControl: From the Start menu,

Start > Programs > QuickControl

If your comm port has not yet been enabled (true for any
first time users), QuickControl will prompt you to enable 3 Wekoe

the Comm Port and initialize your servo.

For a hutarial, pleaze go to the Help menu
Help Topicz->Getting Started

Press OK.
R S
QuickControl
i“"'} The PC's COM port can be setup by selecting
Setup->Comm Port PreSS OK
Cancel 1
Setup Communication Port
Check Enable if COM1 is ok. The Comm
The Communcation Port maybe modified by]
Port can also be setup from Setup menu pushing the Modify Eution. T
(See Setup Menu Detalls n thIS manual Once tl:1le desinleld device has been zelected,
for more details). check "Enable".
Communication Device Properties IV Enable
Press OK. [Paud=57E00, COM1, QuickSilver &-Bit ASCII Moty I
QuickControl

=\ Iriizs you Davice Verify your hardware is setup correctly (See Setup
L/ _ o Start-Up Kit above). Do not connect the motor to a

1] Attach the Device to the PC as described in the . . - . .

Liser Marusl mechanical load until you are familiar with its

2] Power up Device (lum device on) operation and established any necessary safety
interlocks. If your unit requires a clamp or clamp
resistor, connect them now. Power up device and
press OK.

3] Run the Initialization wizard from the Tools menu

Presz OF for me bo do thiz for pou

el | Cancel This will launch the Initialization Wizard.

SilverLode User Manual Rev 4.4 Page 12 of 149

Chapter 1 — Introduction and Getting Started

Initialization Wizard
The wizard can also be launched from the Tools menu.

Initialization Wizard

Prezz "Download” o intialize servo or change the
factary default parameters uzing the "Initislize Parameter

: Press "Download..... " to initialize
= the servo using factory defaults.

Browser " or Vlnterview", .

Device "Dev #1" égownloac_l s — T . .

Mo s Lobeee || mewew | | See Initialization Wizard (below)

Motor Cable [2 for more details.

DEYICE DETECTED: &e = 16 Lenath [f]

SilverDust D2 |-Grade w/ Breakout [IGE], sn=1002

|-Grade Motar Detected: A17H3, CPR=8000, :n=1026 .

= | A message will appear when the

|nitialize Parameter Browser . download iS Complete_ PreSS OK
| ommuniatons | to acknowledge message and
Factory Default Infiafzation. aep | |® SewoTuning | press Exit to exit Initialization
- Mation | H
Open Save Save A i - Exror Limits leard.
- = - B Misc |
There are lots of example programs to EEEIELI
look at in the QCI Examples folder iﬁ" Checkout all the exarmples!]
(insta"ed when QUiCkCOﬂtrOl was q QC] has provided you with lats of examples ta get you started
installed in the QuickControl folder). Biowse them by
File->Dpen
PreSS OK Go to QLI Examples folder [i.e. c:%Program Files\duick ControhGCl Examples]
Initialization is complete! Corcal_ |
Jog Servo . . . Device Statuz Monitor
If you are communicating with your servo, you should see a -
green “PRG STP” icon in the Device Status monitor. This Igeviﬂ FRG | e gﬁ-
16 0

means you are “polling” and have a registered device.

rone NOT
Dev 4 EHA=
] BLED

(gl=lgl=S NOT
Dev#5 EHA=
D |l BLED

nonge NOT
Dev#3 EHA=
BLED I
If you do not see this icon, press the Scan Network button on the 2one NOT
Device Status Monitor. P ENA-]

To jog your servo, select from the main menu:
Tools = Control Panel

Using the mouse, run the slider up and down to jog the servo. See Control Panel latter
in this manual for more details on using this tool.

Press Exit.

SilverLode User Manual Rev 4.4 Page 13 of 149

Chapter 1 — Introduction and Getting Started

Create and Run First Program

Move 8000 Counts At Power Up

We will create a new program that causes the servo to go 8000 encoder counts when it
powers up. You should be polling and have a registered device. In other words, you
should have a green “PRG STP” icon in the Device Status Monitor (see Setup
Communications). If you icon is not green, press Scan Network on the Device Status
Monitor

Create a new program by selecting New Program File from the File menu.

File = New Program File

@ﬂuicktuntml - [ACprogl] M=l E
e e B S R R T
0 |D”|D'\|H|§:ﬂ|§|3| ‘%llﬂl él ?lkgl ml Device Status Mnnii.ul
| 2 F 1173 rone NOT
Your screen | E‘:gf Label | Command j I[a)ev #1 g!?G Dev #2 Eﬁé\a
ShOU|d |ook — Program Line - 1:REM |
. . 1 (lelgt=s NOT ||hone NOT
Ilke | Add [Cntl-&] | Edit [Cntl-E] . {155, Hor frore S
Irsert [Crt-) | Delete (CrtlD)| i BLED|u BLED
hone NOT |[hane NOT
- Frograms . Dev#s ENB=|[DeviE ENA=
Download I Run I 0 BLED {in E
Scaling I Test Line I Dev 31 "1 courts
Debug r : 110 Iilililililili
Frogram List 100+ Iililililili]ili
| -IProgram td ame [0] j Iililiﬁlililili
| 0af 1023 words used I Stop Palling | IF'DIIing
_ ; Status Log
Devics Te Program - 01 Poling Started
Febaoat | | 0316 Found
= = : 04 16: SilverDust Found
Desc Dewv #1" 16 | 5 0516 DriversD2
T ' 0B 16 =n=1000, rev 27-17 0405 200
vRe 07 16: _|-Grade w/ Breakout [IGE
| . Motor=0IC] |-Grade 17-3
For Help, prezs Fi : _'I
On the Program Info Toolbar, Add & fine afterine 1 K|
press the Add button. The Cancel |
S_eIeCt Program Line dialog box MIT | MODE MOVE |FLow] 0 | REG | MISC | can | AL | REM | :
will appear. Press the MOVE
tab Category | TLA Conmard =

MOWE H5M Hard Stop Move
MOWE M0 Interpolated Move Queus Clear

Double CliCk on MRT_ The Ed|t MOWE IM5 Interpolated Move Start

. . MOYE MaT | Mowve &bsolute, Time Baszed
Move dialog box will appear. MOVE |M&Y Move Absolute, Velocity Based
MOWE SIxA MR 4 ove Relative, Time Based
MOVE MRV | MowveRelative, VelocityBaged |}
MO%E PCG Pre-Calculated Go
MOYE PCM Pre-Calculate Move
MOE PMC | Profile Move Continuous
MOWE PO Profile Move Overnide :
MOYE | PMY | Profile Move LI

SilverLode User Manual Rev 4.4 Page 14 of 149

Chapter 1 — Introduction and Getting Started

Edit the move data as shown.

Edit MAT:Move Relative, Time Based

Press the OK button to save and exit.

Diztance -——Ein-cfl——j
[0 counts ——— f—— Descriplion | On the Program Info Toolbar, press Download.

pdvarced | QuickControl will download your program to the
Fiamp Time e | servo's non-volatile memory. Cycle power to your
[100 moec) = servo or press Reboot. Your servo will reboot and
S _ s | go 8000 counts in 1 sec.
W“mSec j‘“‘“““““‘“““““““

The program you just wrote will execute every time

the servo powers up.
Select Save As from the File menu to name and save your program.

Congratulations! You are a programmer.

Edit MRT:Move Relative, Time Based

Stop a Move Using a Digital Input
To make the move stop depending on the state of
a digital input, the move needs to be edited. Distaree Cancel |
. ;SDDD county ———— }------— M
1) Select the MRT program line. e
Ramp Tirne M
2) Press the Edit button on the Program Info [0 R I |
Toolbar. S _sw |
§1DDD mEec i
3) Press the Advanced button. :
Edit S5top Conditions
Standard]Advanced;
Stqp move when input iz in the 4) Se|eCt the Standard
indicated state.
tab.
Eoneiion State 5) Select I/0 #1 and
HIGH/TAUE LOW/FALSE. The dialog
Rising box should look like the
following:
This will cause your
move to stop when Input
#1 is LOW.
6) Press OK to save and
0K ; Cancel i Lpply Help i exit.

7) Press OK to exit the

SilverLode User Manual Rev 4.4

Edit Move dialog box.

Page 15 of 149

Chapter 1 — Introduction and Getting Started

8) Press the Run button on the Program Info Toolbar and verify the move stops when
Input #1 goes LOW. NOTE, the Run button is shortcut that first "presses" the Download
button for you followed by the Reboot button.

9) Power down and power up your servo and verify the program runs again.

Start a Move Using a Digital Input

There are many ways to start a move using a digital input. Most of them involve adding
a Program Flow command to the program. We will add a command that will cause the
servo to wait until Input #5 is LOW before executing our move.

1) With our MRT command selected, press the Insert button to add a line between line 1
and 2. (note: pressing Add will

add a line below the selected Select Program Line
line). The Select Program Line addaline after line # 1
dialog box will appear. Carea 1

MIT | MODE | MOve FLOW |10 | REG | mMisC | can | Al | REM |

2) Select the FLOW tab. |

Category | TLA Command -:-j
3) Double-Click on the WBS FLOW | NAT Mext -
. . [FLOW | PCE Program Call On Begister Bitmask
command. This command will FLOW | PO Program Call On Input
cause the servo to wait at the NI PCL | Progiam Call
. . e FLOW | PRI Program Return On Input
program line until the condition FLOW |PAT | Progiam Fetun
iS met [FLOW |RSP | Restart, Program Mode
' FLOW T1F Thread 1 Force LRP
FLIOW T25 Thread 2 Start
Edit WBS-Wait On Bit State Etgﬁ mgg :a ” e
[ait On Bit State
Select which candition ta wait an FLOWw |"wDL “wai Delay -
CaonditionEirfil...‘j
Jiz0 5 [_Desciton | 4) Enter the data as shown.

- Hiah 7 TRUE 5) Press OK to save and exit.

6) Press Run to run your program with Input #5 HIGH. Note, the servo does not move
until Input #5 goes LOW and will stop when Input #1 goes LOW.

Do Forever

To make the program start back over again after it finishes the move, we will add a JMP
command (FLOW) to the end.

1) Select the MRT program line.

2) Press the Add button.

3) Select the Flow tab.

4) Select the JMP command.

SilverLode User Manual Rev 4.4 Page 16 of 149

Chapter 1 — Introduction and Getting Started

5) In the label field, enter the word “START” as | XELIELL

shown on right. —
Cancel

6) PreSS OK tO eXit the Ed|t Jump Command Select from existing labelz ar enter a new ane. --;—---t--ml

dia|09 box. [5TART = esciption |

Select conditions for Jump

7) You have just added a command to jump to
the program line with the label “START”. Add
this label to line number 2 by clicking on the
line 2 label cell and type “START”. The JMP command will now loop to line 2 after it
finishes the move.

Londitions

Ia:z:i Label | Command
1:REM
i Wiait On Bit State
SWBS ESTARTE | 10 #5" is LOW/FALSE
ove 8000 counts (2
ramp tirme=100 mSec
IMRT total tirme=1000 mSec
Stop when "I/0 #1" iz
L 0w /FALSE
4P Jump o "START"

8) With both Input #1 and Input #5 HIGH, run the program. Verify the motor does not
spin until Input #5 goes LOW. Verify the motor executes its move until Input #1 goes
LOW.

9) Save the program under a name of your choice. You can look at a fully documented

version of the program by opening: QCI Examples\ Using Inputs for Move
Selection\Tutorial-Using an Input to Start and Stop a Move.qcp

SilverLode User Manual Rev 4.4 Page 17 of 149

Chapter 1 — Introduction and Getting Started

Design Guide and Hardware Descriptions
This section documents typical hardware components and setup configurations for
SilverLode servos.

Typical Components

For most applications, the following generic parts list provides a complete motion control
servo system. These components give the basic functionality necessary for a working
rotary positioning system. This basic system is comprised of a QCI Controller/Driver,
QCI Motor/Encoder, Breakout Module, Power Supply, and Cabling. Some items could
be added or removed from this list, but the items listed are the ones used most often.

For detailed examples on using any particular controller/driver in a system, please refer
the SilverLode Controller/Driver Datasheets on our website
(www.QuickSilverControls.com).

Controller/Driver

The servo controller/driver is the main component in the servo system. QCI’s control
algorithm allows the controller/driver to servo high torque stepmotors with load inertia
mismatches well over 100:1. Each controller/driver has such capabilities as serial
communications, Input/Output lines and Mathematical functions. Non-volatile Memory
allows multiple programs to be saved indefinitely for later recall. A SilverLode
controller/driver drives a single stepmotor.

Stepmotor/Encoder

QCI offers high pole count stepmotors with encoders. When matched with a SilverLode
driver/controller, the combination creates a high-performance rotary positioning system.
Each stepmotor has been specifically selected for optimized performance with the
SilverLode drivers. Motor/encoder packages are typically selected based on the torque
performance of the stepmotor, environmental rating and the required encoder
resolution.

Power Supply

SilverLode products operate from a supply voltage of +12 VDC to +48 VDC and must
be initialized for the specific operating voltage. The power supply can be a switching or
linear type, but should be chosen so that the power output meets or exceeds the power
requirement of the SilverLode product. Check the product datasheets for maximum
current specifications. Unregulated supplies are not recommended due to the wide
swing of the input power line causing wide swings in the output voltage.

SilverLode User Manual Rev 4.4 Page 18 of 149

Chapter 1 — Introduction and Getting Started

Minimum Power Supply Specifications
e Regulated Supply
+ 5 % Output Tolerance
+ 2.0 % Load Regulation
50V Maximum
Over Current Fold-Back Protection
Short Circuit Protection
Over Voltage Protection

Cabling
QCI offers cabling for use with SilverLode servos and accessory products for general
applications. These cables have documentation describing physical dimensions and
pinouts.

If an application requires custom cabling, the correct pinout must be used to develop the
correct wiring harness. The following are some design requirements that are
incorporated into standard QCI cables but could be easily overlooked when
manufacturing custom cabling.

e Shielding—I/O and communication lines are susceptible to noise in many
industrial environments.

e Grounding— SilverLode products have logic, processor, power, and chassis
grounds that must be wired correctly.

¢ Null modem connections—the transmit line on a SilverLode product is connected
to the receive line on a serial port and vise versa for the receive line on
SilverLode product (RS-232).

e Sound electrical junctions—it may be beneficial to use crimp style connectors
rather then the solder tail type to avoid unintentional solder bridging across
adjacent pins. Lines with poor electrical junctions could cause intermittent
contacts that could effectively Hot Plug the device and disable communications.
Shorts between power and other pins may damage the unit.

e Wire gage—ensure lines meet the specified current and voltage drop
requirements.

Voltage Clamp

When a SilverLode servo is back driven or decelerates, the servo acts as a generator,
producing electrical power from the absorbed mechanical power. The SilverLode
controller/driver has to get rid of this power somehow, otherwise it will pass to the power
supply input raising the power supply voltage. If the voltage becomes too high, it can
damage the servo controller as well as the power supply. To prevent such damage, the
power must be directed to a load where it can be safely dissipated. This is the function
of the voltage clamp. When the voltage clamp determines that excess power is being
generated by the attached servo, it redirects this excess power to a load resistor.

Some controller/drivers use an external voltage clamp while others have one built in.
See individual datasheets for more details.

It is highly advised that, for those controllers without a built in voltage clamp, an external
one be installed at the engineering/prototype phase. The “clamp active” LED should be

SilverLode User Manual Rev 4.4 Page 19 of 149

Chapter 1 — Introduction and Getting Started

monitored during rapid decelerations, including emergency stops and simulated
recovery from jamming (also, if the end user can manually push a slide or spin a load,
these conditions should be checked as well). If the clamp active LED lights during these
tests, the clamp is required in the final design.

See Technical Document QCI-TD017 High Current Clamp Module - QCI-CLCF-04, QCI-
CLOF-04 for information concerning the voltage clamps.

Hosts

SilverLode products can communicate with a myriad of motion control hosts and
devices. All SilverLode product serial interfaces, baud rates, and protocols are software
configurable. This flexibility allows the SilverLode servo to communicate with many host
and software package available. In addition, several SilverLode servos can be
connected together to form a network.

When shipped from the factory, the SilverLode product and QuickControl software are
initialized with default values that are used to establish initial communications between
device and a PC. These default values can be changed to different settings during the
initialization procedure.

Unit ID (address) 16
Supply Voltage 48VDC
Serial Communications Protocol 8 Bit ASCII
Serial Interface RS-232
Baud Rate 57600

Typical Configurations

The following describes typical configurations for SilverLode servo systems. This
section is not an all-encompassing list. There are many variations and additions that
are possible. However, these examples should provide a good starting point.

For detailed examples on using any particular controller/driver in a system, please refer
SilverLode Controller/Driver Datasheets on our website.

Standalone Configuration

SilverLode servos are capable of operating as a system-level controller without any
input from a master controller or user interface. To function in this manner, SilverLode
servos are pre-programmed to produce the desired motion and to respond to any
sensors or other inputs in the system.

Often in this configuration, the digital I/O is used to initiate the required operations by

programming the product to start, end, or select programs using different 1/0
combinations.

SilverLode User Manual Rev 4.4 Page 20 of 149

Chapter 1 — Introduction and Getting Started

Host Configuration

Host configuration involves a SilverLode servo that is entirely controlled by a host PC,
Programmable Logic Controller (PLC), Human Machine Interface (HMI), or other such
device. The host is connected to the device through an RS-232 or RS-485 serial
communication link.

In this configuration a host controller such as a PC or PLC provides commands to the
device. The device waits for each command to be sent, executes the command, and
then waits for the next command. After the initialization routine has completed, no
additional internal program stays running that would allow the device to perform an
operation by itself. Most commands are available to the host. Some commands, such
as Jump (JMP) or Program Call (PCL), are only for use inside programs downloaded
into the device.

Operation in host configuration mode has the SilverLode configured as a passive slave
to the host controller, waiting for each command before performing any operation. This
allows for extended operations not available in a SilverLode only network. In cases
where many axes of control are required, a host configuration can achieve very complex
or highly coordinated multi-axis control. A host controller can also retrieve data from
registers.

Hybrid Configuration

A hybrid configuration utilizes a SilverLode servo operating such that the servo receives
command from an external controller, executes internal programs, and uses its internal
I/O . This configuration is more versatile than either a pure standalone or pure host-
controlled configuration. The SilverLode product can use its standalone abilities to
execute internal programs and interact with the system through its I/O. Also, an
external host can issue commands or interact with programs. For example, a PLC
could direct the device to switch tasks or stop motion in response to a digital input or
serial command from the PLC.

Multiple SilverLode Servo Configurations

A SilverLode product can be part of a small RS-232 or a larger RS-485 network. In
addition, two or more devices can be interconnected through their 1/O lines. The
possible configurations for multiple device systems are seemingly endless, although all
of the configurations are just combinations of the two basic configurations listed in this
section. Many of the advanced applications for SilverLode products use this capability.

SilverLode User Manual Rev 4.4 Page 21 of 149

Chapter 1 — Introduction and Getting Started

QuickControl® Overview

SilverLode products have an extensive command set that allow them to be programmed
for a wide variety of complex applications. SilverLode products need to be pre-
programmed if they are to be used in a standalone or hybrid configuration. In host
configuration, the host issues commands directly to the servo for execution and no user
program (other than initialization) is stored in the non-volatile memory.

SilverLode products are programmed from a series of commands issued through a
serial communications link. The most practical way to program a SilverLode product is
to issue these commands from the QuickControl software running on a PC.
QuickControl is QCI's Windows-based software interface for the SilverLode products.
QuickControl can run on a Windows 9x, NT, ME, 2000, or XP based PC connected to a
SilverLode product using one of the PC’s serial ports. QuickControl is designed to
make programming SilverLode products easy and efficient. Programming a SilverLode
product and using its advanced features is the topic of most of this manual, and
QuickControl is used in nearly all of the examples. It is also the only programming
interface fully supported by QCI and is always required to change the factory default
initialization program.

Programming Overview

The command set is accessible by most devices capable of communicating over an RS-
232 or RS-485 serial connection. This means that almost all host controllers (HMI,
PLC, Vision, and PC systems) can be used to communicate with and control SilverLode
products. Many applications require commands to be sent from the host directly to a
SilverLode product. This type of control is usually prototyped and tested more efficiently
using QuickControl. For example, an application might require a custom program
written in C++ running on a PC to dynamically issue a series of commands to a device
connected to the PC. SilverLode product operation could be setup for this application
without the use of QuickControl, but the development and prototyping of the application
is easier, faster, and more accurate if done with QuickControl.

Programs are made up of two components: the initialization program and user
programs. The initialization program contains all the initialization settings as well as
default settings for some of the advanced functions. User programs contain the
instructions to be followed while operating in standalone or hybrid configuration.

- Initialization Program. The initialization program starts at the first memory
location in non-volatile memory (address 0). After a device powers up, it
automatically executes the program that starts at the first memory location. This
program must contain initialization instructions for the SilverLode product or it will
not operate properly. Every SilverLode product comes from the factory with a
default initialization in the proper memory location. QuickControl has several
tools for safely changing the default initialization. The last command in the
default initialization program is a command to load and run the program that
starts at memory address 512. This is the default location for the start of the first
user program.

SilverLode User Manual Rev 4.4 Page 22 of 149

Chapter 1 — Introduction and Getting Started

« User Programs. User programs give a SilverLode product much of its true
power. User programs are integral to the standalone and hybrid configurations,
since in those configurations, the logic and control load is entirely or partially
shifted to the SilverLode product. User programs are formed by linking
commands together. The command set includes commands for program flow,
logic and math functions, memory manipulation, as well as numerous commands
to control the motion of the SilverLode product. QuickControl includes tools to
aid in creating programs, as well as an on-line description of each command.

QuickControl® Interface

The main QuickControl screen offers the user an easy to use programming interface
with the ability to monitor the communications status of up to 6 active units connected to
the PC Host. An active status log is available for viewing the status information the
active device is sending to the host. In addition, any device connected to the host can
be selected in order to view current position and the active /O states.

The Main QuickControl Screen is divided into five major sections (see figure below).
1) The Menu Bar contains pull down menus with all the functions of QuickControl.
2) The Icon Bar contains the most often-used menu items as shortcuts.

3) The Program Info Toolbar displays programming and program information.

4) The Program Window displays the active program.

5) The Device Status Monitor provides information about all connected devices.

3

P"'l]umk[:on 1o’ - [QCprog1)
‘,’ Progranm ools Setup Wlndow Help

For Help, press F1

B Device Status Monttor
DEE Flbéﬁlal %@ él?lk"l_@j
i z 15173 e NOT
| st Inf Ialne# Label Eomma% Dew H#1 Jh Dev H#2 EH&~
: B 16 jsTP BLE
—F'rogram L|n37 1:REM
| Add (cntka) | EditicntkE) | pone NOT flore - NOT |
Insert [CrtH) | Delete (CroDi| | i BLED| BLED |
nore NOT ||none NOT
P Devis ENA=|[Devie ENA=
Download Run 0 BLED |in ﬂ
Saling Test Line Dev #1 "D counts
Debug I 7o [|2 [a w8 [ul [
Pragram List Il 2= Il G
.IPlogram Mame [0] j ﬁﬁliliﬁliliﬁ
of 1023 words vsed I Stop Polling | IF'DIIlng
P Statuz Log
~ Device Ta P
FHiEs 16 TagEn 1 Polling Started
Reboat | 0316 Found
“ " g 04 16: SilverDiuzt Found
Desc Devi#l"18 | 0516 Driver=D2
T IXEE s 0616 sn=1000, rev 27-11
e , 07 16 |-Grade w/ Breakout IGE
02 16 Mator=QC! |-Grade 17-2

SilverLode User Manual Rev 4.4

Page 23 of 149

Chapter 1 — Introduction and Getting Started

Menus Bar

The QuickControl Menu Bar provides access to all functions of the software. These
“‘pull down” type menus offer many selections that can bring up other menus to
accomplish certain objectives. Above the Menu Bar, next to the QCI logo &
QuickControl name is the active flename being displayed in the QuickControl Program
Window. See Menu Details below for more information.

@Quick[untrul - [QCprogl]

Window Help
File Menu
e New Program File - Opens blank program template
e New Sequence File — Advanced Feature (see Technical Document QCI-TD025:
Events and Sequences).
Open — Opens a saved file
Close — Closes the active file in QuickControl
Save — Saves the current file
Save As — Saves the current file with user set parameters
Program File Properties — Contains scaling, password protection, and user
defined names. This dialog box can also be accessed by pressing Scaling on
the Program Info Toolbar. See File Menu Details below for more information.
e Upload Program File — Retrieves the current program residing in non-volatile
memory. See File Menu Details below for more information.
Print — Prints the active QuickControl Program file to the default printer
Print Setup — Allows the user to change printer and paper settings
All Halt — Sends the All Halt command
Recent Files — Displays a list of files recently open in QuickControl
Exit — Closes the current files opened and exits QuickControl

Edit Menu

e Cut — Removes highlighted section of text or program line

e Copy — Copies highlighted section of text or program line

e Paste — Inserts a copied or cut section of text or program line before selected
line

e Select All — Highlights an entire program

e Events — — Advanced Feature (see Technical Document QCI-TD025: Events and
Sequences).

View Menu
e Toolbar — When checked, Toolbar will be displayed
e Status Bar — When checked, Status Bar will be displayed
e Device Status — When checked, Device Status will be displayed
e Column Width — Set the program's column widths

SilverLode User Manual Rev 4.4 Page 24 of 149

Chapter 1 — Introduction and Getting Started

Program Menu

Add Line — Adds a new line to a program

Insert Line — Inserts a line above the selected line in a program

Edit Line — Edits the selected line in a program

Delete Line — Deletes the selected line in a program

Disable Line — Disable selected line in a program. The program line is "greyed
out" and is not downloaded.

Enable Line — Enabled a disabled line.

New Program — Creates a new blank program

Delete Program — Deletes selected program

Program Details — Allows a user to name, describe, and modify the stored
location of a program.

Scaling — Allows a user to adjust scaling parameters and max/min ranges
Register Files — Links register files or file arrays (.txt based) to active
QuickControl program (see Register Files for more details).

Register Names — Assigns user defined names to registers. See Programs
Menu Details below for more information.

I/0 Names — Assigns user defined names to I/O lines. See I/O Names below for
detail. See Programs Menu Details below for more information.

Run Program w/o Save — Runs current program without storing the program to
NVM.

Download and Chart - Download and chart current program. See Download
and Chart below for more information. See Programs Menu Details below for
more information.

Erase Application in Device — Erases current program in non-volatile memory
Toggle Breakpoints — Toggles Breakpoint at current line

Clear all Breakpoints — Clears all Breakpoints in all programs

Single Step - Single step program line. See Program Debugging for details.
Real-Time Trace - Trace Program in Real-Time. See Program Debugging for
details.

SilverLode User Manual Rev 4.4 Page 25 of 149

Chapter 1 — Introduction and Getting Started

Tools Menu

e Initialization Wizard — Sets up and initializes devices. See Tools Menu Details
below for more information.

e Unknown Device Wizard — Establishes communications with a device of
unknown parameters. See Tools Menu Details below for more information.

e Control Panel — Tool for Jogging, Tuning, and Monitoring SilverLode products.
See Tools Menu Details below for more information.

e Register Watch — Change and/or view data in the SilverLode products data
registers with this utility. See Tools Menu Details below for more information.

e Data Monitor — Monitor all data sent and received by a device and the PC. See
Tools Menu Details below for more information.

e Firmware Download Wizard — Downloads firmware to device. See Tools Menu
Details below for more information.

e Configuration Wizard — Pressing this button will give you a message saying the
wizard is obsolete.

Setup Menu

e Comm Port — Selects Baud Rate, Communications port, and Protocol for
QuickControl. See Setup Menu Details below for more information.

e Register Devices — Allows user to manually register devices into QuickControl.
See Setup Menu Details below. See Setup Menu Details below for more
information.

¢ Options — Allows user to edit other setup specifications. See Setup Menu Details
below for more information.

e Polling — When checked, starts QuickControl polling the network for any
connected devices and then displays the state of the device in the Device Status
window

Window Menu

New Window — Creates a new program window

Cascade — Cascades current program windows

Tile — Displays current program windows in a tile arrangement

Arrange Icons — Arranges and aligns minimized program icons

Current Program List — A list of programs currently open in QuickControl

Help Menu
e Help Topics — Opens help menu for tutorials and information on QuickControl

e About QuickControl — Displays date and version of QuickControl and product
support information

SilverLode User Manual Rev 4.4 Page 26 of 149

Toolbar

Chapter 1 — Introduction and Getting Started

The QuickControl Toolbar provides shortcuts to certain functions that may be used
repetitively while using the QuickControl software.

Blililgl&ﬂlggl %[5 @ %lﬂwlgl{
/v
1 2 3 4 5 6 7 8 9 10 11 12 13

1 Create a New Program
File (.QCP).

2 Open an Existing Program
File (.QCP).

3 Close the Active Program
File.

4 Save the Active Program
File (.QCP) to PC's Hard
Drive.

5 Initialization Wizard

6 Control Panel

7 Cut Selected Lines From
Program File

7 Copy Selected Lines From
Program File

8 Paste Previously Cut or
Copied Line into Program File

9 Print Active Program

11/12 Ver/Help

13 Stop all motion/executing
programs on all devices.

STOPE

The STOP button stops all command execution and programs running in
all devices connected to the PC. It can also be used to verify

communications to any device as the Red LED blinks briefly when issued.
(Will not affect units running Modbus® protocol.)

SilverLode User Manual Rev 4.4

Page 27 of 149

Chapter 1 — Introduction and Getting Started

Program Info Toolbar

The Program Info Toolbar is located on the left side of the main QuickControl Screen.
This toolbar allows the user to create, edit, download, and debug programs. It also
offers information about programs and the current device being programmed.

Program Line

gL e Add (Ctrl-A) — Ad_ds a line below gelected line
| dd(CrtA] | Edit(CrE) | o Edit (Ctrl-E) — Edits the sglected line .
\nsert (Cri) | Delete (CritD)| ¢ Insert (Ctrl-l) — Inserts a line above selected line
e Delete (Ctrl-D) — Deletes the selected line
- Programsz
D overload I B | Programs
Scaing | Testline | e Download — Downloads all programs in the active
Debug - file to the device.
Program List ¢ Run - Downloads all programs in the active file to

5] the device and commands the device to reboot.
e Scaling — Shortcut to Program File Properties.
e Test Line — Executes selected line.
-Device To Program——————— e Debug — Opens Debug Toolbar (see Program
Feboot | Debugging latter in this manual for details).

Diesc "Dev #1"16 |
Tope | 4173 |

Frogram Mame [0]
0 af 1023 wards uzed |

Program List
The list of selectable programs currently
open in the active QuickControl file (QCP)

No. of words used window
Shows how many words are being used in the currently displayed program

Device To Program
e Reboot — Reboots the currently selected device
e Desc — Allows user to select the device being programmed and displays the
registered label and ID number
e Type — Displays type of device currently being programmed

SilverLode User Manual Rev 4.4 Page 28 of 149

Chapter 1 — Introduction and Getting Started

Program Window

This area of the QuickControl Screen displays the active program opened. It is where
all program lines are created, viewed, and edited. The interface allows the user to
single click on the line to highlight that particular line or double click on the line to edit
the contents (parameters) of that line.

EE:N Label W Command w
1:REM START Ewxarmple program lizting.
bove 1234 revs (@
_ acc=100 rpz/z
2MRY vel=33.3 1pz
Stop when /0 #1 iz Falling
FREM Jump tothe label "START" when /0 #2 = low state.
401 E.Jump On Input to "START"
. wihen /0 #2is LOW/FALSE

There are three columns in the Program Window.

1) Line Number and Operation — Displays the program line number and the Three
Letter Acronym (TLA) of the command.

2) Label — Allows the user to put in labels for branching operations in programs.

3) Command - Provides a brief summary of the command on that line and the
parameters that are set in that specific operation of the command.

In this example of the Program Window, there are two colors used to differentiate the
lines of the program. Blue is used for actual commands and green is used for the
remarks (REM).

Remarks are not downloaded with the commands and are only used for documenting a
QCP. When a label is placed on a REM line, the label is effectively moved to the next
command line. If the label is placed on a REM line that is at the end of a program it will
be the next available command line up from that REM line. In the example above,
“START” is a label on line 1, a REM line. The program branches to the START label
from Line 4 when the I/O condition is met. Since line 1 is a REM line, when this
program is downloaded to the device the START label will actually point to line 2, the
next command line after the REM line.

SilverLode User Manual Rev 4.4 Page 29 of 149

Chapter 1 — Introduction and Getting Started

Device Status Monitor

The Device Status Monitor occupies the right hand portion of the main QuickControl

window.

Device Status

It provides status information on QuickControl and the attached devices.

The top portion of the display is used as a quick reference to the Registered Devices.
QuickControl uses a polling routine to check the status of these devices. Five different

buttons can be displayed in the status area.

NOT | 8
oy lsTP F‘DL
1 2 3

NOT ENABLED — No device is registered or the
communication is not set up correctly (COM Port not
enabled)

PGM STP - Polling is active and a program is NOT
running in the device

PGM RUN - Polling is active and a program is running in
the device

NO POL - Polling is not active to the registered device
NO COM - Communication has been terminated to the
device

The status of the active device (selected by pressing the
button next to a displayed device) is displayed anytime
polling is running. This includes the current position of
device and the 1/0O Channel Status. If the Dev# button is
selected the Register Watch Tool will be launched to
communicate with that device.

Scan Network/Stop Polling Button

Selecting the button initiates a network scan for active
devices. It will scan device identities that are within the
Autoscan ID Range, which is adjustable in the Setup —
Options menu. The Polling Status field next to the button

Device Status Monitor !
C none
TF' Dev #2 EHﬁ
FohE NOT |{hone
Dev #3 EHH' Dev Ha EHﬁ'
_BLED
[glalyl= NOT |{hone
Cev#5 EH&=|[Dev HE EHﬁ'
0 BLED || BLED

Diey Hi "r counks

o[z W @557

100, 1 [0 [[[i [0
i”“!ﬂri_ﬁ"ﬁfli_l_

.. IF. alling

17H3
Dev #1

Statuz Log

0316 Found ;I
04 16 SilkverDust Found

0516 Driver=D02

0616 =n=1002, rev OF-11

07 16 |-Grade v Breakout [IGE
0816 Maotor=0C! |-Grade 17H-3
10Ver 4.3 Beta, 05-07-05 [EXE Fil

will display the current polling state. The label on this button will display “Scan Network”
when polling is stopped, and “Stop Polling,” while polling is on.

Status Log

This area of the Device Status Monitor provides information on the operation of

QuickControl and attached devices

SilverLode User Manual Rev 4.4 Page 30 of 149

Chapter 1 — Introduction and Getting Started

File Menu Details

Program File Properties

The QuickControl software provides automatic scaling to normal engineering units. It
also makes command and parameter generation a simple point-and-click process. By
default, distance is displayed in counts, velocity in counts per second (cps), acceleration
in cps per sec (cps/s), and time in milliseconds(ms). The basic distance unit can be
adjusted by clicking the Scaling button. This brings up the Program File Properties
window.

All contents of the Program File Properties window are stored as part of the qcp file.

Program File Properties
~Scale Cancel i oK ;
Scale equals counts/position unit Scale i ~Min/M ax
Encoder Counts/Rev [CPR] Acc ID.S? Poz Min ;-1 0aaoc caunts
14000 ::iv Eicti LR el 13053-05 Poz Max 31 [l counts
Enter the label to be used in Move : !— el b 31 oo 4
twpe command [ie revs'). Units |counts S e
: #D ;288888.55 cps
Mumber of Decimal Places to Al it B
display. SCEs Aoc baxn (01 X
111111111 cpsfs
hdax Time: 3
Fiegister Mames 1 140 Marmes i 10000 T
Description gapl?sfudord ;1 234 4-10 Chars
_“‘ﬁj Sort Programs in download order v

"Run'' button does not save r

Update Device Status Properties v

anytime this file is active.

r Thread 2 7

:j , ¥ Zuto Program Buff Size !D -

Scale: If the software is polling, clicking the “Get CPR” button will adjust the
software to the resolution of the currently selected encoder. Adjusting the value
in the “Scale” field will divide all position/distance, velocity, and acceleration
values in QuickControl by the number. A simple example is to put 8000 in this
box. This scales the display to revolutions when using a 8000 count per
revolution encoder. For display purposes the string in the “Units” box can be
changed to anything. In this case, "revs” is appropriate. The first letter in the
“Units” box is used in velocity and acceleration units. The velocity unit would be
scaled and changed to rps, while acceleration will be changed to rps/s. The “#
Dec Places” box adjusts the accuracy of the scaling used in QuickControl. For
some applications, it is convenient to scale the software to a linear unit
appropriate to the system. For example, it could be adjusted to cm based on the
actual system output.

Register and I/0 Names: Press these buttons to change the default names of
the registers and 1/0.

Description: This optional field is provided for additional user documentation.
See Chapter 4 for more details.

SilverLode User Manual Rev 4.4 Page 31 of 149

Chapter 1 — Introduction and Getting Started

¢ Min/Max: Min/Max fields are provided for the developer to put reasonable limits
on movements. These are scaled units, so a value of 100 here would correspond
to 100 revolutions if a scaling factor of 8000 was chosen.

o Many of the command edit screens use sliders to aid in editing.. The slider
ranges are determined by the min/max entered here.

o Note, the Min/Max only affect how move commands are edited. They do
not limit the actual servo movement. For example, with a Pos Max of 100
revs, the servo could be programmed to do a single 100 revolution relative
move over and over. The absolute servo position can and does go well
beyond these “editing” min and max values.

o The Vel and Acc maximum are edited in percent of the maximums. The
actual engineering values are displayed for reference only.

o Max Time is used for editing time parameters such as the time based
move commands.

e Upload Password: The 4 to 10 character alpha-numeric word is downloaded
with the QCP to the servo and is required to upload the program from the servo.
The desired password is set in the “Upload Password” box, the default is “1234”.

o NOTE: The password helps secure your program but does not provide
absolute protection.

e Sort Programs in Download Order: Check this box to force the Program Info
Toolbar to list the Programs in Program Download Order.

¢ Run button does not save: Check this box to cause the Program Info Toolbar’s
Run button to behave like the menu item:

o Programs = Run Program w/o Save

e Update Device Status Properties... By default, this is checked and causes the
Device Status Monitor to switch to the scaling of the active QCP file. Since the
tools Register Watch and Control Panel have the same scaling and register
names as the Device Status Monitor, keeping this box checked forces them to
reflect the properties of the active QCP. The only time this box is unchecked is
for initialization files (i.e. Factory Default Initialization.qcp) to keep them from
changing the user’s scaling and register naming when opened as part of the
control panel or the Initialization Wizard.

e Thread 2: Specifies how Thread 2 memory will be allocated. When Thread 2
programs are used, they must share the Program Buffer with Thread 1 programs.
Auto (default) allows QuickControl to allocate Thread 2 Program Buffer space. If
Auto is unchecked, the user must specify how much to allocate. See Multi-
Thread latter in the manual for more details.

SilverLode User Manual Rev 4.4 Page 32 of 149

Chapter 1 — Introduction and Getting Started

Upload Program File
The programs and data stored in a device may be uploaded as long it was programmed
with QuickControl rev 4.0 and higher. To upload from =
a device, select: ooty -

Upload will retrieve programs resident in the
non-vaolatile memaom of the device.

File =Upload Program File

Uplaad Prograrns from device Catcel

Press “Upload Program from device”.

Upload Password x|

QuickControl will then ask for the password used for the
cael | | file when it was downloaded. This is set in the Program
Please enter Uplnad Password File Properties dialog box (File = Program File
[4-10 characters] PropertleS) The default |S “1234”

|ﬁ default "1234"

Mate: The Upload Password iz defined
in 'Program File Properties'

Press OK to start the upload.

2lxl
Save in: I@ QuickControl j = £ ER-
If the upload is successful, QuickControl “lengreering
will ask you to where you want to save the = [-lw=
. . | QCI Examples
application. _1QCT Initialization
) Utities
i 4 - Upload
Name the uploaded program and press B Qcprot - Lo
Save.
File name:] Save I
;I'he (lijIoaded initialization program can be uee: [Frogram Fies Facp <] Comel |/
ound in: 4

C:\Program Files\QuickControl\QCI Initialization\ Initialization — Upload.qcp

NOTE: QuickControl does not download any documentation to the device. Uploaded
programs will therefore have no documentation (i.e. remarks, labels, scaling,).

If the application had Register File Arrays, the data will be uploaded into a text file in the
same folder as the QCP labeled:

<your filename> - reg files.txt.

SilverLode User Manual Rev 4.4 Page 33 of 149

Chapter 1 — Introduction and Getting Started

Programs Menu Details

Register Names Hegister Mame
chkControI_aIIows for editing the
names of registers 11 through 199 '
. . C |
(user registers). Any user registers [E]
used in a QCP file can be re-named : :
to add more meaning to the program - S EREGERiE et Sefeeted Regiter fane
. . =20 | INnpL T
code. For example, registers being Uset |Inpul Dead Band (14] Input Mode Fregisters (12-181—
. . . Usger | Maximurn ScalelLimit (15] |
used for a specific function, like a User [Masimum Dutput Scale (16] cotMamee | GetTO
loop counter can be named as such, [l Dt Rate of Change 18 e
just like the Input Mode registers and e i Move Pos (20 _ _
the Profile Move registers. If the e FrtleMove ol (22) "PmmeMWEHEQIStZ:t[i'M
1 1 Izer | Profile M Dec [23 S
QCP file does not use Profile Move or =5t fove 8o 29, et hames Desciplie
Input Mode functionality, these e (2 B
registers can be re-named. User (27) |
Hser (28] Feset Selected Fegister Mame
Uig: %g} to Default
Access the Register Names dialog Use 31 _
window from the Programs pull down L (3] o iR
menu or from within the Scaling
dialog window found in the Program Info Toolbar.
EtiHegite {HADE Edit Selected Register Name
Select a register from the list box on the left and press
Concel | Edit Selected Register Name button to re-name it.
Register 12 Mame
LooP et Press Reset Register Name to Default to reset the
sl name back to factory default.
=18

Input Mode Registers (12-18)

By default, these registers already have descriptive names because they are used in
the PIM, VIM and TIM commands. If these commands are not being used, registers 12-
18 can be used as general purpose user registers.

Press Set Name to User to set registers 12-18 to the name “User”.

Press Set To Descriptive Names to set registers 12-18 back to their factory default
names.

Profile Move Registers (20-24)

By default, these registers already have descriptive names because they are used in
Profile Move commands (i.e. PMV and PMC). If these commands are not being used,
registers 20-24 can be used as general purpose user registers.

Press Set Name to User to set registers 20-24 to the name “User”.

SilverLode User Manual Rev 4.4 Page 34 of 149

Chapter 1 — Introduction and Getting Started

Press Set To Descriptive Names to set registers 20-24 back to their factory default
names.

I/0 Names
Assigns user defined names to I/O lines.

Input / Dutput Hames

Cancel

_ Ceoncel |

Programs = 1/0O Names

120 Mames

. Edit Selected [A0
Press Edit Selected... to change the name of the Name
Se|eCted I/O 140 #4 Reset Selected 1/0
I/0 #5 Marme to Default
D e Reset &l /0N
|/0 B7 E3e AMes
Press Reset Selected ... to reset the name back to 1/ #101 = to Default

factory default.

Press Reset All I/O Names ... to reset all the names back to factory default.

Download and Chart

Download and Chart allows the user to download and strip chart a QCP file. After this
menu item is selected, the active program will be downloaded and the Strip Chart
window will appear.

i Strip Chart =l

File Edit Wiew Setup

ﬁ”‘l nl * |§||ﬁ| Frir 10 “ra (4000 Sample[ms]lEDD Select Charmels | Rur and Chart ”

4000

3600

3200

2800

2400

2000

1600

1200

ann

400

oo
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 430 475 =00
Time{ms)

Select the Channels to chart and press Run and Chart to start the program and capture
the requested channels. See Control Panel Strip Chart in the Tools Menu Details
section below for more information on the Strip Chart.

SilverLode User Manual Rev 4.4 Page 35 of 149

Chapter 1 — Introduction and Getting Started

Tools Menu Details

Initialization Wizard
All SilverLode products must go through the Initialization Wizard at least once before
operation or anytime a new type of motor/encoder is used.

NOTE: If the unit has previously been initialized, you might want to start the
Initialization Wizard with the controller powered down to prevent any previously
downloaded programs from running. For an un-initialized devices (i.e. fresh from the
factory), this is not necessary.

Run wizard from Tools menu:

Tools = Initialization Wizard

Initialization Wizard

Frezz "Download" to intialize servo or change the E xit 1
factomy default parameters uging the “nitialize Parameter =
Birowezer " or “lnterview'", :
..................................... Options ’
Device "Dev #1" : _
: ; Irteriew
Mator sz | L 1

M ator Cable ;2
DEYICE DETECTED: Adr =16 Lergth [ft)

SilverDiust D2 |-Grade w/ Breakout [[GE], sn=1002
|-Grade Matar Detected: A17H3, CPR=8000, :h=1025

~File

Inihialize Parameter Broveser

- Communications

1 [+~ Matar

Factom Default Initiglizationgep. ™ | |m

Open Save Save fs 1 [+ Error Limits

If your unit was powered up, you should see something like above. If using a SilverDust
IG or IGB with an I-Grade motor, the motor type, encoder type, and motor serial number
will be displayed. Other combinations of motors and controllers will not display this
information. If the controller is not powered up, then controller and motor type will not
be displayed.

Device and Motor
Press this button to select a different device on the network.

Open, Save and Save As

This section allows the user to open other initialization files, save the current file, or
save the current files as a different name. QCI recommends using a unique initialization
file for each application (i.e. each axis).

SilverLode User Manual Rev 4.4 Page 36 of 149

Chapter 1 — Introduction and Getting Started

Initialize Parameter Browser

The Browser permits direct access to all commands via a categorized selection tree.
This selection tree may be expanded by clicking on the “+”, revealing the individual
commands that can be selected for editing.

Exit

Saves the initialization file to the hard drive and exits wizard

Options
Selecting the Options button will allow you to change the initialization options:

Reboot on Download (default checked): This option selects whether the device
is to be rebooted automatically after each initialization file download. In order for
any changes in the initialization file to take affect, the device must be rebooted.
The device can be manually rebooted by selecting the Reboot button in the
Program Info Toolbar or by power cycling the device. If you are changing the
|dentity, Baud Rate, Serial Interface, or Protocol, delaying the Reboot until all
user programs have been downloaded may simplify the process.
Choose Motor/Configure Encoder (default unchecked): If this option is checked,
the user will be prompted to select a motor every time the wizard is run. If this
option is not checked, the wizard will only prompt the user to select a motor if it
thinks it needs to. Examples of this would include:

o Un-Initialized Device (fresh from factory)

o Index Phase Alignment Option Changed

NOTE: If you want to re-initialize a controller for a different type of
motor/encoder, check this option at least once. This will force the wizard to
prompt for you for a new motor type.

NOTE: This option is ignored when using the SilverDust IG or IGB with an |-
Grade Motor, as the motor type is automatically read from the non-volatile
memory inside the I-Grade Motor. See SilverDust IG/IGB With |-Grade Motor
Memory Initialization for details.

Advanced Line Resistance (default unchecked): This option causes an addition
dialog box to appear anytime a device is being initialized that allows for
calculating resistance for user cables using various wire gauges.

Maximum Velocity (default 4000RPM): This option allows the user to select the
default 4000 RPM or to change the velocity scaling in the system for lower top
speeds. With a lower top speed, the scaling for velocity parameters as well as
the actual velocity registers is changed so that a full scale value for each of these
will correspond to the selected velocity. The velocity and acceleration terms in
the CTC and FLC commands may need alteration (to be lowered) in your
application if a value other than 4000RPM is selected. Velocity control for
systems that do not need higher velocities may be improved by selecting a lower
Maximum Velocity.

Index Phase Alignment (default checked):If this box is checked, the servo will
use the encoder index (z channel) signal to set its phase alignment at power up.
If this box is not checked, the servo will rely solely on the initialization program's
phase alignment. See Index Phase Alignment latter in this chapter for more
details.

SilverLode User Manual Rev 4.4 Page 37 of 149

Chapter 1 — Introduction and Getting Started

e Encoder Resolution Reduction: This option is only available for SilverDust units.
It is intended to allow programs written for older 4000 CPR (count per revolution)
systems to be easily adapted to the newer 8000/16000 CPR motors. A divide by
1 provides the full 8000 CPR resolution when using an 8000 CPR encoder. The
divide by 2 option “downgrades” the resolution, so the system behaves as if a
4000 CPR encoder is attached.

e Counts/Revolution (CPR): This manually sets the encoder resolution. For non-
QCI motors, this speeds up the initialization process by eliminating a CPR
calculation move executed by the Init Wizard. For open loop operation
(operating a microstep motor without an encoder), this option sets the microsteps
per revolution. For more details on open loop operation see technical document
QCI-TDO047 SilverDust Open Loop.

Download File To Device
Press this button to start initializing your device. The process is as follows:

1) Start Initialization.
Press "Download File to Device" button.

If the unit was powered down previous to starting the initialization process, or if the
Baud Rate, Protocol, or Serial Interface do not match the connection to the PC, the
Unknown Device Wizard is automatically invoked to establish communications with the
device (Unknown Device Wizard is documented latter on in this chapter).

2) Possible Warning Message
If no motor is detected on a SilverDust |G or IGB device, then a dialog box will appear,
providing choices as to how to treat the motor attached.

e Treat as Motor Without Memory:

Select if the memory in the motor is not I L UL L g
initialized (early I-Grade motors made No malor detected o
. i X ooze from one of the following options:
prior to SilverDust IG and IGB), or if the
motor is not an I-Grade motor. ;) |Treatashiotor | Continue: 1 wish to heat this as 2

afithaut Memaory §| motar without memory.

e Treat as Motor With Memory: Select if

an |-Grade motor will be used, but is TN ol et
not currently attached to the E— :
. 3) Cancel Cancel out of wizard
SilverDust. E=I.
e Cancel:

SilverLode User Manual Rev 4.4 Page 38 of 149

Chapter 1 — Introduction and Getting Started

— Select Matar
¥ Lizt anly QT M obars

QOCT [-Grade 171 [(&171) -
Q1 [-Grade 17-3 (8173)

(IC] |-Grade 17H-1 (41 7H1
[JC| |-Grade 17H-3 [817H3]

3) Possible Select Motor Dialog Box

i OC! -Grade 23-3 (4233
Depending on several factors, you may be QC”_G;:dzza_EEm%
asked to select a motor. 00 |-Grade 23H-1 [423H1]

QCH -Grade 23H-3 [423H3]
GC! -Grade 23H-5 [A23H5]
. QCH -Grade 23T-7 [A23T7)
Select the desired motor and press Next. Q01 M-Grads 17-1 M171) =l

Hest I Cancel i

4) Possible Warning Message

If the Initialization Process needs to move the
motor, a warning screen will appear indicating that _5 WARNING: Motor wil move. Press OK to continue.
the motor is about to be rotated. Make sure the
motor is not attached to any load and the shaft is
free to rotate. Press OK.

QuickControl

5) Program Downloaded
A screen will appear indicating that the selected initialization qcp file has been
downloaded. Select OK to exit.

The unit should now be initialized and ready for operation. (It may need to be rebooted if
the No Reboot on Download option was selected.) Press Exit to leave the Initialization
wizard.

Interview

To begin a line-by-line examination of the initialization parameters select the Interview
button. A window will be displayed for each configurable command in the initialization
file. The line for the displayed command will be highlighted in the Program Window so
the user knows what line is being edited. To see a description of the command or
parameter, select the Description button of each window. After any changes to the
parameter(s) are made, select OK to accept the changes and move on to the next
command. If the Cancel button is selected, the interview process is stopped. After the
interview is complete, save the changes to a new initialization file by selecting Save As,
and give the new initialization file a descriptive name.

Motor Cable Length
Enter the length, in feet, of the cable between the controller/driver and the motor. For
QCI cables, the last two digits of the part number denote this length. For example:

The Motor Interface Cable, QCI-C-D15P-D15S-10
is 10 feet long.

SilverLode User Manual Rev 4.4 Page 39 of 149

Chapter 1 — Introduction and Getting Started
Unknown Device Wizard

Background

At power up and before the Initialization Program is executed, the device first sets the
Baud Rate to 57600, and selects the 9-Bit Binary protocol with RS-232 interface and
delays for 96 milliseconds; then it switches to the 9 bit protocol with RS-485 interface
and delays for 96 milliseconds; next it switches to 8-Bit ASCII protocol with RS-485
interface and delays for 96 milliseconds, and finally it switches to 8-Bit ASCII protocol
with RS-232 interface and delays 96 milliseconds. This power up procedure allows the
power supplies to settle and also allows a host controller to establish communication
with the device using 57600 baud and either 8-Bit or 9-Bit protocol, and either RS-232
or RS-485 interfaces even if the user has selected a different interface, baud rate, or
protocol in the user initialization program. A Halt (HLT) command can be sent
repeatedly while the unit is powered up. When the device recognizes the command it
will Halt and remain in the mode it was in at the point the Halt command was able to be
received. From that point, the device is in a known state and can be initialized to the
desired settings. (Note: SilverNugget units may halt on 8-Bit ASCII, RS-485 mode with
an RS-232 connection, according the pull-up level on the Rx line. To bring the units to a
fully known state, it is necessary to issue a SIF command setting the RS-232 protocol to
“all units” (ID=255).)

Wizard Details

When the Unknown Device Wizard is run, it prompts the user to cycle power to the
device while the wizard is sending out a continuous stream of HLT commands through
the COM port. The wizard will then prompt for communication configuration of the
device. These settings should match how QuickControl is configured. Note that the
protocol (8-Bit ASCII or 9-Bit Binary) is determined by the settings under Comm Port in
the Setup menu of QuickControl to ensure that the protocol matches QuickControl.
Upon completion of the wizard, the device will be successfully communicating.

SilverLode User Manual Rev 4.4 Page 40 of 149

Chapter 1 — Introduction and Getting Started

Control Panel

The Control Panel is a Tool in QuickControl that provides access to several important
features. It allows the jogging of the device at scalable velocities while monitoring the
condition of the device in the Device Status area of the Control Panel. In addition, the
Panel provides the means to interactively tune the device's servo loop. Test moves are
available for tuning the system when prototyping. A strip chart can be displayed to
show various motion parameters and is useful while tuning.

Control Panel

— Inihialization File — Tuning Jog Wellcps]
Factory Default [nitialization.qop Cycle 1 ;gunu
Uze "Wizard to Dawnload andsar 1 g':f_'r'des ;ﬂsl o —— N
Change Initialization File SUElSAE] == i
lnitializatinn Wizard ; _,. Moave T_'r'FIE .. R '. |
: = | MAT © MRT e I '
Edit Cantral Edit Filker 5 s & MBEY — 5T0P 1
Constants Constants | B B
Test Mave]] -
" " ezt Move 1 - &
Motor Uiz 171 ; : |~ Mator Driver-
Tupe| A17H3 [Rev 07-11) Distance ;8021 colnts S Enabled
Serial #| — R
e 1002 Acceleration |739352.3 opsds | | Disabled

- Device Status Velosity [F3977 3 R |
. cps _
Target Posln EElTE Inputs/Outputs . .
Positian Test Move 2 1 Set: Shift L-Click.

caunts Clear: Crtl L-Click

0
Welocity| 0 cps Distancerﬁmw Tri-State: L-Click
4011 counts LA el =
0 grn=high |§ %ww {W gwéy
; -

Pos Errar CoLnts
kdaw Errar BRI .ﬁ.cceleratiun;'lEEI#'l.E cpsds red=low ;»;»—55«?3 ?ngﬁ g—i?rgg
Tomuefsn =% Velocity [2021.2 s 100+ I [i i [[[[
Drriver]47 viallie
Templ[zz1 °C Strip Chart } Analag 1{0.03 2[3.21 3]3.21 4]3.23

NOTE: The device to be controlled must first be registered (see Register Devices).
Initialization File.

Initialization File

Tuning a servo requires editing the Control Constants (CTC) and Filter Constants (FLC)
commands. They are provided here along with the Initialization Wizard to allow the
developer to test changes, save them to the initialization file and download them to the
device.

Motor

Press this button to select a motor axis from a list of registered devices. Once a device
is selected, its description, firmware revision and serial number are displayed. Note:
The description of the Motor axis may be changed to describe devices in your system.
(See Register Devices.)

SilverLode User Manual Rev 4.4 Page 41 of 149

Chapter 1 — Introduction and Getting Started

Device Status

As long as Polling is running, these fields display the device’s status in Real-Time. The

fields include:

Target Position: The position the servo is being commanded to.

Position: The actual position of the servo.

Velocity: The servo velocity.

Position Error: The difference between Target Position and Actual Position.

Max Error: The maximum error that occurred since last time the Zero button was

pressed.

Torque: The servo's torque.

e Driver: The driver voltage (which may be independent of the processor voltage
on some units)

e Temp: The measured processor temperature.

Tuning

This section provides the tools required for tuning the servo loop (see Technical
Document QCI-TD054 Servo Tuning for details). Ideally, the servo would be attached to
the axis needing tuning with the real world load. Two moves are provided to allow the
developer to move between two positions (ie. Extend to pickup a widget then retract
back to home). Using an iterative process, the developer would do a move, examine the
results on the Strip Chart, adjust the tuning parameters and start again.

Cycle

Press this button to cycle between Move 1 and Move 2. This is just like pressing the
Move 1 and Move 2 Test buttons. If multiple cycles are desired, enter the desired
number into the #Cycles field. A "0” in this field will make the axis cycle forever. Press
the Stop button at anytime to interrupt a cycle. Enter a non-zero value in the “ms delay”
field, if some settling time is required between moves.

Moves
The four basic move types are available:

e MAT: Move Absolute, Time Based: Move to an absolute location in a specific
time.

e MAYV: Move Absolute, Velocity Based: Move to an absolute location at a specific
velocity.

¢ MRT: Move Relative, Time Based: Move: Move some distance relative to your
current position in a specific time.

e MRYV: Move Relative, Velocity Based Move some distance relative to your current
position at a specific velocity.

See the Command Reference Manual for more details on these commands.

Once your Move Type is selected, enter the move parameters and press one of the
Test buttons to execute the move.

SilverLode User Manual Rev 4.4 Page 42 of 149

Chapter 1 — Introduction and Getting Started

NOTE: The scale units being used are those of the selected motor. See Register
Devices for more details.

Jog Slider
The motor velocity can be set in real-Time by sliding the pointer with the mouse. The
Jog Vel field is used to set the full scale velocities at each end of the slider.

Reboot
Press this button to reboot the motor.

Zero
Press this button to zero the motor target and position. It also zeros out the Max Error
latched value.

STOP
Press this button to stop the current sequence and motion.

Motor Driver
This radio button allows the motor driver to be enabled or disabled.

Inputs/Outputs

This displays the states of all 7 1/O Channels. A “Red” I/O Channel indicator denotes a
logic low and a “Green” indicator denotes a logic high. If the SilverDust IGB is
connected, the additional 16 1/O are also shown.

Individual I/O can be Set by clicking on the respective I/O while depressing the “SHIFT”
key. They may be cleared by clicking on the respective 1/0O while depressing the “CTRL”
key. The 1/0 may be set to “Tri-State” by clicking on the 1/0

NOTE: I/O 101 to 116: Set causes the output to be high (open drain driver turned off,
only passive 5v pull-up present) while Clear causes the output to be low (open drain
driver turned on); “Tri-state” turns off the output driver, causing the same effect as a Set
command.

Analog: Displays the present voltage at each of the 4 analog inputs.
Note: Analog 1 through 4 correspond to the voltages on I/O 4 through 7.

SilverLode User Manual Rev 4.4 Page 43 of 149

Chapter 1 — Introduction and Getting Started

Control Panel Strip Chart
Open the Strip Chart from the Control Panel by pressing the Strip Chart button.

! Strip Chart [_ (O] %]
File Edit “iew Setup
ﬁ.’-i Hi 5 i%i@.i i ;EI i ;3 Sample[ms];ﬁﬂﬂ | Fepeat Last Mave ;
3
2
1
u]
0 25 50 75 100 125 150 175 200 225 250 275 300 325 350 375 400 425 450 475 500

Once the channels are selected, any of the following Control Panel moves will
automatically be charted:

Cycle
Test Move 1
Test Move 2
Sample(ms)
This is the amount of time to sample. Max is 15000ms.
Select Stnp Chart Channels
Select ChannEIS Aailable Channel: e
Press this button to select RET (e '
the channels to chart. Vel osten | Coa
Tarque |
Fogition Error
Up to 4 basic channels may
be Se|ected at once. Se|ect Selected Channels - data format
a channel by either double
clicking on it or by pressing has
h ‘(_>ﬂ . &£
the button] W — | e 5

SilverLode User Manual Rev 4.4 Page 44 of 149

Chapter 1 — Introduction and Getting Started

Once a channel is selected, the Select Channel Format dialog box will prompt you for
the data format.

Select Channel Format

This allows the Strip Chart to display data in
_tdvanced |

- . . .
- scaled units (see Program File Properties for
i~ Data Fomat Advanced detai |S)

: " Long = Time i)

imﬂm ; e ey | The Advanced button brings up the “Chart Y-
Acceleration |

T arget Welacity

(15 it | Axis” dialog box.
[32 bit] |

Chart Y-Axis

Paosition

- Chooge One Az ———

| & Primary Y-duis Cancel 1

Secondany Az

Here you can set whether data will be plotted on the
primary or secondary Y-Axis.

If “Determine Y-axis Min/Max...” is uncheck, you may
manually enter the Y-Axis min/max values. Otherwise,
the Y-Axis scales are set automatically.

D) =
o]21 AFAE36Y S 1-21 474536

W Determine -axiz Mindax
bazed on incoming data.

Repeat Last Move
Press this button to repeat the last move.

Channels “All” radio select allows any of the registers to be charted. Only 64 bits of
information may be selected, corresponding to (2) 32 bit channels, (4) 16 bit channels,
or (1)32 bit and (2)16 bit channels. Target and Position (with no trailing register number)
are sent as 16 bit channels with an algorithm to extend them to 32 bits (accurate as long
as the difference is less than 32767 counts between readings); this allows additional
channels to be simultaneously logged. Note that the upper 16 bits, the lower 16 bits or
the entire 32 bit register may be logged by selecting the appropriate radio button.

SilverLode User Manual Rev 4.4 Page 45 of 149

Chapter 1 — Introduction and Getting Started

Register Watch : Register Watch i . —lgl=l
The Register Watch Tool is a powerful tool CiddRegiler | Delets Register| Device 1D 16 Dev #1
within QuickControl for monitoring and |
adjusting the contents of registers. This tool
allows QuickControl to simulate a host,
allowing an application developer to adjust
register values while a program is running
within the servo.

Open the Register Watch window from:
Tools = Register Watch

NOTE: Register Watch can also be launched by pressing the Device button on the
Device Status Monitor.

Press Add Register to add a register to the
list of “watches”. The Select Register
dialog box allows you to select watching Cancel_|
the whole register or only the upper or Register
lower half. T ———— iy

Actual Posiion [1) | & Register

Last Index Position [2) [|
Internal Status “Word | Reserved [3] Ugper e
Last Trig Position [4) [€ Lewerword |

Mawx Paszition Errar | Current Position Error [B) X
Yelocity 1| Velocity 2 [7] LI I Stiip Chart

Check Strip Chart to add a real-time strip
chart and/or check Log to File to begin
logging the data to a log file (log files found

in LOgS fOldeI‘). ™ Sort Alphabetically ™ LogtoFile
Soen el o After selecting the channel, QuickControl will
e allow you to select the data format which
csneel | | enables you to watch the data in your
Data Faormat engineering Units.

" Hex Cllong 0 Acceleration ¢ Time
o Lc.ng ¢ Position " Welocity

Press Delete Register to remove the selected register.

Register Watch will watch the registers of the active device as selected in the Device
Status Monitor.

Change the register being watched by double clicking in the register cell.

Change the data by clicking in the data cell and entering new data. Note, although the
data will be changed in the indicated register, it may get overwritten if the program is
also modifying the same register. If the register selectable is not writable, the value will
not stay changed on the display (and will not be changed in the attached unit), and a
message will appear in the Status Log portion of the screen.

SilverLode User Manual Rev 4.4 Page 46 of 149

Chapter 1 — Introduction and Getting Started
Change the data format by double clicking on the units.
Right click on the register (row) to edit properties.

NOTE: The more registers you add to the list, the less frequent any single register will
be updated.

Data Monitor

The Data Monitor is a diagnostic tool that enables the user to view all transmitted and
received data from all enabled ports as well as send custom packets out any single
active Communication Port. The Data Monitor can be thought of as a serial or network
analyzer specially designed for the QCI products. It provides the tools necessary to test
your master controller’s functionality. The fields are defined as follows:

Data Monitor _I_I- | EI
Dizplay Format Cloze |
’V " Hex " Decimal & ASCl :
[~ LeogToFile "DMLog. |
[Data Only . |
Frenn:p:Protocal = Receive/Tranzmit [Fx/Tw) Data [Silent Eley Dty
R 052ms =H# 10 0000 0:200] ﬂ

Tx:093msz =(@16 1 BBE35 1

Feac 11 3ma == 101

T 153me =16 121 |

R 17 3ms =4

R 183me =10 000C Q000 0000
Tr:A0Bms =@1E 121 |

R 91 6mz =4 10 000C 0000 0000y
T3 8ms =@16121 |

— Cusztarm Tranzmit
Enter data in zame farmat az zelected in [Transmit at next receive
Digplay Format or copy a previous

tranzmizzion by Double Clicking on Add CF 1o Endl
bransmission.

161211

Data Display and Display Format

Data is dumped to the “Display Area” in one of three formats, Hex, Decimal or ASCII.
Upon selection of a new format all new data will be displayed in this format. The old
data will remain unchanged.

Log To File

When this box is checked, everything printed on the Data Display will also be logged to
the text file displayed in the quotes. Do not be too worried about disk space, it can run
all weekend with polling running and only fill up about 20MB.

Press the Log To File button to change the log file.

SilverLode User Manual Rev 4.4 Page 47 of 149

Chapter 1 — Introduction and Getting Started

Data Only

When this box is checked, the Data Display will only display the raw communication
packets. All the time stamp and channel information will be striped off. This is useful if
you want to capture a data stream for use in another program.

Silent
Press this button to stop collecting data.

Clear Display
Clears the display data.

Custom Transmit

The Custom Transmit feature allows the developer to build custom packets for
transmission. This is very useful when testing application software. The application
software can be tested for response to improperly formatted packets, fault conditions,
extreme events that are hard to setup in the real world.

Enter your packet in the selected Display Format. You can freely switch between
Display Formats while entering a Custom Transmit packet. For example, you would like
to enter the packet,

“This is a test packet”,
with a 0 at the end and a 0x02 hex at the beginning.

Switch to ASCII and enter the string.

Switch to Decimal, cursor to the end and enter 0.

Switch to Hex, cursor to the beginning and enter 02.

Your packet is complete. Switch between the three formats as much as you like.
Press the Transmit button to send the packet.

Transmit at Next Receive

The Transmit at next receive check box will cause your packet to be sent the next time
the selected port receives any data. This is very useful when testing application
software’s response to NAKs and other error messages that are hard to create in the
real world.

For example, you want to make sure your embedded controller correctly responds to
bad packets being received from a device. This would include, missing bytes, bad
checksum and maybe incorrect packet length. How are you going to make a device
send you bad packets? You cannot. The solution is the Data Monitor using Transmit at
Next Receive.

e Enter the packet you want to receive in the Custom Transmit edit box.
e Check the “Transmit at next receive” checkbox.
e From you embedded controller, transmit your command.

When the Data Monitor receives the packet it will transmit the contents of the Custom
Transmit edit box.

SilverLode User Manual Rev 4.4 Page 48 of 149

Chapter 1 — Introduction and Getting Started

Add CR To End

Adds a Carriage Return (decimal 13, hex 0x0D) to end of Custom Transmit line. This is
useful for creating packets for QCl’'s 8 Bit ASCII protocol so you can send packets to a
SilverLode unit.

Firmware Download Wizard

The firmware can be thought of as the device's operating system. From time to time QCI
adds new features to their products, which requires a new version of firmware to be
downloaded. Although this can be done in the field, it is a little risky since loss of
communications during the process will render the device repairable by the factory only.
NOTE: SilverDust units may be recovered in the field by a special procedure — contact
Tech Support if needed.

The latest firmware (and instructions for downloading) can be obtained from QCI
Product Support.

Setup Menu Details

Setup Communication Port
Comm Port . The _Eommunc:ati_on Part maybe modified by
From the main menu, select U (1 (el o, Cancel_|
Once the desired device has been selected,
check "Enable".
Setup = Comm Port,
Commurication Device Properties ¥ Enable
|f the Communications Device Properties |Baud=5?8l3ll COM1, QuickSikver 8-Bit ASCI Modify i

shows the correct communications port,
check the Enable box and press OK.

COM Port Properties

COM Port Properties
" el I From the Setup Communication Port dialog box, press
Modify to get the COM Port Properties dialog box.
nguﬁf&um [comr =]
Baud Rate COM Port
Defaut-57600 576k] Pull down the list box to select the desired COM port. If
Powedl Pl you do not know which port, start with COM1 and then try
FaiseE | 9EitBinay COM2.
| & agiasol
Baud Rate

PC baud rate ranges from 9600 to 115K. Default is 57.6K. It is a good idea to leave it
here unless you are familiar with serial communication.

Protocol

Each port needs to know how to communicate with the devices connected to it. The
protocol sets up the Comm port so that it can send and receive data in the proper
format. The protocols listed are the ones currently supported. They include:

SilverLode User Manual Rev 4.4 Page 49 of 149

Chapter 1 — Introduction and Getting Started

e QuickSilver 8-Bit ASCII
e QuickSilver 9-Bit Binary

NOTE: Changes to Baud Rate and Protocol only affect the PC. They do not affect the
attached device. You must use the Initialization Wizard to change the parameters in the
device. In other words, if you want to start talking to the device at 9600 baud, you will
first have to change the baud rate for the device, and then change the baud rate for the
computer.

Register Devices
QuickControl will monitor the status of a device when the device is registered into the
system. Registration can be done

. ” d d Register Devices
automatica y (recommen €)OI’ Supply the following information to register a device. Cancel i ok I
manUG”Y- The Description can be angthing pou like.

Desg:ription _ Auto

To manually register a device, select, 1 H;d' E?;ble {SZTQ? " D?ﬁ;m | ng
, . #2 [o ™ Jpeva2 | ¥

Setup = Register Devices B O pow | ~

. 4 o " [Deva4 | ¥

When Auto Reg is checked (default) all = T o | »
fields except for Description are BE T o | ~

updated automatically (see Auto
Register). In some rare cases you may
want to manually register a device. Uncheck
Auto Reg and fill in the fields as described below.

Adr

The device’s address is entered here. Addresses for devices must be unique. Factory
default is 16.

Enable
If the Enable box is checked, Polling is enabled for the specified device.

Description

Each device should have a description so that the user can have a quick reference for
the status of the device. Use only a brief description. This is the description that
appears in the Device Status Monitor.

Device Type
Press this button to manually select the device’s type.

Auto Reg
Check this box to enable Auto Register for this device

Anytime Polling is started, QuickControl will automatically scan all enabled Networks for

any devices. If a device is found, the device will be automatically registered and appear
in the Device Status Monitor screen.

SilverLode User Manual Rev 4.4 Page 50 of 149

Chapter 1 — Introduction and Getting Started

The addresses corresponding to manually registered devices are not scanned in the

Auto Register process.

Options
General program options are available here.

Prompt On Delete (default checked)

Checking this box will cause QuickControl to prompt you when you do delete

operations.
Setup Option E

Automatically Scan ID Range Protpt On Delets.
This is the device ID (unit address) range that will be Prompt before doing the >
scanned for when the Device Status Monitor, Scan reauested defete cperction _Caed |
Network button is pressed. The default is 1-20 which | maicaly scan b Range
makes the "scan" a reasonable length of time. Enter the ID range to scan on
NOTE: This also sets the range for the SilverLode
Identify (IDT) command. FD [I | Lt [0

Dizable Automatic Scan [
Disable Automatic Scan
Check this box to skip network scan when Scan ~ View Cammand Detalls
Network button is pressed. Only the manually R e ™
registered devices will be polled. Toolbar Edl” bulten &
View Command Details
When this box is checked, a detailed o |
command edit dialog box will be used el |
when the Program Info Toolbar Edit)
button is pressed. Register | {iser [11] 1 Description |

Data Format
Edit Event from Events Database “Factory Default Initialization - Driver Enable.gcp™ Hes e accelration
IEEE?:_ES%EWHP:WW Register, Program Mode ISJVFTEE\'T\fTi_?;LIF?;;leLngramMode Data I1— @ Long Velocity
Data Template __ S0P | " ULong " Time
Not Defired | | TR € Posiion
ddess [MoACK T Timefmal[10 _Desoition |

Example TxDalal [@0154111

Event Lines
Ling 1| Data Label | Data Type | Data | Max | Min | Scala‘ Data Order
0| Command Mumber | Unsigned Byte 154 154 154 1 No Order

Data Register Unsigned Word 11 1] il High-Low

2| Data Signed Long 10 2147453647 2147453648 1 H-H-ML-L

View Command Details - Checked

SilverLode User Manual Rev 4.4

Page 51 of 149

View Command Details -

Not Checked

Chapter 1 — Introduction and Getting Started

Device Initialization Details

Device Initialization is accomplish using the Initialization Wizard described earlier in this
chapter. This section documents some of the details being done by the Initialization
Wizard "behind the scenes".

Phase Alignment
Commutation is accomplished using the position of the encoder with respect to the
motor's rotor. This relationship is called Phase Alignment.

Start-Up Phase Alignment
Every time the servo powers up, the initialization program (i.e Factory Default
Initialization.qcp) calculates a Start-Up Phase Alignment by moving the motor back and
forth a little. It can then go closed loop and begin to servo. This works well as long as
the motor is allowed to move. If your application has conditions that may stop the motor
from freely moving at startup, improved Phase Alignment might be required. Examples
include:

e Motor Brake Applied

e Vertical Load

e Motor Jammed
If the motor does not move enough during the Startup Phase Align, it will calculate an
incorrect phase alignment. This will cause the motor to have poor performance. It
might not even be able to move, or it may move erratically. To allow Phase Alignment
for these startup conditions, the alignment of the encoder with respect to the rotor must
be determined a different way. The following options exist:

Index Phase Alignment

Index Phase Alignment uses the encoder's index pulse (z-channel) position to calculate
phase alignment. For this to work, the index position with respect to the motor's rotor
must be determined and saved to non-volatile memory.

Automatic Index Phase Alignment

For SilverDust IG/IGBs using I-Grade motors this happens automatically. The index
position is determined by the factory and saved to the I-Grade motor's non-volatile
memory. These SilverDust will always use Index Phase Alignment regardless whether
the wizard's Index Phase Alignment option is checked. It is automatic. The alignment
information is read from the attached motor each time the controller starts up (i.e.
rebooted), so if motors of the same type are interchanged, no re-initialization is
required.

NOTE: The I-Grade motors use a special encoder which have 98 transitions of
the index channel spaced on a 100 spacing per revolution. (The wider “missing”
pulse represents the once per revolution Index location). These motors require
only a slight motion before encountering an index channel transition, allowing
them to quickly use the factory calibrated alignment.

Manual Index Phase Alignment

For all other controller/drivers, Index Phase Alignment information can only be
determined by the Initialization Wizard when the Index Phase Alignment option is

SilverLode User Manual Rev 4.4 Page 52 of 149

Chapter 1 — Introduction and Getting Started

checked. When this option is enabled, the Initialization Wizard does a series of moves
to calculate the Phase Alignment with respect to the index signal and stores the value to
non-volatile memory. A drawback to this option is that the Initialization Wizard must be
re-run anytime the encoder is loosened, or a different motor/encoder pair is connected.

Regardless of controller, if Index Phase Alignment is used, the servo will only use the
Startup Phase Alignment until is sees the index signal at which time it will read the
phase alignment information from non-volatile memory.

Cyclic Phase Alignment

For applications that do not support Automatic Index Phase Alignment, but still need
improved Phase Alignment while maintaining the ability to swap motors without re-
running the Initialization Wizard, Cyclic Phase Alignment is an option. This is a modified
Startup Phase Alignment that repeats the start-up move over and over again (cyclic)
until a valid Phase Alignment is determined. This works well if the motor eventually can
“‘wiggle” itself into a position where it can move a little in both directions.

To use Cyclic Phase Alignment, from Initialization Wizard; open the file Factory Default
Initialization - Cyclic.qcp instead of Factory Default Initialization.qcp. Make sure Index
Phase Alignment is unchecked (Options).

NOTE: The execution time of this init file will vary depending on how many moves are
required to calculate Phase Alignment.

SilverDust IG/IGB With I-Grade Motor Memory Initialization

All I-Grade motors currently being manufactured have non-volatile memory which has
been initialized at the factory to contain such things as:

Motor Type (i.e. 23H-5, 17-3, 34HC-2,....)

Motor Serial Number

Encoder Properties

Index Phase Alignment

This information is readable by SilverDust IG and IGB controllers and allows for a more
simplified Initialization Wizard.

The wizard uploads the information from the motor when the "Download File to Device"
button is pressed. This information will answer most of the wizard's questions.

The SilverDust uploads the same information from the motor at startup. If the motor
type does not match, the SilverDust will disable its driver and flash the green LED 4
times.

To change motor types, simply connect the new motor type to the SilverDust and re-run

the Initialization Wizard. The wizard will detect the new motor type and initialize the
controller accordingly.

SilverLode User Manual Rev 4.4 Page 53 of 149

Chapter 1 — Introduction and Getting Started

Initialize Without Motor Attached
Since all the pertinent motor and encoder

. ' Error Reading Data From Motor Memory
information is contained in the motor's non-
volatile memory, it is possible to initialize a R e Ry R
SilverDust without having a motor attached.
simply run the Initialization Wizard without the 1) |ratasboter | Dontiue i o weat s a5 2
motor attached and select option 2 when the : -
this dialog box comes up. A |WEELEE | b e T
) Carel i Cancel aut of wizard
Next, select the motor to be attached.

Initialization File

It is good practice to save a record of the specific power up changes made to each
device as a unique Initialization file. This file should contain all the command settings
for any particular device in a specific application. These commands include device
specific settings like Motor Constants and Phase Constants that work with a specific
type of stepmotor at a fixed operating voltage. The initialization file also contains
application parameters such as the ldentity, Serial Interface, Baud Rate, Kill Motor
Conditions, Error Limits, etc. There should be one initialization file per axis on any
multi-axis machine.

The Open button selects the initialization file. When using the Initialization Wizard for
the first time, the Factory Default Initialization.qcp file is automatically opened in the
Wizard File window. To save any changes made to the initialization file, click the Save
button. To save the changes to another initialization file with a new filename, select the
Save As button and then enter the desired filename.

Factory Default Initialization File.qcp
The Initialization program file contains the following programs:

Main Init
The Main Initialization program contains all of the initialization commands for the device.
This program is shown in the next section and is described in detail.

Startup Recovery

The Startup Recovery is used if a Kill Motor Condition is tripped during execution of the
factory default initialization. The default program, disables the driver and flashes the
green LED once. See SilverLode Indicator LEDs latter in this chapter for flash
definitions.

Kill Motor Recovery

This program is called whenever a condition set in the Kill Motor Conditions (KMC)
command is tripped. This may be modified if special processing is required. The
default program, disables the driver and flashes the green LED twice. See SilverLode
Indicator LEDs latter in this chapter for flash definitions.

For example, if the device is required to set an error output anytime it detected a jam,
Moving Error needs to be set in the KMC command because a mechanical jam will

SilverLode User Manual Rev 4.4 Page 54 of 149

Chapter 1 — Introduction and Getting Started

induce moving error. An appropriate error limit must also be set via the “Error Limits”
command. Finally, add a Set Output Bit (SOB) command to the Kill Motor Recovery
program.

Power Low Recovery

This program is called whenever voltage drops below the specified threshold in the Low
Voltage Trip (LVT) command and may be modified if special processing is required on a
Power Low condition. The default program, disables the driver and ends the program.

Flash Seq

A utility program that flashes the green LED the number of times specified in register
11. The program is called by the error programs to flash the LED. See SilverLode
Indicator LEDs latter in this chapter for flash definitions.

Factory Block Fault

This program is run when a fault has occurred in the Factory Block (see Memory Model
for details on Factory Block). This program simply adjusts to flash sequence to
correspond with the other faults and runs the Flash Seq program. See SilverLode
Indicator LEDs latter in this chapter for flash definitions.

Factory Default Initialization File Details
The following is a summary of the initialization commands contained in the default file.
For more information on any of these commands, please see the Command Reference.

IDT - Identity

Each device needs to have a unique unit identity or address to establish communication
to a single drive. Values between 1 and 254 may be chosen for these identities.
Multiple devices may have the same Group identity or address to communicate with
multiple drives at once. The group identity must be different from any individual identity
on the network. NOTE: The allowable range is limited by the option "Automatically
Scan ID Range" (see Options).

PRO - Protocol

Select either 8-Bit ASCII, 9-Bit Binary, or Modbus communication protocol. See
Technical Document QCI-TD053 Serial Communications on our website for a complete
discussion on differences between communication protocols.

SIF — Serial Interface

Choose either RS-232 or RS-485 serial communications hardware interface. See
Technical Document QCI-TD053 Serial Communications on our website for a complete
discussion on differences between serial interfaces.

(The Auto check box within this command automatically configures the serial interface
to match the interface currently setup in the device. If changing the interface type,
uncheck the box or no change will occur.)

BRT - Baud Rate

Change the BAUD rate of the device. This does NOT change the PC’s baud rate.
Select Normal mode to choose from a list of baud rates.

SilverLode User Manual Rev 4.4 Page 55 of 149

Chapter 1 — Introduction and Getting Started

ADL - ACK Delay

This command sets the time delay the device waits before sending an
Acknowledgement (ACK), Negative Acknowledgement (NAK), or data to the Host PC
after the device receives a command.

MCT - Motor Constants

This command initializes the driver stage to produce appropriate drive signals to the
device. It is dependant on both the motor type and the supply voltage. The Initialization
Wizard does this automatically. Auto is the default setting and recommended by QCI.

FLC - Filter Constants

These constants select the cutoff frequency for the velocity and acceleration tuning
filters. These filters help minimize high frequency noise. The default values can be
changed by un-checking the Use Default For Device checkbox. These values are
modified when using the QuickControl Control Panel for tuning. See Technical
Document QCI-TD054 Servo Tuning on our website for information on tuning.

CTC - Control Constants

This command sets the various servo loop gains used for tuning. Variations of these
constants, in conjunction with the Filter Constants, allow oscillation and error to be
minimized. See description and Command Reference for definitions. These values are
modified when using the QuickControl Tuning Tool. See Technical Document QCI-
TDO054 Servo Tuning on our website for information on tuning.

GOC - Gravity Offset Constants

This command sets a custom gravity offset term in the servo control loop for vertical
load applications. The gravity-offset value increases torque by the given amount for
moving loads against gravity and decreases torque by the given value for moving loads
with gravity.

DIR - Direction

This command allows the user to select whether Clockwise or Counterclockwise
rotations will correspond to positive motion values. Viewing motor from the shaft end
references the direction. This command can only be issued in the initialization program
before the motor alignment section while the servo is in open loop (do not issue again in
a user program).

TQL - Torque Limits

This command changes the torque limit settings for the different control states of the
device. The limit caps the maximum value the device may use. Specify the limit as a
percent or check the Maximum box next to each slider to maximize the parameter.

AHC - Anti-Hunt Constant

Anti-Hunt mode is an open loop mode that allows the device to eliminate dither. The
AHC command sets the thresholds used to determine if the position is sufficiently close
to the target to allow the device to go into and to stay in Anti-Hunt mode.

SilverLode User Manual Rev 4.4 Page 56 of 149

Chapter 1 — Introduction and Getting Started

AHD - Anti-Hunt Delay

Set the Anti-Hunt time delays switching from closed loop to open loop at the end of a
motion following the point that the error is below the specified limit. Prevents switching
too early while mechanical vibrations are still settling out.

SCF - S-Curve Factor

Choose the S-Curve characteristics in the acceleration portion of motion profiles. The
SCF command uses a sixteen-bit value (0-32767) to corresponding to selections from a
Trapezoidal profile to a full S-curve.

LVT - Low Voltage Trip

Allows for a low voltage threshold to cause the device to stop operation or load and run
a program defined by the Power Low Recovery (PLR) command. This allows for proper
shut down when power is lost, or for data storage in power loss situations.

OVT - Over Voltage Trip

Like LVT, except for this command sets the maximum allowable voltage, going above
which will cause the device to kill or shut down. OVT is tied to the Kill Motor Conditions
to setup a kill enable when the voltage is exceeded.

ERL - Error Limits

Choose the application error limits for Moving Error, Holding Error, and the Delay to
Hold time. Enable Drag mode operation by checking the Drag Mode box. Values are
tied to the Kill Motor Conditions (KMC) command to setup a kill whenever an error limit
is exceeded.

KMC - Kill Motor Conditions

Enable options to shutdown the Device under certain conditions. To select the
conditions, press the button next to the desired option until it matches the desired state
(i.e. Disable, TRUE, or FALSE).

After tripping an enabled condition in the KMC, a Kill Motor Recovery (KMR) routine, if
configured, is automatically loaded and run.

DIF — Digital Input Filter

Select the filter time for any or all of the digital inputs. The filter ensures valid 1/O states
by ignoring noise and spikes on the signal lines that could trigger a state change if the
I/O line was to react instantaneously. Select individual I/O lines (or all lines) to set the
filter constant.

LRP - Load and Run Program

Specify the next non-volatile address to load and run a user program. The default is
non-volatile address 512 (the first open location after the initialization). Download the
first user program into this location, and the Initialization program will load and run it
automatically.

SilverLode User Manual Rev 4.4 Page 57 of 149

Chapter 1 — Introduction and Getting Started

Other Initialization Files

In addition to the Factory Default Initialization.qcp file, QuickControl comes with the
following default initialization files. Depending on your application, it may be beneficial
to use one of these rather than “Factory Default Initialiation.qcp”.

Factory Default Initialization - CAN.qcp
Use this to enable QCI's CANOpen protocol. See CANOpen User Manual for details.

Factory Default Initialization - CT2 FL2.qcp
The servo tuning parameters CTC and FLC are replaced with the new improved CT2
and FL2. See command reference for details on these commands.

Factory Default Initialization - Cyclic.qcp
Initialization file used for Cyclic Phase Alignment. See Phase Alignment above for
details.

Factory Default Initialization - Driver Enable.qcp

Special version for SilverNugget servos with "driver enable" option, including options
E4, E5, M4 and M5. See Technical Document QCI-TD015 Driver Enable — Input 3 for
details.

Factory Default Initialization - Open Loop.qcp
This file is used for a devices operating in open loop only. No encoder. See Technical
Document QCI-TD047 SilverDust Open Loop for details.

Troubleshooting Communications

With the SilverLode product powered up, start QuickControl and the polling routine
should automatically find the device. If QuickControl is already running and the device
is powered up, press the “Scan Network” button to find the device on the network. If
“No Devices Found” appears in the Device Status Monitor, either the device has been
initialized with something other than the Factory Defaults (listed in the Hardware
Requirements section of this chapter) or QuickControl is not set up to communicate with
the device in its present communications state. Some things to check if this happens
are:

« Verify the COM port being used to connect to the device.

« Under Setup, select Comm Port / Comm Channels and ensure the baud rate and
protocol are set to Factory Defaults (57600 and 8 bit ASCII respectively). Also,
confirm the Enable checkbox is checked and the COM Channel enabled is the
one device is connected to.

« Verify there are no other programs using the port (only one program can control
a COM Port at any given time). These can include other motion control drivers or
programs used for communication devices (e.g. Palm Pilot, HyperTerminal etc.).
If these programs do not relinquish control of the port, QuickControl will report
“Could Not Open select COM Port” and “Access is denied.” errors in the Status
Log. Under Setup, select Register Devices and ensure all six devices have the
Auto Reg checkbox checked.

SilverLode User Manual Rev 4.4 Page 58 of 149

Chapter 1 — Introduction and Getting Started

« Run Tools = Unknown Device Wizard (only works with one device connected at
a time)

« If networking multiple devices, QuickControl can only register six at a time for
viewing.

- If networking multiple devices, each has to be initialized with the Initialization
Wizard with a unique ID.

« Under Setup, select Options and make sure the Autoscan ID range
encompasses the ID of the units desired.

After verifying the integrity of the COM Port and making any necessary changes, try a
quick communication test. Stop the QuickControl polling routine (if it is running), and
click on the red hand icon (STOP) button on the QC toolbar. The red LED on the back
of device should flash briefly as it receives and processes the Halt command sent to it
each time the STOP button is pushed. This simple test can be done at any time to
verify that the device is receiving commands.

It is also good to verify that the Windows PC can communicate through the serial port
without QuickControl. Programs like HyperTerminal can accomplish this (see Technical
Document QCI-TD024 8 Bit ASCII Protocol Using HyperTerminal). If communication is
successful with the third party terminal program, then QuickControl should be able to
operate correctly.

SilverLode Indicator LEDs

There are two indicator light emitting diodes (LED) on the back of every SilverLode
product, one red and one green. These LED indicators provide the user some basic
information about the current operational state. When the device is first powered up the
green LEDs should be on (on the SilverNugget, the red LED flashes on momentarily at
power up as well). The red LED is the communication/program done indicator.

If the red LED is on solid (dim glow), then no program is running and the device is not
communicating. When the device receives the start of a transmission, the red LED will
shine extra bright. When the transmission is processed, the red LED will return to its
original state. Sending the device a number of commands in succession (e.g. the
QuickControl polling routine) will induce a flickering of the red LED. This flickering can
occur in regular intervals or as random blinks depending on the communication scheme.

If the red LED is out completely, then a program is running from an internal program in
the Program Buffer (and, in the absence of flashes, no communications is taking place).

The green LED is normally used to indicate motor torque, it starts out a middle
brightness, glows brighter for positive torque and darker for negative torque. Its function
changes if the Enable Done Low or Enable Done High command has been set; in this
state, bright indicates that the motion is complete and the error is within set limits, while
off indicates that the above are not true. The green LED is also used to flash error
codes in the case of power low, over temperature, etc. according to the user and/or
initialization program loaded. This is done by disabling the driver, setting open loop
mode, and then setting the “torque” high and low (though with the motor drive disabled,
only the LED is affected).

SilverLode User Manual Rev 4.4 Page 59 of 149

Chapter 1 — Introduction and Getting Started

Green LED Flash Code

Number of
Flashes

Fault

1

Startup Recovery Program
Kill Motor Condition occurred at startup.

2

Kill Motor Recovery Program
Kill Motor Condition occurred after startup as a result of a
condition in the KMC or KMX command.

Initialization Wizard needs to be run.

I-Grade Motor Memory Read Error

I-Grade Motor Memory Version is Not Compatible

oo~ W

I-Grade Motor Miss-Match. Attached motor does not match with
device. Re-run Initialization Wizard

7

I-Grade Motor Memory Checksum Fault

The SilverDust IG and IGB also have a third yellow LED. This yellow LED lights to
indicate that the encoder signals are not at valid levels indicating shorts, opens, or
otherwise invalid levels. A bit in the Internal Status 2 (IS2) word indicates this state, and
may be used to trigger a kill motor via the KMX command. (See 1S2 and KMX.)

SilverLode User Manual Rev 4.4 Page 60 of 149

Chapter 1 — Introduction and Getting Started

&’ej Exercise 1.1 — Basic Default Initialization
This exercise demonstrates how to accomplish a basic initialization of the device using the
Factory Default Initialization File.

1. Toinitialize the device using the wizard, begin by choosing “Initialization Wizard” under the
“Tools” pull down menu.

Intialization Wizard
Frezz "Download” to initialize zerva ar change the E sit 1
factory default parameters uzing the “Initialize Parameter =
Browwser " or “ntervies'. :
- 7 Options 1
: m o0 i Download File
Vizilez Doy i . ToDevice ! Interview 1
b cibiar A17H3 -
Motor Cable |2
DEYICE DETECTED: Adr=15 Length [ft]

SilverDugt D2 [-Grade w/ Breakout [IGB]. en=1002
|-Grade kator Detected: A17H3, CPR=8000, :n=1026

- File

Irnitialize Parameter Browveer

Communications
b otor

Servo Tuning

b oticn

Error Limitz

;gctar}l Drefault Initialization.qep i

Open 1 Save Save Az i

2. Verify the filename “Factory Default Initialization.qcp” is listed in the File box.

3. Select the “Download File To Device* button to have the default initialization file downloaded to
the device.

4. The servo will automatically reboot and the parameters will then become active on each
successive power up and motor reboot cycle.

5. The Program Downloaded screen will appear when downloading is complete. Click on the “OK*
button to clear the message screen.

6. To exit the Initialization Wizard, select the “Exit“ button on the screen.

7. If polling is stopped, click on the “Scan Network” button to verify proper communications and
polling of the device.

SilverLode User Manual Rev 4.4 Page 61 of 149

Chapter 1 — Introduction and Getting Started

il Exercise 1.2 — Using the Register Watch Tool
This exercise explores the operation and use of the Register Watch Tool.

i Register Watch — o]
Add Register i D Device D 16 Dev #1

1. QuickControl must be polling for the tool to
function. If the word “none” appears at any time in
the data section of the Register Watch Tool, then R, H Ml
polling is not active; to establish polling press “Scan
Network”. The Register Watch Tool is started by
selecting Tools > Register Watch. By default, no
registers are displayed.

2. To add a register to the display click the “Add
Register” button. This brings up the Select

Register window. Select the register to Select Register - x|
monitor/modify from the scrolling list. Some

are combo-registers, where the upper 16
bits and lower 16 bits contain separate Cancel ;
pieces of information. These registers are Redister

named (by default) ‘high word | low word.’ Taiget Position [0) 3 | Display.

For example, register 7 contains two B oo (1) ; Eeg'sﬂf .|
velocity values and is named “Velocity 1 | T Status Word | Reserved (3 fgimiin
Velocity 2.” To view only one half of S Lo]
register, select either ‘Upper Word’ or Max Poskion Evor| Curent Postion Eror 6 gl T IR s

‘Lower Word’ from the Display section.

3. Select register 5 ‘Delay Count’ and
‘Register’ to view the timer register. Click OK
to bring up the format window. Select the Select Data Format i X
desired data format. Long and ULong display s e
the exact contents of the register with no units. | display ths datain.

This is useful for inputting basic numbers, or
for viewing SilverLode native units. The Hex
option translates the contents from decimal to ,
hexadecimal. This format allows easier |
analysis of individual register bits. Position,
Acceleration, Velocity, and Time options all scale the register value using the current
QuickControl units. For information on native units and QuickControl scaling, see chapter 2.
Select ‘Long’ to display register 5 in native units.

4. Clicking OK a final time places the register into the tool. Click on the data box of register 5 (which
currently contains a zero). Enter a numeric value of 10,000 or greater. Once the value has been
typed, press enter. At that moment, the value typed in will be transmitted to the servo, and
immediately begins decreasing. The Delay Count register is a specialized register that is
automatically decremented each servo cycle. As demonstrated here, QuickControl is also
constantly reading registers and reporting their contents in the register watch tool (while polling).

5. The register watch tool can be very powerful if applied well. Repeat the steps to add register 5 to
the tool again, but select ‘Time’ in the format window.

6. The tool now displays register 5 twice. Data entered in either of the data fields will be transmitted
to the servo. On the next QuickControl polling cycle, the other field will be updated and contain a
scaled version of the edited field. This provides a convenient method for monitoring both
SilverLode native units and the QuickControl scaled engineering units.

Cancel i
- DataFormgt——— —— 1 —
| = Hex ULong ¢ Acceleration T Time {

J-':‘ = Position Velocity :

SilverLode User Manual Rev 4.4 Page 62 of 149

Chapter 1 — Introduction and Getting Started

i Exercise 1.3 — Advanced Initialization

This exercise demonstrates how to initialize the device using the Initialization Wizard interview
feature.

1. To initialize the device using the wizard, begin by choosing “Initialization Wizard” under the
“Tools” pull down menu.

2. To begin a step-by-step run through of the initialization parameters select the “Interview” button.
Note: If the “Cancel” button is selected the old command parameter(s) are reserved for all
windows and the interview is stopped.

3. Parameters for each command can be modified during the interview. The following is a simple
outline of the parameters in order of which they will appear during the interview.

IDT: Identity AHC: Anti-Hunt Constant

PRO: Protocol AHD: Anti-Hunt Delay

SIF: Serial Interface SCF: S-Curve Factor

BRT: Baud Rate LVT: Low Voltage Trip

ADL: ACK Delay OVT: Over Voltage Trip

MCT: Motor Constants MTT: Maximum Temperature Trip
FLC: Filter Constants ERL: Error Limits

CTC: Control Constants KMC: Kill Motor Conditions

GOC: Gravity Offset Constants DIF: Digital Input Filter

DIR: Direction LRP: Load And Run Program

TQL: Torque Limits

Note: To see a description of the command or parameter, select the “Description” button of each
window.

4. After any changes to the parameter(s) are made, select “OK” to save the changes and move on
to the next command. “Cancel” will exit the interview process.

5. Once the wizard is completed, QuickControl will be back at the main “Initialization Wizard”
screen.

6. Select the “Download File To Device” button to have the initialization file parameters become
active on power up and motor reboot. The file will be downloaded to the device and the servo will
be rebooted. To exit the Initialization Wizard, select the “Exit” button.

SilverLode User Manual Rev 4.4 Page 63 of 149

Chapter 1 — Introduction and Getting Started

&95 Exercise 1.4 — QuickControl Utilities
This exercise demonstrates two of the most widely used utilities within QuickControl in an effort to
show their usefulness in prototyping as well as troubleshooting. Upon completion of this
exercise, an understanding of how QuickControl interfaces with the device should be developed. <CR> =
carriage return. Since the carriage return does not have a viewable character it is displayed as a vertical
bar “|” when ASCII strings are viewed in QuickControl.

—

Initialize the device and click the Start Polling button to ensure functioning communication.

2. Click on Data Monitor in the Tools pull down menu and view the polling routine that QuickControl
uses to report all information about the device. Note that the device never initiates outward
communication. Therefore, every piece of information displayed in QuickControl has to be polled out
of the device by this routine.

3. Check the Data Only box. With this box checked, the Data Monitor only displays the command
strings that QuickControl sends to the device and the device response to those commands. With this
box unchecked, each data string is preceded by TX/RX indicator (TX for QuickControl transmissions
and RX for the device responses) and a recycling clock time. The purpose of the clock is to tell how
much time has passed in between a QuickControl TX and the device RX.

* The TX and RX are redundant because any transmission to the device is indicated with an @
symbol followed by the ID of the unit (e.g. @16).

* the device responses are preceded with either a “*”,” #”, or “I” character (See Technical
Document QCI-TD053 Serial Communications on our website for a discussion on the individual
meanings of each).

4. Check the Silent box to stop the polling routine from streaming in the Data Monitor and scroll up in
the window to view the routine in detail; or, check the Log to File box and click on the Log to File
button to select a specific location and text file to log this routine to.

5. Note the commands used in the basic polling routine (look them up by command number in the
Command Reference if necessary) and the data registers that are queried.

* @16 12 1<CR>: This Read Register (RRG) command queries the Actual Position[1] register.

* Actual Position is displayed in the Device Status Monitor and is updated due to this line of the
polling routine.

6. Click on Register Watch in the Tools menu and Add Register when the Register Watch utility
appears. Choose Accumulator[10] (or a register that is not being polled by the basic polling routine)
and select long format to view values as signed decimal numbers.

* Uncheck the Silent box in the Data Monitor and note that Accumulator[10] is now being queried
by the polling routine.

7. Type a “50” into the data box of the added register and press enter. Quickly check the Silent box and
scroll up in the Data Monitor log to view the transmission.

* @16 11 10 50<CR>: This Write Register command writes a 50 into the Accumulator[10] register.

* This string was issued by QuickControl as soon as data was typed into Register Watch and Enter
was pressed.

8. Move to the Custom Transmit section of the Data Monitor. Type “@16 11 10 100 ” in place of “Test

Packet.” Add the final carriage return character with the Add CR to End button, and press Transmit.

* Notice that Register Watch is immediately updated by the polling routine.

* Note how the Data Monitor and Register Watch tools can be used to emulate a PLC, HMI, or
other host that sends data serially to the device.

SilverLode User Manual Rev 4.4 Page 64 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

Chapter 2 — Basic Motion and Programming
Fundamentals

In order to successfully implement a SilverLode servo in an application, it is critical to
understand the basic operational concepts of the system. This chapter lays the basic
groundwork needed for using the product. It also provides essential information that is
needed to comprehend other topics in this manual.

The core of the SilverLode servo is the patented PVIA™ servo control loop. All motion
is controlled by this servo loop. The commands themselves have a particular format
shown in detail in the Command Reference. The basics of command parameters and
how they are scaled are covered later in this chapter. The QuickControl® software
simplifies the entire process of command generation by providing a user-friendly
interface that can scale all units to typical engineering values.

When operating a SilverLode servo in host mode it is good practice to provide the host
with the capability to monitor the servo. A standard method is a polling routine. A fully
developed polling routine provides a wealth of information about the servo, allowing for
detailed control by the external host.

In standalone mode, basic programs allow the servo to execute complex motion profiles
while monitoring and controlling I/O lines and serial communications. A complete
understanding of the internal memory organization leads to a powerful control of
programs and data. In QuickControl, this organization is controlled automatically,
although the settings have override capacity.

Trajectory Generator

The motion of a SilverLode servo follows a trajectory that is calculated by the Trajectory
Generator, a specialized algorithm that translates the supplied motion guidelines into a
complete trajectory. A trajectory is made up of a series of data points to be used each
servo cycle. These data points consist of a target position, velocity, and acceleration
used throughout the servo cycle. The DSP chip running the patented PVIA servo loop
uses the differences—supplied by the feedback system—between the target and actual
parameters to generate torque.

The Trajectory Generator can receive motion parameters from one of two sources. The
first of these is the SilverLode controller. The controller is used anytime a SilverLode
servo is executing an internal program or a command received from a host. When
configured to follow an encoder, the incoming encoder signals are processed by the
Trajectory Generator to create the matching motion. The Direction (DIR) command can
be used to switch the positive sense of the servomotor, causing trajectories to run in the
reverse direction.

SilverLode User Manual Rev 4.4 Page 65 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

Command Types and Classes

Commands are categorized in two ways: by type and class. These two categories
determine when or if a command can be issued. The factors that determine when a
command can be issued include active motion execution; other commands being
executed, and the source of the command (internal or external).

The two command types are Immediate and Program; they set the valid source for the
command. Immediate type commands can be issued from an external host through the
serial link ONLY:; they cannot be part of an internal program stored into non-volatile
memory. Program type commands can be either issued through the serial link or stored
as part of an internal program. Some commands have both an immediate and a
program version. For example, Velocity Mode has both a program type (VMP) and an
immediate type (VMI). These two commands take the same parameters and cause the
same motion but have different command numbers.

The letters A through F designate the command class. The class determines under
what circumstances the command can be issued. Example circumstances are if a
command is already being executed, if a motion is running, or if a program is executing.
Class D commands, such as the ones for basic motion described later in this chapter,
can only be executed from a host when the device is idle (no command, no motion, or
program executing). Class A commands, such as the status commands, can be
executed at any time, even while a motion is executing. The Command Reference
provides a complete description of each command class.

Command Parameters

Commands all have the same fundamental structure. Each command has an assigned
command number, which may be followed by parameters. The number of parameters
varies by command, and each command is described in detail in the Command
Reference. The parameters also have unique scaling and special formatting. Use care
when generating command parameters, as incorrect values will result in execution
errors. QuickControl is designed to perform all parameter generation in an easy to
understand graphical interface.

Scaling

Scaling of parameters fall into the following categories. Parameters have fixed internal
units called SilverLode native units. The QuickControl software package displays all
values in typical engineering units, but basic communications from a separate host
(such as a PLC) must use the native units.

When working with SilverLode native units, it is generally simplest to transmit native
units directly from the host. However, use of the Calculation (CLC) command allows a
SilverLode servo to make the scaling corrections internally. The CLC command is
covered in Chapter 3.

Raw Numbers

These numbers are used in general mathematical operations. An example application
is setting the number of times to execute a loop. Raw numbers are transmitted directly
to a SilverLode servo with no scaling. When receiving a raw number from the
SilverLode servo, the number will be in hexadecimal. Therefore, a host may need to

SilverLode User Manual Rev 4.4 Page 66 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

perform a conversion to decimal after requesting the data from SilverLode servo. See
the Technical Document QCI-TD050 Binary, Hex and Decimal Conversion on our
website for details on decimal-hexadecimal conversion. The scaling formats were
chosen to maximize the accuracy and dynamic range of the calculations while still
performing all calculations at a high 8.333kHz servo rate. Integer format was chosen to
minimize differences in interpretation of floating point number format, rounding, and
actual available resolution.

Position/Distance

The native unit of position and distance is the count. The number of encoder counts in
a single revolution varies depending on the resolution of the encoder. All position or
distance parameters transmitted to a SilverLode servo must be in counts.

Target Velocity

The native unit of target velocity is called a SilverLode Velocity Unit (SVU). Itis
designed to give maximum resolution in speed selection. ltis a signed 32-bit number,
giving a range of +/- 2,147,483,647. These numbers correspond directly to actual
speeds of +/- “Max Speed” in the configuration window, typically 4000 RPM. (Note: This
means for “Max Speed” other than 4000RPM, the following scale factors for converting
into SVU units must be multiplied by 4000/"Max speed” — i.e. for MaxSpeed=1000,
multiply all of the following scale factors by 4.) The following conversions are useful:

Revolutions/Min (RPM) to SVU
(2% SVU)/4000 RPM = 536,870.911 SVU/RPM

Example: How many SVU for 200 RPM?
200 RPM = 200 RPM * 536,870.911 SVU/RPM = 107374182.2 SVU

Counts/Sec (CPS) to SVU
Note: This conversion is dependant on encoder resolution in counts per
revolutions (CPR).
(2% SVU)/4000 RPM * (60RPM/RPS) * (RPS/CPR*CPS))
= 32212254.705 (SVU/(CPR*CPS)
For a 4000 CPR encoder, CPR =4000:
32212254.705/4000 = 8,053.064 SVU/CPS

Example: How many SVU for 8000 CPS?
8000 CPS = 8,000 CPS * 8,053.064 SVU/CPS = 64,424,512 SVU

Revolutions/Sec (RPS) to SVU
(2°" SVU)/4000 RPM * (60RPM/RPS) = 32,212,254.705 SVU/RPS

Example: How many SVU for 20 RPS?
20 RPS = 20 RPS * 32,212,254.705 SVU/RPS = 644,245,094.1 SVU

The fractional component can be ignored with minimal impact on accuracy.

Actual Velocity
The native unit of actual velocity is called a SilverLode Actual Velocity Unit (SAV). It
is designed to give maximum resolution. It is a signed 16-bit number, giving a range of

SilverLode User Manual Rev 4.4 Page 67 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

+/- 32767. These numbers correspond directly to actual speeds of +/- “Max Speed” as
selected in the Initialization Options screen, typically 4000 RPM. This value is always
reported in the lower 16bits of register 7. (Note: for “Max Velocity” other than 4000, this
means the below examples must be multiplied by 4000/"Max Velocity”.) The following
conversions are useful:

Revolutions/Min (RPM) to SAV
(2" SAV)/4000 RPM = 8.19175 SAV/RPM

Example: How many SAV for 200 RPM?
200 RPM = 200 RPM * 8.19175 SAV/RPM = 1638.35 SAV

Counts/Sec (CPS) to SAV
Note: This conversion is dependant on encoder resolution in counts per
revolutions (CPR).
(2" SAV)/4000 RPM * (60RPM/RPS) * (RPS/(CPR*CPS)
=491.505 (SVU/(CPR*CPS)
For a 4000 CPR encoder:
491.505/4000 = 0.12287625 SAV/CPS

Example: How many SAV for 8000 CPS?
8000 CPS = 8000 CPS * 0.12287625 SAV /CPS = 983.01 SAV

Revolutions/Sec (RPS) to SAV
(2"° SAV)/4000 RPM * (60RPM/RPS) = 491.505 SAV /RPS

Example: How many SAV for 20 RPS?
20 RPS = 20 RPS * 491.505 SAV /RPS = 9830.1 SAV

Acceleration

The native unit of acceleration is called a SilverLode Acceleration Unit (SAU). Itis
designed to give maximum resolution. It is an unsigned 30-bit number, giving a range
of 0 to 1,073,741,823. This number corresponds directly to an acceleration of 0 to “Max
Velocity/2) — typically 2000RPM - in 120us. (Note: for “Max Velocity” other than 4000,
this means the below examples must be multiplied by 4000/’"Max Velocity”.)

The following conversions are useful: The maximum value (at the default Max Velocity
= 4000RPM) corresponds to 277,777 rps/s. This value is not physically attainable, with
values at one percent of this value or less being typical. The following conversion is
useful:

RPM/Sec to SAU

(2°° SAU)/(2000RPM/120pus) = 64.42450944 SAU/(RPM/Sec)

Example: How many SAU in 5RPM/Sec?

5RPM/Sec = 5RPM/Sec * 64.42450944 SAU/(RPM/Sec) = 322.1225472 SAU

RPS/Sec to SAU

(2°° SAU)/(2000RPM/120ps) * 60 RPM/RPS = 3865.4705664 SAU/(RPS/Sec)
Example: What is the max target acceleration in units of RPS/Sec?

SilverLode User Manual Rev 4.4 Page 68 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

Max SAU = (2°° -1)SAU = 1,073,741,823 SAU / [3865.4705664 SAU/(RPS/Sec)]
= 277777.78 RPS/Sec

Time

Time is measured in servo cycle clock ticks. The clock is 8.33 kHz and therefore a tick
is equal to one servo cycle or 120us. It generally takes one servo cycle to execute one
command. All time parameters must be integer multiples of ticks.

Example: How many ticks in 5 secs?
5 secs * tick/120us = 41666 ticks

Torque

As with some of the other important physical parameters like distance, time, velocity,
and acceleration, the device uses special units for torque. For most SilverLode servos,
30,000 SilverLode Torque Units (STU) is the maximum (peak) amount of torque the
device can apply. Unlike the other physical parameters the device uses, however, STU
are relative units and do not directly correlate to a physical unit like ounce-inches
because the torque-speed relationship changes as the speed changes. This relative
definition of torque leads is why QuickControl's normal torque units is percent torque.

See Technical Document QCI-TD054 Servo Tuning on our website for information on
tuning.

Filter
Filter parameter scaling is calculated with the following formula:

Fv Filter Value (SilverLode Native Unit)
F Filter in Hz

T Time Sample (120us)

Fvl Filter Value Limit (32768)

Fv = Fvle™™
F = In(Fv/FvI)/(2TT)

Example: Position Input Mode(PIM) command with a 117Hz filter. The native
SilverLode Filter value is 30000.

30000 = 32768 e (117)2m(120ps)

SilverLode User Manual Rev 4.4 Page 69 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

Basic Motion Commands

There are four basic motion commands that are used to create simple motion profiles.
These commands follow the same motion rules, but require different motion
parameters. The result is a similar type of motion. The differences between the
commands allow motion to be defined by relative or absolute distance, using velocity or
time as the base. The commands pre-calculate the motion profile. The motion profile is
subject to the maximum acceleration and velocity of the servomotor. A motion profile
that the servo cannot numerically accomplish will cause a command error and the
motion will not be executed. On the other hand, it is possible to program a motion
profile that is numerically consistent, but requires more torque than available in the
given servo. Execution of complex motion profiles is covered primarily in Chapters 4
and 5.

Relative Motion

The Move Relative, Velocity Based (MRV) and Move Relative, Time Based (MRT)
commands are both relative moves. Relative motion is distance based, meaning that
the first parameter is the overall distance to move. The current position when the
motion begins is irrelevant and the shaft will simply rotate the specified number of
counts.

Absolute Motion

The Move Absolute, Velocity Based (MAV) and Move Absolute, Time Based (MAT)
commands are absolute moves. As long as the device is powered, it keeps track of its
current location based on the zero point. The absolute position move is also based on
the zero point. (The zero point can be reset using the Zero Target and Position (ZTP)
command, or moved/offset using the Calc “Sub Target Position” command.) Absolute
motion is position based, where the first parameter specified is the position to move to.
The actual distance moved is the difference between the current position and the
position specified in the command.

Velocity Based Motion

The MRV and MAV commands are velocity based. The second and third parameters
are velocity and acceleration. The servo will use the specified acceleration to achieve
the velocity, and the same acceleration to bring the servo to a halt. If the acceleration is
not sufficient to reach the specified velocity before deceleration must begin, the profile
will be triangular.

Time Based Motion

The MRT and MAT commands use time based parameters to create a motion profile.
The second and third parameters are ramp time and total time. The total time specifies
how quickly the move is to be completed. The ramp time sets the time to accelerate to
velocity and the time to decelerate to a halt. The total time must be greater than twice
the ramp time or errors will result and the move will not be executed.

Velocity Control

If an application requires only velocity control and no position designation, the Velocity
Mode (VMP or VMI) commands should be used. VMP is the program type command,
and VMl is the immediate type. The Velocity Mode commands provide a “never-ending”

SilverLode User Manual Rev 4.4 Page 70 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

motion. If no outside conditions interfere, the servomotor will continue to move at the
specified velocity “forever”. (Note: if the final velocity is zero, the command will exit
once zero velocity has been reached.) This command requires two parameters,
velocity, and acceleration. A SilverLode servo will achieve the specified velocity using
the given acceleration, and remain at that velocity until commanded otherwise. In a
multitasking environment, this command can override any other motion currently in
progress. This provides an easy transition using a controlled deceleration to slow down
or stop the servo. See Chapter 3 for more information on multitasking.

S-Curve Factor

This action, set by the S-Curve Factor (SCF) command alters the motion profiles of the
four basic move commands (MRV, MRT, MAV, MAT) by introducing an s-curve into the
acceleration. A full s-curve (32767) will minimize the rate of change of acceleration (or
jerk) for a trapezoidal motion.

Time based motion trajectories will honor the requested time parameters - if numerically
possible - coming up to speed in the same ramp time. However, for a full s-curve move
(i.e. SCF 32767), the peak acceleration will be twice as high as for a pure trapezoidal
curve (SCF 0). Velocity based motion trajectories will honor the requested peak
acceleration and velocity parameters, however the average acceleration for a full s-
curve is one half the peak acceleration, causing the acceleration and deceleration times
to double. See diagram below.

Velocity Based Motion and S-Curve

1200

Full S-Curve

1000 7 2 x Acceleration
/ as Trap. Motion

800
8 600] Fu||As-cl|Jrvet_
.t Trapezoidal Motion am_?_ CC?\/I eration
Zero S-Curve as Trap. Motion
400 L
/% N
0
0 0.1 0.2 0.3 0.4 05
Time

Significant reduction in Jerk in the system may be attained by a 20% or 50% s-curve
(for example), where the acceleration ramps up over a portion of the curve, then is held
constant for a portion, and then is ramped down again, with the same process occurring
for the deceleration portion of the curve. A 20% s-curve (SCF 653 = .2*32767) only
adds 20% to the acceleration in a time based move or 20% to the time in a velocity
based move, but can significantly reduce the jerk at the start and end of the move.

SilverLode User Manual Rev 4.4 Page 71 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

b Exercise 2.1 — Basic Motion Commands & Jump Commands
gﬁf’ The purpose of this exercise to get familiar with the basic MRV, JMP, and JOI commands. The
servo will execute two moves depending on the state of the I/0O #1 and I/O #3. The program runs
in a continuous loop monitoring the two inputs.

1. Make sure QuickControl is polling the device. Click the Scan Network button in the middle of the
Device Status Monitor to start polling the device if polling is stopped.

2. Select File — Open. Navigate to the “...\QCI Examples\Using Inputs for Move Selection\” folder and
select the file “Two Inputs Two Moves with MRV.qcp”.

3. Putl/O #1 and #3 in the HIGH state. Verify both inputs are in the high state by looking at the Input
status boxes just above the Scan Network button. A Green box indicates the 1/O line (in this case an
input) is in the HIGH state. A Red box indicates a LOW state. Take a moment to toggle the I/O
switches up & down to see the Input status boxes change color as the inputs change state.

4. Click on the Run button in the Program Info Toolbar. Once the program is downloaded click on the
OK button. The program is now running.

5. Toggle /O #1 LOW, then back to HIGH. The device will execute a simple move.

6. Toggle I/0 #3 LOW, then back to HIGH. The device will execute a different move. Experiment with
the 1/0O and notice the servo's motion. When finished close the active program.

Question: If BOTH inputs are LOW, which move gets executed? Why?

i Exercise 2.2 — Basic Velocity Mode
This exercise demonstrates the basic Velocity Mode, Program Mode (VMP) command. It
illustrates how simple it is to have the device operate in a set velocity mode & stop on an Input
trigger.

1. Select File — Open. Navigate to the “...\QCI Examples\ Moves — basic\” folder and select the file
“Velocity Mode, Program Mode.qcp”

2. Click the ‘Run’ button to download and begin execution of the program. Once the program is
downloaded click on the OK button.

3. The servo is now running in Velocity Mode. Notice the position counter window increasing the
revolution count value as the device moves. Toggle I/O #5 LOW to stop motion. Click on the Reboot
button to run again. When finished close the active program.

This program contains only one command. It has all the parameters needed for simple motion control.

SilverLode User Manual Rev 4.4 Page 72 of 149

Chapter 2 — Basic Motion and Programming Fundamentals
Memory Model

Before programming the device, it is important to understand how the memory operates
for storing and executing programs. There are five types of memory available:

« The Serial Communications Buffer (dynamic)
« The Program Buffer (dynamic)

« The Data Registers (dynamic)

« The Non-volatile Memory (persistent)

« Firmware (persistent)

When receiving commands through the serial interface a Serial Communications Buffer
is used to temporarily store the commands, parameters, and data received. For
executing commands and programs there is a Program Buffer used for temporary
storage of the executing command or program. The Program Buffer uses a dynamic
type memory cell that can be written any number of times and only maintains
information while power is present. The Data Registers are used to process and store
numerical values inside the device. Values in registers are used to store parameters or
results for many commands. For long term storage of programs and data, use the non-
volatile memory. Non-volatile memory uses an EEPROM type memory cell that is rated
for at least 100,000 write cycles and retains the data even when power is lost.
Firmware is a separate piece of memory not directly user accessible. This memory
uses special flash type of memory that can only be updated using the Firmware
Download Wizard within QuickControl.

Serial Interface 4 Serial

< Comm
L Buffer
l T Non-Volatile
Program Memory
Buffer

Serial Communications Buffer

The Serial Communications Buffer is a 10-word (10 16-bit blocks) memory location used
to temporarily store incoming commands and their responses along with associated
parameters and data. Commands sent to the device through the serial interface are
temporarily stored in the buffer as the command string is being received. During this
time the command and its parameters are checked for proper syntax. Immediate type
commands are executed directly from the serial buffer. Program type commands are
transferred to the Program Buffer, to be executed individually, or as a program, or to be
stored to EEPROM, each of which will be described below.

Program Buffer

The program buffer provides a 1023-word (200 words for SilverNugget and pre rev 06
SilverDust MG) memory array for program and command execution. The buffer is used
by the SilverLode servos to hold a single command or a series of commands (a

SilverLode User Manual Rev 4.4 Page 73 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

program) for eventual execution. Only one program can be held in the buffer at a time.
The buffer can be loaded with commands using the serial interface or with programs
transferred from the non-volatile memory. The buffer will hold a command or program
until overwritten or until power is removed.

If Multi-Thread is used, Thread 1 and 2 share the Program Buffer. See Multi-Thread in
Chapter 3 for details.

Programs that are contained in the buffer can also be written to the non-volatile memory
for long-term storage. The following is a list of commands that pertain to the program
buffer. These commands are described completely in the Command Reference.

« Clear Program (CLP) — Clears the contents of the program buffer

- Start Download (SDL) — Puts the device into download mode

- Store Program (SPR) — Stores the currently loaded program into non-volatile
memory

* Run Program (RUN) - Executes the currently loaded program

« Load Program (LPR) - Loads a program from non-volatile memory into the
program buffer

+ Load and Run Program (LRP) — Loads a program from non-volatile memory to
the program buffer, then executes the program.

« Thread 2 Start (T2S) - Loads and Runs a program from non-volatile memory to
a second program thread.

« Thread 1 Force LRP (T1F) — Provides ability for Thread 2 to force a program to
load in Thread 1’s Program Buffer. See Multi-Thread in Chapter 3 for details.

Data Registers

Data Registers are used as data storage locations that may be used and modified by a
host controller or by internal functions. There are a number of 32-bit data registers
available within the device. They provide data storage for the parameters of register
based commands. Some registers contain two separate pieces of data. These values
are stored as two 16-bit numbers, one in the upper 16 bits of the register, and one in the
lower 16 bits.

See Appendix A for definitions of all registers.

SilverLode User Manual Rev 4.4 Page 74 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

Non-Volatile Memory

The non-volatile memory is used for long term storage of programs and data.
Information stored in the non-volatile memory remains in the device when power is
removed. It is also useful when storing multiple programs in the device. Each program
is stored to a known memory address and loaded when needed.

Non-Volatile Memory Map

SilverNugget and SilverDust MG
Memory Address [dec(hex)]
32512(0x7F00) - 32767 (0x7FFF) Factory Block
..................... - 32511(0x7EFF) Data Storage Area (DSA)
512(0x0200) - User Program File (i.e. user

app.qcp)

0(0x0000) - 511(0x01FF) Initialization Program File

(i.e. Factory Default Initialization

File.qcp)

SilverDust IG/IGB
Memory Address [dec(hex)]
30720(0x7800) - 32767(0x7FFF) Factory Block
.............. - 30719(0x77FF) Data Storage Area (DSA)
512(0x0200) - User Program File (i.e. user
app.qcp)
0(0x0000) - 511(0x01FF) Initialization Program File
(i.e. Factory Default Initialization
File.qcp)

Factory Block
Reserved system area

Data Storage Area (DSA)
Storage area for such thins as Register Files and Register File arrays.

User Program File

By default, user programs start at address 512. These are the programs created
anytime the New Program File is selected from the File menu. It also includes all the
example programs.

Initialization File
This includes the Factory Default Initialization File.qcp and any file used by the
Initialization Wizard.

Storing Data Registers

When using data registers for internal data operations, it is occasionally necessary to
store the content of a register into the non-volatile memory. User data register contents
can be stored to non-volatile memory from a single register or an array of registers. As
the EEPROM is internally accessed 16 bits at a time, it is advised to only store from and

SilverLode User Manual Rev 4.4 Page 75 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

recall to user memory locations that will not be changing while the store or recall
operations are taking place. For example, storing the Actual Position directly to non-
volatile memory can cause the upper and lower words to be written with positions from
different times, resulting in missed roll-over calculations and errors in stored position of
65535 counts! First copy to a user register (all 32 bits are transferred in a single
“atomic” operation), and then save that register to non-volatile memory. Multiple register
storage/recall must only be done from user register space (10 to 199); this operation
from other registers is prevented by internal code.

When storing multiple programs or register values to the non-volatile memory, locations
and organization is taken care of by the Register File System (Chapter 5).

Storing Details

When storing programs or registers, the device automatically adds length and
checksum values in the first memory location. This is used when loading to find the
correct number of words to load and to verify the integrity of the data. After the length
and checksum word, a “0” is stored as a NULL word. This prevents the device from
trying to execute data as a program. (The “0” is interpreted as an END command.)

By default, QuickControl will organize all programs and data to be stored into the non-
volatile memory. If this organization is performed manually, it is essential that no
overlap occur. If the device attempts to retrieve information that has been overwritten,
the checksum will be affected, and the unit will shutdown with an EEPROM error and
cease executing any commands or programs.

Firmware

The firmware is stored in a separate section of flash memory that is not user accessible.
It translates all instructions into the actual machine codes that controls motion and all
other operations. Upgrades to the firmware are available from time to time from the
factory and can be installed in the field using the QuickControl software. These
upgrades improve and increase the capabilities and functionality of the device. For
instructions on upgrading firmware contact QCI Technical Support.

Memory Management

There is a significant difference between QuickControl Program files (*.QCP) and the
“programs” residing in the QCP files. QCP files may contain many programs. QCP files
store program information like scaling parameters, register names, I/0O names, and data
stored in the register file system. QCP files are saved to a computer’s hard disk, while
programs are downloaded to the device's non-volatile memory. Only native command
data is stored into the device. Remarks, labels, scaling, etc., are not downloaded. The
user should keep and back up copies of their QCP associated with each of their
products.

Program Size Limits

The size of a program is shown in a small window in the middle of Program Info Toolbar
when the program is displayed in QuickControl. Size is listed as the number of words
used in the program buffer (e.g. 18 of 200 words used). Program Buffer length depends
on the servo.

SilverLode User Manual Rev 4.4 Page 76 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

Program Buffer Length
SilverNugget: 400 bytes (200 words)
SilverDust (Rev 06+): 2046 bytes (1023 words)
NOTE: Multi-Thread programs share this space.

This sets the length limit of executing programs. If a program exceeds this limit, the
device will not allow it to download. If this limit is reached, create multiple smaller
programs. QCP files can contain an unlimited number of programs that can link to each
other using the Load & Run Program (LRP) command (limited only by the size of the
non-volatile memory).

Multiple Programs in QCP Files

From the QuickControl main menu select Programs, then New Program, enter a name,
and select OK. The screen will display a new blank program. This new program
resides in the same QCP file as the first program. To view all programs present in the
current QCP file, expand the Program List drop-down box located in the middle of the
Program Info Toolbar. The first program listed is “Program Name [0]”. The [0] on the
end of the name designates that it is the first program created in this QCP file.
Additional programs created in this file will be listed in the order they were created with
an increasing number [1], [2], [3], etc. appended to the name.

Managing Non-Volatile Memory Program Storage

By default QuickControl organizes the non-volatile memory locations of all programs
downloaded to the device, including the Initialization program. Initialization programs
are always stored at non-volatile memory address 0. The first program listed in a QCP
file, program [0], is stored to non-volatile memory address 512 by default. See Non-
Volatile Memory above for the memory map.

The last command in the default Initialization program is an LRP at 512. By default on
power up or reboot, the device executes the Initialization program stored at non-volatile
0 and then executes any program stored at non-volatile 512. This can be changed by
modifying the LRP in the Initialization program as well as the non-volatile memory
location where the program is stored in the device.

To manually control the non-volatile memory storage address of a program; select a
program for display in QuickControl, select Programs from the main menu, and Program

x
Check to enable
manual addressing
Caticel |
= N — Memomny Management
rograrn Mame Prograrn Mame
L b arually Set Address I
Description
- Store Program inta
Program Description :I Morolatile 512 \
Mermaory starting at:
Maon-alatile I— Specify address to store
Memory Size: o program
LI Percent Used I?? 4
Thread 2 I

Details from the pull down menu. This brings up the same window displayed when a
new program is created. On the right side of this window is the Memory Management

SilverLode User Manual Rev 4.4 Page 77 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

section. This shows the non-volatile memory storage address assigned to this program
automatically by QuickControl and the total non-volatile memory size.

To override the automatic non-volatile memory assignment, check the “Manually Set
Address” checkbox, and enter a non-volatile memory address into the “Store Program
into...” box. If automatic memory management is not used, then the non-volatile
addresses must be independently tracked to prevent programs from overwriting each
other or otherwise interfering with themselves, the Initialization program, or stored data.
Overwritten programs and data may result in a fault condition, which will stop program
execution. If the Initialization program is overwritten, the device may be unable to
operate. Unless the system operation requires manual memory control, it is best to let
QuickControl manage the non-volatile memory storage.

The Thread 2 checkbox is used to designate the program as Thread 2. See Multi-
Thread in Chapter 3 for details.

Note: for SilverDust Rev 06, Program Buffer has been extended to 1023 words.
Programs using more than 254 words of program buffer require an additional word of
overhead in addition to the checksum/word count word used on shorter programs. This
extra word must be taken into account if manually assigning EEPROM storage
addresses. It is automatically taken care of is using the automatic management.

Program Execution

Programs are constructed from a series of program type commands. Programs enable
the device to execute complex operations independent of any external controller.
Programs can consist of commands from the following categories: Initialization, Motion,
Program Flow, /O, Data Register, and Miscellaneous. Programs can be created and
edited using QuickControl.

Creating programs involves combining a series of commands together in the desired
order, downloading the series of commands into the device and optionally storing the
series of commands (the program) in the non-volatile memory. Only program type
commands can be stored as part of a program. See the Program Types section earlier
in this chapter.

How Programs Operate

Programs execute commands sequentially starting at the first line and continuing until
the end of the program or until a command with override capability is issued from a
host. See the Command Reference for details on command classes, and which classes
can override executing programs. Programs may perform conditional branching,
providing the ability to modify their behavior or start a different program.

Program lines typically execute the command each servo cycle (120 usec.). If a
command requires only one servo cycle to execute, the next program line will execute
on the next servo cycle. Some commands block (pause the process of executing the
next line) program execution while the command completes. Commands from different
categories influence program execution in different ways. The multitasking capability of
the device alters the impact of motion commands, allowing them to execute in the
background. Commands from other categories can then be executed while a motion is

SilverLode User Manual Rev 4.4 Page 78 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

in progress. See Chapter 3 for additional details. The following descriptions are for
non-multitasking applications.

Motion Commands

Motion commands pause program progress when they are executed. This means that
no other program type command can be issued, neither the next command in the
program, nor program commands received from the serial interface. Some types of
Immediate commands from the serial interface will still be processed. Motion
commands may also have stop conditions specified, which will cause both motion and
command execution to terminate. Chapter 4 contains more information on stop
conditions.

Flow Commands

There are two types of flow commands, those that alter program flow, and those that
cause pauses in execution. The jump commands cause the device to execute a
specific line next, not necessarily the next one. The Wait commands such as Wait
Delay (WDL) and Wait on Bit State (WBS) operate similarly to motion commands by
suspending program execution while waiting for the specified condition to be met. One
exception to this is the Delay (DLY) command; it normally waits the specified time, but
has an option to set up a delay counter to run in the background and allow program
execution to continue. These commands are explained in detail in the later section on
program flow.

Mode Commands

Mode commands such as Velocity Mode (VMP) and Scaled Step & Direction (SSD)
completely suspend program execution until a command with override capability is sent
from a host controller. When using this type of command the intention would be to put
the device into the desired mode for continued use. Mode commands, like motion
commands, can use stop conditions to stop motion and end execution. (Overriding
these commands under program control requires the use of Multitasking - described
below).

Data Register Commands

Data register commands that write data to non-volatile memory will suspend program
execution during the storing process. The non-volatile memory takes a certain amount
of time to complete a write cycle due to the physical characteristics of the non-volatile
memory storage cells.

Miscellaneous and Initialization Commands

Most other commands execute within a single servo cycle and therefore do not
effectively block program execution. Commands such as Torque Limits (TQL), Zero
Target and Position (ZTP), and communication commands fall into this category.

Program Flow Control

Basic program flow is a straightforward, line-by-line execution of a program. Altering
the flow of a program from this default requires use of the program flow commands.
There are two main types of flow commands: wait commands—which pause program
flow—and jump commands that change the order of command execution. Jump
commands that are register based allow the use of register data in determining the

SilverLode User Manual Rev 4.4 Page 79 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

program flow, allowing a host to control program flow via serial communications. In
specific host based applications where all I/O lines are allocated or I/O lines are not
used, this method of flow control is necessary.

Pausing Program Flow

There are three commands (DLY, WBS, and WBE) which pause program execution
while waiting for different conditions. To create a wait condition based on multiple
signals, use the appropriate jump command.

Delay (DLY)

This command causes the program to pause for the specified time period. More
complex timing structures can be implemented using the Wait Delay (WDL) command.
See the Command Reference for details.

Wait on Bit State (WBS)

When the servo executes this command, it will wait for the specified condition before
executing. All seven /O lines, as well as several internal status bits, can be conditions.
The second option specifies the state to wait for. This command is affected by the
Digital Input Filter (DIF) command. See the Command Reference for details.

Wait on Bit Edge (WBE)

This command operates similarly to WBS, pausing execution of the program. However,
rather than waiting for a particular state (high or low), the condition is met when the
transition occurs. The condition can be either rising (low to high transition) or falling
(high to low). Edge triggered commands require careful timing and analysis. This
command is not affected by the DIF command.

Jump Commands

There are many variations on the basic jump command. Each provides a different
logical operation on either inputs or register values. All jump commands have the same
basic structure: a set of conditions, and a location to jump to, specified by a label. If the
conditions are not met, then the jump will not occur and the program will continue to the
next line.

Labels

The Label must match a label in the program Label column. All labels are upper case
even if you type them in as lower case. Labels may include spaces and may be as long
as desired, although shorter labels are easier to read the label column.

To add a label to a program line, click in the label column of a QuickControl program
and start typing. To edit a label, click on it and press F2.

At download time, QuickControl checks to make sure every label in the Jump
commands has a matching, unique label in the program. The exception to this is
Relative Jump Labels.

Relative Jump Labels

If a Label in @ Jump command is a number only (i.e. -5, 0, 20), and there is no matching
label in the program, it becomes a Relative Jump Label. The command will jump the
indicated number of program lines. For example, a "-5" label means jump up 5 program
lines.

SilverLode User Manual Rev 4.4 Page 80 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

The following is a brief summary of the Jump commands. For more details, see the
Command Reference.

Jump (JMP)

This is the most basic jump command. It is used to create unconditional jumps, those
that occur every time they are executed. The bits of the Internal Status Word (ISW) are
available to set conditions, but are provided primarily for backwards compatibility. Other
jump commands are specialized to operate on many conditions.

Jump on Input (JOI)

This jump command operates using the following Enable Codes which include all the
inputs and several other internal bits. Note, the values are provided as a host
programming reference only. The QuickControl interface does not require the user to
know them.

Setting both parameters to “zero” forces an unconditional jump to the specified Program
Buffer location.

Enable Code
Enable Code | Input Source | Description
0 Do not Check
-1 Hardware /0O #1
-2 “ /O #2
-3 “ /O #3
-4 “ /O #4
-5 “ /O #5
-6 “ I/O #6
-7 “ /O #7
-8 “ Reserved
-9 “ Internal Index
-10 “ External Index
-11 ISW: Bit 8 Moving Error
-12 ISW: Bit 9 Holding Error
-13 IOS: Bit 3 | Trajectory Generator Active
-14 I0S: Bit 10 Delay Counter Active

SilverLode User Manual Rev 4.4 Page 81 of 149

Chapter 2 — Basic Motion and Programming Fundamentals
The following Enable Codes are available on the SilverDust as of the given revision.

Note, those bits that reference CAN are only valid for CAN enabled devices. See
CANOpen User Manual for details.

Egzzle Input Source SD Rev Description
-15 IS2: Bit 0 08 Count Down Timer Active
-16 IS2: Bit 2 08 Encoder Re-phased
-17 IS2: Bit 3 08 Fac Blk Drv Disabled
-18 IS2: Bit 4 08 Motor Temp Fault
-19 IS2: Bit 5 08 Dvr Temp Fault-Analog
-20 IS2: Bit 6 08 H/W Drv Disabled
-21 IS2: Bit 7 08 Drv Temp Fault-Digital
-22 IS2: Bit 8 08 Encoder Fault
23 IS2: Bit 9 08 Extended I/O Fault
-24 IS2: Bit 1 08 Motion Limit Fault
-25 27 CAN Comm Error
-26 27 Thread 2 Running
-27 27 CAN Operational
-28 27 CAN Initialized
-29 27 CAN Able to Rx Packets
-30 27 CAN Able to Process PDO
-31 27 CAN Stopped
-32 27 CAN Neg Limit Switch
-33 27 CAN Pos Limit Switch
-34 27 CAN Home Switch
-35 27 CAN Interlock

40 to -71 Remm?ﬂgﬁ‘g dovice's pxiended | 27 Remote Input #1-#32

SilverLode User Manual Rev 4.4 Page 82 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

The SilverDust IGB adds the following enable codes:

Enable Code | Input Source | Description
-101 Hardware 1/O #101
-102 “ I/O #102
-103 “ I/O #103
-104 “ I/O #104
-105 “ I/O #105
-106 “ I/O #106
-107 “ I/O #107
-108 “ I/O #108
-109 “ I/O #109
-110 “ I/0 #110
-111 “ 1/O #111
-112 “ I/O #112
-113 “ I/0O #113
-114 “ I/0 #114
-115 “ I/O #115
-116 “ I/O #116

Enable State
Enable states are setup using the following parameters:

Enable State | Stop on the Following Condition

0 FALSE
1 TRUE

Jump on Inputs ANDed (JAN)

Jump on Inputs NANDed (JNA)

Jump on Inputs ORed (JOR)

These jump commands operates on the entire 1/0 State Word (10S).

Jump on Register Greater Than or Equal (JGE)

Jump on Register Greater Than (JGR)

Jump on Register Less Or Equal (JLE)

Jump on Register Less Than (JLT)

Jump on Register Not Equal (JNE)

Jump on Register Equal (JRE)

These jump commands compare a register value to a constant.

Jump On Register Bitmask (JRB)

This jump command compares a register to a set of 32 bit constants for jump on
Bitmasked AND, OR, NAND, or NOR. Another option is jump on register "range"
between the two constants. See JRB in Command Reference for details.

SilverLode User Manual Rev 4.4 Page 83 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

Branching and Looping
Branching and looping in a program use

standard logic structures. This is accomplished

using the various jump commands.

If...Then...Else
This example demonstrates using

the JMP command to build an If...Then..
Else statement. This example is available

in the QCI Examples folder.

SilverLode User Manual Rev 4.4

Linet |

Oper Labe
1REM |
20C |
2MP|IF
4REM |
SMAT | 10y
BJMP |ELSE
TREM |
2:MRET ETHEN
i

: Command

Thiz iz an example of an
IF...THEM. .EL5E statement

[f the a number iz Positve move
Clackwize, Elze if the number iz
Megative move Counter
Clockwize. IF the Mumber iz Zema
don't e

dzer Data Register #1171z a
data walue o be tested. Copring
Feagizter #7171 in the accumulatar
(#7107 will tezt the polarity.

“Aocurmulatar 107 = "Usaer[11]"

Jump to "ELSE"
[f Lazt Cale waz not Pozitive

b v Clockwize

b e 4000 counts (5
ramp time=99.96 mSec
total tme=999.96 mSec

Jurnp b "EMDIF
If Lazt Cale waz not Megative

b ove Counter Clockwize

b e -4000 counts (=
ramp time=99.96 mSec
total time=9933,96 mSec

'EMD IF End Program

Page 84 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

While...

The While loop is a portion of code as long
as a specified condition is true. The first

JMP

in this program skips the entire loop if the
conditions (I/0O #1 low, #3 high) are true.

These

are called exit conditions, since they dictate
when the loop will not run. The second

JMP is

an unconditional jump back to the first JMP.

Opor |Lobel [Comverd
| Thiz iz an example of 2 0O ...
i WHILE loop
i The Prograrm will Loop until a
1:RERM : "toving Emor' iz detected
: The "Intermal Status 'Word" must
{ be clear to remoye any eror that
B : may have previously exizted.
2Cl5 . oo Clear Intermal Status
: | Thiz mowve will stop iz a “Moving
_E'HI_EM Erar' iz detected
b oeve 4000 counts &=
| ramp time=93.96 m5ec
4:MRT { total ime=999.96 mSec
Stop when Moving Emor iz
i | HIGH/TRUE
; Ifit waz a am' thiz gets nd of
E'HE_M | the postion emrar
ETTP | T arget to Position
0L Cielay for 200 mSec
3 : Continue the 0O loop if the
R “wHILE" condition is met.
3 { Jump to "DO"
E'Jr_ﬂFf EWHILE [f Mo koving Errar
1RENMD [EMD End Program

SilverLode User Manual Rev 4.4

. e
: Thiz 1z an example of a%HILE
{ loop
: The Program will Loop until 1/0
1:REM { Line #1 and #3 are zet to there
: deszired states.
{ [0 Line #2 will toggle waiting
| for the inputs.
: Jump On AND to "EMND"
2l [HILE IF1IAD #1 Lo
L { and 1/0 #3 HIGH
2:REM | Cauze /0 line #71 to go "Low"
4COB { Clear Qutput Bit 2
DLy [Drelay for 200 m5ec
E:REM { Cauze 10 Line #2 to go "High"
7508 ! Set Output Bit 2
2oLy { Delay for 200 mSec
) [Alveays Jump back to the
b "wHILE"" condition
10:JMF : Jurnp ta "WHILE"
11:EMD |EFD | End Program
Do...While...

The Do...While... loop functions similarly to a
while loop with one exception. This loop will
always execute at least once before exiting.
It requires only a single JMP at the end, that
jumps back to the start of the loop.

Page 85 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

Program Call and Return

The Program Call (PCB, PCI, PCL) and Program Return (PRI, PRT) commands operate
in the same fashion as a jump command except that a return command can be issued
to send the program back to the line immediately following the call command.

For/Next (SD04)

For (FOR) and Next (NXT) commands can be used to create a traditional For/Next loop.
For/Next loop starts at the FOR command and ends at the NXT command. The loops
can be nested. QuickControl automatically matches the NXT commands with the same
level FOR command.

The example to the right shows the edit dialog [KlEZH
box for the FOR command. The Loop Register
starts at the Initial V{alye, increments gach time Cacl_|
through the loop until it reaches the Final R Loos Resistor < Iritalto Final e : ——
0op Reqister = inbal o Fingl - Incremen I{
Value. The Increment parameter may be o | ezt |
" . oop Reqister
positive or negative. s 2] |
Initial ¥ alue Final ¥ alus Increment
1 |3 It

For [FOR] Mest [Mx<T) Nested

Example

Thig iz an example of a nested
1:REM Far/Mest loop.

Fequires:

{ QuickControl 4.4

£ SilvarDiust Rew 04

F_!epeat the following mowe 3
ZREM O 000 counts 5 fines This example to the left shows a nested loop where the

F',;';“’.;Z‘;f[';ﬁ?ﬂ o3 inner loop executes 5 times and the output loop executes 3
i with inc=1 times.

FOR "User[31]" =110 5
4FOR with inc:‘.lar[: °

Move 1000 counts @
BMRT ramp time=350.04 mSec

total time=993.9€ mSec
BihRT Mext [FOF line 4

Move to 0 counts @
FMAT ramp time=500.04 mSec

total time=2000,04 mSec
BT Mest [FOF line 3]
Handshaking

The digital I/O lines in the servo allow it to engage in handshaking routines with other
servos. The wait commands can pause program execution until an external source
triggers an 1/O line. Conversely, the output commands can be used within a program to
trigger other servos. Placing the entire routine in a loop allows a set of servos to repeat
the same process repeatedly. A similar routine can be implemented using registers.

SilverLode User Manual Rev 4.4 Page 86 of 149

Chapter 2 — Basic Motion and Programming Fundamentals
Program Debugging

QuickControl provides several debug tools to aid in program development.

Debug MOde |—V|ew Thread—- i~ Breakpaints
Enter Debug Mode by checking "'|3ﬂ??cﬁ'ffi:[H;}E;JE] ol o © 2 | | O Dissble & Enable
the Debug checkbox in the Inset (Crtt] | Delete (Cnt0f Shoefiep oee] e Toe o | ST S e
Program Info Toolbar. “Frogams | |Bre Label | Command
Doawnload | Run l 1:REM Move forward and back
Wh"e in Debug mOde, Scaling | Test Line i 20T LOOp ::?n\l;etitrﬁ:z%ﬂuﬂn:gzgts@
QuickControl will highlight the Debug 7 folaltme=200 5sc
program line as follows: Frogram Lit
. . Frogram Mame [0] j
* Program Line Being 22 of 1023 words used. |

Executed: Highlight
Yellow and italic TLA
e Program Line Ready for Single Step: Highlight White and bold TLA

Single Step/Break
Press the Single Step button to download the active program and single step (or
execute) the first line. Every time Single Step is pressed, the next line will be executed.

If Single Step is pressed while a program is running, the program will break wherever it
is and await a Single Step command.

Single Step Trace
Press Single Step Trace to have QuickControl continually "push" Single Step button for
you. This lets you observe the program executing at a reduce speed.

If Trace is pushed with no program running, the active program will be downloaded and
QuickControl will start "tracing" the program.

Real-Time Trace
Press this button to trace the program in real-time. Due to the delays in serial
communications, the Real-Time Trace may appear to "skip" over lines.

Breakpoints

Multiple Breakpoints can be set in the program by highlighting the line and pressing F9.
If the program encounters a Breakpoint while doing a Trace, it will stop tracing and go
into Single Step mode.

Select the Enable/Disable Breakpoints to Enable or Disable all Breakpoints.
Real-Time Breakpoints

For SilverDusts only, the Breakpoints will stop Real-Time Traces and go into Single
Step mode.

View Thread

The View Thread radio buttons allow users to debug devices running both Thread 1 and
Thread 2 programs. Each thread can be debugged independently of the other thread.

SilverLode User Manual Rev 4.4 Page 87 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

For example, the user may select Real-Time Trace for Thread 1, use View Thread to
switch to Thread 2, and start single stepping through the current Thread 2 program.

Register Watch
Read and modify register values using the Register Watch tool. See Register Watch in

chapter 1 for details.

Test Line
The Test Line button on the Program Info Toolbar is useful to send the selected
program line to the device as an immediate command.

Data Monitor

The Data Monitor (Tools menu) enables the user to view all transmitted and received
data from all enabled ports as well as send custom packets out any single active
Communication Port. See Data Monitor in chapter 1 for details.

View Command Details

For low level command details including serial packet structure and parameter data
types see Options in chapter 1.

SilverLode User Manual Rev 4.4 Page 88 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

1 Exercise 2.3 — Creating, Downloading, and Running a Program in

QuickControl®
In this exercise, a new program is created in QuickControl. It includes a short Move Relative, Velocity
Based (MRV) move clockwise and a similar move counter-clockwise. 1/O #1 can be triggered LOW to
stop motion at any time.

Creating a New Program
1. Select New Program File from the File menu to open a blank new program template.
2. Choose Add from the Program Info Toolbar to place a new program command in the list.
Note: Each tab contains a specific set of commands. Detailed descriptions of each command and
command parameters can be found in the Command Reference.
3. Choose the Move tab and double-click on MRV (Move Relative, Velocity Based) command.
4. Enter the following values for the first MRV move:
Distance: -10000 counts
Acceleration: 1000 cps/s (*999.62 actual)
Velocity: 2000 cps
*Acceleration parameters are rounded as QuickControl calculates the exact motion profile.
5. Click on the Advanced button.
6. Choose the Standard tab of the Edit Stop Conditions box. Select I/0 #1 for the Condition and use
HIGH/TRUE as the State.
7. Click the OK button twice to get back to the main QuickControl screen.
8. Highlight the newly created Line 2 and choose Insert from the Program Info Toolbar. This will insert
a new program command into the program list before the first MRV command on Line 2.
9. Choose the Move tab and double-click on MRV (Move Relative, Velocity Based) command.
10. Enter the following values for the second MRV move:
Distance: 10000 counts
Acceleration: 1000 cps/s (999.62 actual)
Velocity: 2000 cps
11. Click on the Advanced button.
12. Choose the Standard tab of the Edit Stop Conditions box. Select I/0O #1 for the Condition and use
LOW/FALSE as the State.
13. Click the OK button twice to get back to the main QuickControl screen.

Downloading and Running the Program.

14. Before running the program, make sure I/O is ON or high.

15. Choose Run from the Program Info Toolbar. This function will Download the program into the NV
memory, reboot the servo and run the program.
The program will only run once per REBOOT!

16. While the program is running, trigger 1/O #1 to stop the move before the motion completes. Click on
the Reboot button to run the program again.

Saving the New QCP File

17. Using the File menu choose “File > Save As”. This will open a standard file browser window where
the program can be named and saved to the computer.
Note: The browser window opened by “default” will be the last active folder accessed in
QuickControl.

18. Choose a unique name for the new program and click on “Save” button.

SilverLode User Manual Rev 4.4 Page 89 of 149

Chapter 2 — Basic Motion and Programming Fundamentals

&?} Exercise 2.4 — Troubleshooting a QuickControl Program
This exercise is an introduction to the program troubleshooting capabilities of QuickControl.
These functions provide a powerful means to check the operation of a program, and understand
how individual commands execute.

NOTES:
The default QCI Examples folder is located at: C:\Program Files\QuickContro\QCI Examples
The Red Stop Hand Icon on the Main Icon Toolbar will allow the user to quit operation of any Tool.

Single Step

1. Using the File menu, open the following qcp program:
Examples.qcp”.

2. Check Debug on the Program Info Toolbar to enter Debug Mode.

3. Click the Single Step button on the Debug Toolbar. This will initiate the execution of the first
command found in the program.

4. Continue pressing Single Step until the end of the program file. Click on the Red Stop Hand Icon.

‘..\QCI Examples\Moves-basic\Move

Single Step Trace

Use the Single Step Trace tool on the same QuickControl program file.

1. While still in Debug Mode, click on the first line of the program, and then press Single Step Trace.
This will initiate an automatic step-by-step execution of the program commands, one line at a time.

2. The Trace tool will continue through the program until it reaches either a Breakpoint, a command
error or the end of the program. When complete, click on the Red Stop Hand Icon.

Real-Time Trace

Use the Real-Time Trace tool on the same QuickControl program file.

1. While still in Debug Mode, click on the first line of the program, and then press Real-Time Trace. This
will initiate let the program run at normal speed while highlighting the current line as time allows.

2. The Trace tool will continue through the program until it reaches either a Breakpoint, a command
error or the end of the program. When complete, click on the Red Stop Hand Icon.

Breakpoints

Breakpoints are set on lines by highlighting the desired line and selecting Toggle Breakpoint from the

Programs menu. The line should change color to Red. The function key F9 is a shortcut to toggle

breakpoints on & off. Break points are stored into non-volatile memory, but are only acted upon if

breakpoints are enabled.

1. Set a breakpoint on line 6 and press Single Step Trace. QuickControl will step through the program
and then stop at the selected breakpoint.

Test Line

The Test Line tool allows any one line in a program list to be executed. It only Tests (executes) the

selected line (command) and does NOT run the entire program.

1. Click the Red Stop Hand Icon.

2. Using the same open qcp program file, click on a MAT: Move Absolute, Time Based command and
then press Test Line on the Program Info Toolbar.

3. QuickControl should have executed the chosen command without executing other commands.

SilverLode User Manual Rev 4.4 Page 90 of 149

Chapter 3 — Unique Features and Commands

Chapter 3 — Unique Features and Commands

The last two chapters covered the hardware setup, basic programming techniques, and
motion commands necessary to get a SilverLode servo moving. This chapter describes
additional commands and features needed to use the SilverLode servo in a basic
application.

This chapter contains the following sections, each dealing with a different feature or
group of commands:

- Status Words. A SilverLode servo uses three 16-bit status words that are
integral to its operation: the Polling Status Word (PSW), the Internal Status Word
(ISW), and the I/0 Status Word (I0S). The SilverDust (Rev 06) adds a secondary
Internal Status Word (1S2) and an Extended IO word (XIO). Each bit of these
status words indicates the state of a predefined condition in the device. The
status words are integral to the operation of any polling routine, including the one
used by QuickControl.

« Error Limits. Error limits define the maximum acceptable deviation from a target
position before the device sets a flag. A SilverLode servo has separate settings
for maximum moving error and maximum holding error. These limits may also be
used to configure the “slip-clutch” operation of a system, if desired.

« Anti-Hunt™ Mode. Anti-Hunt Mode is a special operating mode that can be
enabled to eliminate dither. When holding a position, the servo transitions from
closed-loop control to open-loop control based on the Anti-Hunt settings.

« Multi-Tasking. With multi-tasking disabled, the device executes every command
sequentially. This means that program flow stops until each command has
completely finished executing. Enabling multi-tasking allows the device to
execute commands sequentially as normal, while allowing a motion command to
complete the background.

« Multi-Threading. SilverDust Rev 27 and new have the ability to run two
programs at the same time.

« Specialty Commands. The Calculation (CLC, CLX,CLD) and Write Command
Buffer (WCW, WCL) commands are very useful for some applications. Properly
using them requires a solid understanding of binary numbers, but accesses some
very powerful features of the device.

Status Words

For a SilverLode servo, a “word” is defined to be a 16-bit number (two bytes). Three
special status words provide a wealth of information about the operating state of the
device: the Polling Status Word (PSW), the Internal Status Word (ISW), and the 1/0O

Status Word (I0S). The information contained in the 16 bits of these words can

SilverLode User Manual Rev 4.4 Page 91 of 149

Chapter 3 — Unique Features and Commands

supplement information available elsewhere in the device (such as in the data
registers), or can provide information not available anywhere else. Proper use of these
words is critical for proper program flow when the device is in the standalone or hybrid
configurations, and useful for almost any host application. This section describes each
of the three status words, the meaning of each bit in each word, and the commands
used to read and work with the words.

Polling Status Word (PSW)
The Polling Status Word indicates the overall condition of the device.

The meaning of each bit in the Polling Status Word (PSW) is explained in the table
below. The description for each bit describes the device condition indicated by a “1” in
that bit.

Bit# | Latched? Definition Description
15 Yes Immediate Command Done | An immediate command finished executing.
There was a checksum error while reading data from
14 Yes NVM Checksum Error or to the non-volatile memory. (SilverDust Rev 06

adds write protection to certain regions.)

All commands active in the Program Buffer finished

13 Yes Commands Done .
executing.

12 Yes Command Error There was an error associated with the command
execution.

11 Yes Move Stopped on Input A move stopped due to a stop on input condition.

10 Yes Low/Over Voltage A low or over voltage error occurred.
Holding error limit set by the Error Limits (ERL)

9 Yes Holding Error command was exceeded during a holding control
state.

8 Yes Moving Error Moving error limit set with the ERL command was

exceeded with the device in a moving control state.

Yes Receiver Overflow The device serial receiver buffer overflowed.

One of the conditions set with the Check Internal

6 Yes CKS Condition Met Status (CKS) command was met.
5 Yes Message Too Long ;E?f er(racelved message was too big for the Serial
Yes Framing Error There was a packet framing error in a received byte.

the device was shut down due to one or more

3 Yes Shut Down conditions set with the Kill Motor Condition (KMC)
command (or KMX command for SilverDust Rev 06).

> Yes Soft Limit A sgft stop limit was reached as set by the Soft Stop
Limit (SSL) command.

. The 9-Bit checksum received did not match the

1 Yes Receive Checksum Error) !
checksum sent; the packet was ignored.

0 Yes Aborted Packet There was a data error or a new packet was received

before the last packet was complete.

This word is accessible with immediate commands given from an external host. Itis
used to give the host a quick status update. A host may be programmed to act on
changes in the PSW, or the word could simply be used to alert the host to changes in
the operating condition of the device. Repeatedly checking the PSW is referred to as
“polling” and is a common way to update an external host on the condition of the device.
Two Immediate commands are associated with the Polling Status Word: the Poll (POL)
command and the Clear Poll (CPL) command. The SilverDust (Rev 06) adds an

SilverLode User Manual Rev 4.4 Page 92 of 149

Chapter 3 — Unique Features and Commands

additional command, the Poll with Response (POR). Chapter 2 contains more
information on the command hierarchy and polling routines.

Poll (POL) Command

The POL command is used to determine the condition of the device. A POL command
can be executed at any time, including while the device is in motion. Executing this
command will cause the device to return an ACK message if all of the bits in the word
are cleared, or return the word itself in hexadecimal if any of the bits are set. An ACK is
an Acknowledgement signal from the device that indicates that the command was
received correctly with no errors but no reply was required. The POR command
(SilverDust Rev 06) operates similarly to the POL command, but always returns a
hexadecimal word, even if it is zero. See Technical Document QCI-TD053 Serial
Communications on our website for more information on Serial Communications.

The POL command is used to access the information in the bits of the Polling Status
Word (PSW). These bits contain a variety of information, as shown later in this section.
The information contained in this word is intended to be used in polling routines. The
Polling Status Word bits are each set to “1” when a particular condition takes place.
The bits are cleared to “0” using a Clear Poll (CPL) command. All of the bits are
latched, meaning that they must be cleared manually; they are not cleared when the
condition they are tied to clears.

Clear Poll (CPL) Command

The CPL command is used to clear the bits of the Polling Status Word (PSW). This
command is the only way to clear the bits in the PSW since all the bits are latched.
Additional conditions that occur after a POL command is issued will show up when the
next POL command is issued, even if those bits have been cleared by an intervening
CPL command (i.e. the data is double buffered and the bits cannot be cleared until they
have been read).

CPL requires one parameter: the decimal form of any bits in PSW that need to be
cleared. If bit 0 of the word is set, the decimal form of the word would be “1” (0000 0000
0000 0001). Issuing the CPL command with a “1” parameter would clear bit 0. If bit O,
bit 2, and bit 5 were set, the decimal form of the word would be “21” (0000 0000 0001
0101). The CPL parameter to clear just bits 0 and 2 would be “5”. The parameter to
clear all three bits would be “21”. To clear all bits in the Polling Status Word, the
parameter for the CPL command needs to be “65535” because this is the decimal
equivalent of a 16-bit number consisting of all 1’s. Binary numbers and binary number
arithmetic are covered in Technical Document QCI-TDO050 Binary, Hex and Decimal
Conversion.

See Technical Document QCI-TD053 Serial Communications on our website for more
information.

SilverLode User Manual Rev 4.4 Page 93 of 149

Chapter 3 — Unique Features and Commands

I/0 Status Word (10S)

The 1/0O Status Word (I0S) indicates the states of the 1/O lines, as well as several
specific internal conditions.

The meaning of each bit in the 1/0 Status Word (I0S) is explained in the table below.
The description for each bit, except Bit 7, indicates the condition indicated by a “1” in
that bit.

Bit # | Latched? Definition Description
15 No /O #7 Status of 1/O line #7 (normally high, low when triggered).
14 No 1/O #6 Status of 1/O line #6 (normally high, low when triggered).
13 No 1/O #5 Status of I/O line #5 (normally high, low when triggered).
12 No 1/O #4 Status of 1/O line #4 (normally high, low when triggered).
Input Found On Last | An input used as a stop condition was found during the last

11 Yes ;

Move move. Latched but automatically cleared on next move.

Delay Counter Status of the Delay Counter. High when counting down, low

10 No . . /

Active when count is expired.

Holding error limit set with the Error Limits (ERL) command has

9 No Holding Error been exceeded with the device in a holding control state.
8 N . Moving error limit set with the ERL command has been
o} Moving Error . C :

exceeded with the device in a moving control state.
Internal sensor determines over temperature condition and

7 No Over Temperature |clears this bit when true. Bit is shared by drive enable lines on
34 frame servos. (disable = high, enable = low.)

6 No /0O #3 Status of 1/O line #3 (normally high, low when triggered).

5 No 1/0 #2 Status of 1/O line #2 (normally high, low when triggered).

4 No 1/0 #1 Status of 1/O line #1 (normally high, low when triggered).

3 No Trajectory Generator | When the Trajectory Generator is active, the device is

Active calculating motion. (i.e. a move is in progress)

2 No External Index An index mark on an external encoder has been detected.*

1 No Internal Index An index mark on an internal encoder has been detected.*

0 No Index An index mark has been detected on the selected encoder

(external or internal).”

*Only one 120uSec cycle wide.

This word is accessible in two ways: with the Read 1/0O States (RIO) Immediate
command sent from an external host, and through a large number of different Program
commands that are available for flow and motion control in programs. When accessed
by a host, the IOS allows the host to view information that can supplement the
information available from the PSW. As with that word, a host could be programmed to
act on changes in the 10S or it could be used for monitoring. The IOS can be accessed
from the lower half of register 209. (SilverDust Rev 06) The I/O may also be configured
by the host, even while a program is running on the SilverDust by using the Configure
1O, Immediate Mode (ClII).

The SilverDust IGB provides 16 additional 10. The input and output state of these 10 are
available in Register 238. The upper word provides the debounced levels read back
from the extended I/O. while the lower word provides the commanded levels sent to the
I/0. The upper word reports a voltage at the 10 pin of greater than 1.5v as a 1 and
below 1.5v as a 0. The lower word reports the requested drive level of the extended 10:
a 0 indicates that the output is off (floating), while a 1 indicates that the output is active

SilverLode User Manual Rev 4.4 Page 94 of 149

Chapter 3 — Unique Features and Commands

(pulling the 10 to ground). This register may be read, written, or modified by the host
using standard register commands. (SilverDust Rev 06 adds several immediate mode
Register modify commands to simplify operation). Note: Configure 10 “CIO 101 0" turns
the extended IO active (low), while “CIO 101 1” sets the output high (inactive) via the
pull-up resistor.

Read I/O States (RIO) Command

The RIO command is similar to the Poll (POL) command. It can be issued by a host to
gain access to the 1/0 Status Word (I0S). The RIO command can be executed at any
time and returns the hexadecimal form of the 16-bit binary number that makes up the
IOS. None of the bits are latched, so the number returned with the RIO command will
represent current information. The meaning of each bit is explained later in this section.

Jump and Motion Commands

Most jump commands used by programs use the |I0S, while the most motion
commands use the Internal Status Word (ISW) for their stop conditions. The jump
commands use the |0S to define the conditions for the jump (e.g. if I/O #1 is LOW, jump
to line 5). The motion commands use the ISW to define basic stop conditions (for
example, stop motion if I/O #3 goes HIGH). Using inputs for program flow and motion
control is discussed in depth in Chapter 4.

SilverLode User Manual Rev 4.4 Page 95 of 149

Chapter 3 — Unique Features and Commands

Internal Status Word (ISW)

The Internal Status Word (ISW) provides supplemental information to programs or
external hosts that check the Polling and 1/0O Status Words.

The meaning of each bit in the ISW is explained in the table below. The description for
each bit, except Bit 7, indicates the condition indicated by a “1” in that bit.

Bit # |Latched? | Definition Description
15 - Reserved Reserved bit.
14 Yes Low Voltage Low voltage error has occurred. Defined by LVT
command.
13 Yes Over Voltage Over voltage error has occurred. Defined by OVT
command.
12 Yes Wait Delay Exhausted | The wait delay timer has expired.
Input Found On Last An input used as a stop condition was found during the
11 Yes Move last move. Latched but automatically cleared on next
move.
10 Yes Halt Command Sent | The halt command (HLT) was received by the device.
Holding error limit set with the Error Limits (ERL)
9 Yes Holding Error command has been exceeded with the device in a holding
control state.
8 Y . Moving error limit set with the ERL command has been
es Moving Error . C .
exceeded with the device in a moving control state.
Internal sensor determines over temperature condition and
7 No Over Temperature | clears this bit when true. Bit is shared by drive enable
lines on 34 frame servos. (disable = high, enable = low.)
6 No I/O #3 Status of I/O line #3 (normally high, low when triggered).
5 No I/O #2 Status of I/O line #2 (normally high, low when triggered).
4 No 1/O #1 Status of 1/O line #1 (normally high, low when triggered).
3 No Negative Calculation |Result of the last calculation was negative. CLC
Result command.
2 No POSItIV;&ﬂﬁUHtIOH Result of the last calculation was positive. CLC command.
1 No Zero g:;%?:at'on Result of the last calculation was zero. CLC command.
0 Yes Index Sensor Found | An index sensor has been detected.

The ISW is available in a data register (upper word of register 3), making it very useful
for troubleshooting. An external host can use this status word in several ways. A host
can use the Read Internal Status Word (RIS) and Clear Internal Status Word (CIS)
commands to work directly with the Internal Status Word (ISW). A host checking the
Polling Status Word (PSW) can access the ISW by using the Check Internal Status
(CKS) command. Finally, a program can use the ISW by checking a data register.

Read Internal Status Word (RIS) Command

The RIS command is similar to the RIO and POL commands. It is issued by an external
host to gain access to the ISW. Parts of this status word are available through the RIO
and POL command, as well. The RIS command returns the decimal form of the 16-bit
binary number that makes up the ISW. Some of the bits are latched while some are
not. The bits that are not latched represent the status of the condition associated with
them, while the latched bits function as flags to indicate that the associated condition
occurred at some time after the last time the flag was cleared. The meaning of each bit
is explained later in this section.

SilverLode User Manual Rev 4.4 Page 96 of 149

Chapter 3 — Unique Features and Commands

Internal Status Word 2(1S2) — (SD 06)

The Internal Status Word 2 (IS2) provides supplemental information to programs or
external hosts that check the Polling and 1/0O Status Words. The I1S2 is available in a
data register (upper word of register 236), making it very useful for troubleshooting. An
external host can use this status word in several ways. A host may read it using
Register commands. Latch bits are cleared via the Clear Internal Status Word (CIS)
command.

Clear Internal Status Word (CIS) Command

The CIS command is used to clear the latched bits of the ISW. Latched bits must be
cleared with this command in order to be reset. This makes the CIS command an
important part of the Kill Motor feature. See Technical Document QCI-TD052 Shutdown
And Recovery on our website.

Check Internal Status (CKS) Command

Bit #6 of the Polling Status Word (PSW) shows the CKS status. This allows a host that
is polling a device to indirectly use the ISW just by polling. The CKS command sets the
conditions that will trigger the Polling Status Word bit. There are 15 conditions for the
CKS command to match the 15 bits used in the ISW. The conditions are toggled on
and off and then combined with a logical OR. This means that if any of the conditions
set with the CKS are true, bit #6 on the Polling Status Word will be set. The purpose of
this is to add functionality to the Polling Status Word by allowing one or more conditions
of the ISW to be flagged. If a host detects that bit #6 on the Polling Status Word is set,
the host could then check the ISW—the host essentially checks the ISW and Polling
Status Word using just the Polling Status Word.

Edit CK5:Check Internal Status
Select which conditions to check Prass the buttons ta
change state or hers for | s
more help. Canhicel |

Index Found Disable tawving Errar [From Errar Limit] Disable

Lazt Calculationwas Zero Digable Holding Error (From Error Limit]) — Dizable
Last Calculation Was Positive Disable Halt Command Was Sent Disable
Last Calculation'was Hegative Dizable Input Found On Last Mowe Disable
140 #1 Dizable “Wait Delay Count Eshausted Dizable

1/0#2 Dizable Oweroltage Dizable

e e

I/0 #3 Dizable LowVoltage Disable

B[e s

Ower Temperature Dizable

SilverLode User Manual Rev 4.4 Page 97 of 149

Chapter 3 — Unique Features and Commands

Internal Status Word 2 (1S2) Description (SD05)
The meaning of each bit in the I1S2 is explained in the table below. The description for
each bit indicates the condition indicated by a “1” in that bit. (Upper word of Register

236).
Bit# |Latched? ggv Definition Description

15 No 6 I/O #7 I/O #7 bit

14 No 6 I/O #6 I/O #6 bit

13 No 6 I/O #5 I/O #5 bit

12 No 6 I/O #4 I/O #4 bit

11 No 25 Thread 2 Running Thread 2 Running

25 CAN Communication Error
10 No CAN Comm Error See 2000h Critical Error Mask in CANOpen User
Manual for details.
6 Check data passed through the isolation barrier to
9 Yes Extended 10 Fault the extended I_O and back to the processor was
corrupted. Indicates loss of 24v IO power and or
ground.
6 Encoder signals analog levels out of specification,

8 Yes Encoder Fault indicating the connector is loose or not connected, or

signals are open, shorted, misconnected, or having
excessive interference.
6 - Driver internal sensor indicates over temperature.

/ Yes Drv Temp Fault-Digital SN N3: Over current and over temp

11 ; HIGH = Driver Enable Line LOW=Driver Disabled

6 | Yes H/WDrv Disabled || o = priver Enable Line HIGH=Driver Enabled

5) 11 Drv Temp Fault-Analog SN N3: Driver analog sensor indicates over

temperature.

4 Yes 11 Motor Temp Fault Temperature sensor in motor (I-Grade, IP-65)

indicates over temperature.
11 Driver disabled during Factory Block execution
(startup) due to one of the following conditions:

3 No* Fac Blk Drv Disabled e Motor miss-match: Attached motor type
does not match what controller was
initialized for.

e Bad read/bad data in motor memory.
6 Excessive lost encoder pulses detected between
> Yes Encoder Re-phased index pulses. En_coder—motor phasing redone._ May
be excessive noise, encoder problems, or wiring
problems.
11 HIGH indicates that motion is being limited by one of
. - the following:
1 Yes Motion Limit Fault « Soft Stop Limits (SSL)
e Velocity Limits (VLL)
0 No 8 Count Down Timer HIGH indicates Millisecond countdown register
Active (Register 245) is not zero.

*Bit reflects Factory Driver disable bit and is not cleared by a Clear Status Word
command.

Error Limits and Drag Mode
This section describes the uses of the Error Limits (ERL) command and the special
operating mode set up with this command, Drag Mode. The ERL command is used to
change four settings. It sets the moving and holding error limit conditions, it sets the
delay time for switching from moving torque to holding torque, and it enables or disables

SilverLode User Manual Rev 4.4

Page 98 of 149

Chapter 3 — Unique Features and Commands

a special operating mode called Drag Mode. Drag Mode helps eliminate servo wind-up
and allows the device to emulate a mechanical slip clutch.

Error Limits Command Parameters

The Moving Error Limit, Holding Error Limit, and Delay to Holding time are all set by the
ERL command. The three parameters determine the conditions under which the device
reports a moving or holding error. A SilverLode servo reports a holding or moving error
by setting a bit in the Internal Status Word, the I/O Status Word, and the Polling Status
Word. There is a separate bit in each status word for moving and holding error. The
Dalay to Holding Time is intended to set a delay following a motion for the system to
settle to a smaller error limit following the motion. The QuickControl screenshot below
shows the three parameters of the ERL command

Error Limits Operation

A SilverLode servo applies moving torque whenever the Trajectory Generator is active.
While the Trajectory Generator is active, the servo compares the position error with the
moving error limit. Position error is calculated by subtracting the target position (set by
the Trajectory Generator), from the actual position (read from the encoder or external
feedback device). If the magnitude of the position error exceeds the moving error limit,
the moving error bit in the three status words is set. The bit in the Internal Status Word
(ISW) may be used to automatically shutdown the servo (see Technical Document QCI-
TD052 Shutdown And Recovery on our website), while the bit in the Polling Status
Word (PSW) and 1/O status Word (I0OS) can alert an external host to the error condition
if the device is being polled.

At the end of a move, the Trajectory Generator goes inactive and stops changing the
target position. When this happens, the device starts the Delay to Holding timer set up
with the ERL command. Until this timer expires, the device continues using the moving
torque limits and checking the moving error limit. After it expires, the device applies
holding torque and uses the Holding Error Limit to check for a position error while
holding position. Holding error is reported using a holding error bit in the three status
words.

Drag Mode

Servo systems can suffer from a problem called Edit ERL: Error Limits =1
“position wind-up”. This condition occurs when a
servomotor cannot keep up with a move or is

stalled by a mechanical jam. When the jam is Moving Error Limit [&=

released and the shaft is free to move again, the |mu courts f——r Description |

position error can be huge, and the servo might

) _ . Holding Errar Linnit ¥ Drag Maode
spin at a very high speed to catch up. The high- counts .
speed reaction occurs because of the basic 2 -t Hnis
torque = (position error * Kp) calculation that Delay to Holding) Nomal

virtually all servomotors (including A SilverLode E N e LA
servo) perform as part of their control equation. If
position error is very large, then so is the torque response. The most common way to
prevent this response is to shut down the servomotor. This may be fine if the shutdown
is due to a jam, but there are cases where a shutdown is not acceptable.

SilverLode User Manual Rev 4.4 Page 99 of 149

Chapter 3 — Unique Features and Commands

An alternative to shutdown would be to limit this position error so it never becomes large
enough to cause a problem. Drag Mode allows the control algorithm to forgive
excessive position error and prevents extreme motion. Smaller settings of the error
limits with drag mode enabled allows the unit to “slip” when the error is exceeded
emulating a slip clutch.

Drag Mode is enabled with the ERL command. In Drag Mode, when an error limit is
reached (moving or holding), the device adjusts the target position so that it differs from
the actual position by no more than the error limit. Note, the Holding and Moving
status bits are still set in the Internal Status Word (ISW) and will cause a shutdown if
they are used in the kill motor condition commands KMC and/or KMX.

Some examples of Drag Mode are:

« A SilverLode servo can be configured to emulate a mechanical slip clutch. For
this application, the ERL command is used to set the error limits and enable Drag
Mode, and the Control Constants (CTC) command is used to tune the response.
When configured for this operation, the servo will resist any external force on the
shaft with a tunable amount of torque and will not fly back to its original position
when the external force is removed.

« If the shaft were jammed, the actual position would not change since the shaft
would be stuck. Drag Mode would freeze the target position until the jam was
cleared, preventing the target position from running away. The target position
would freeze a number of counts away from the actual position equal to the
holding error limit.

« If the Trajectory Generator were commanding a move that was too fast for the
motor to physically keep up with (due to excessive load or insufficient torque),
Drag Mode would limit the target position runaway to a number of counts equal to
the moving error limit.

+ If the device were holding a position and the shaft was moved outside of the
holding error limit, Drag Mode would “drag” the holding target position along as
the shaft was moved, preventing a rapid move back to the original position when
the shaft is released. A SilverLode servo would only move the shaft back a
number of counts equal to the holding error limit.

A significant point when using Drag Mode is that the original target position is modified.
This can cause the final position to fall far short of the original target position if one of
the basic move commands is used (MRV, MRT, MAV, or MAT). Profile Move
Commands, discussed in Chapter 5, eliminate this problem and the original target is
achieved even with Drag Mode enabled. This compatibility with Drag Mode is one of
the benefits of using Profile Move commands.

SilverLode User Manual Rev 4.4 Page 100 of 149

Chapter 3 — Unique Features and Commands

&9_5 Exercise 3.1: ERL and Drag Mode Operation with MAV and PMV
This exercise demonstrates the effects Drag Mode has on motion from the Move Absolute Velocity
Based (MAV) and Profile Move (PMV) commands. Drag Mode adjusts the target position to keep
it within a certain number of counts of the actual position. The number of counts is determined by the
Moving Error Limit parameter of the ERL command. For example, if the Moving Error Limit is 500 and the
servo jams at position 2000 while moving in the positive direction, the target position will not exceed
2500, regardless of what the original target was. The entire motion profile of the MAV command is pre-
calculated by the device. It only moves the calculated time of the motion profile so the device will stop
short of the target position. In contrast, PMV will not stop short because it recalculates the motion every
servo cycle.

Note: This exercise requires the user to manually stop the motion of the shaft. A small flywheel attached
to the shaft makes this task easier. The torque limits must be set low, so it will not be difficult to stop the
shaft. Do not use higher torque motors (34 frame, for example), as even at a 30% setting the motor
torque can exceed finger/wrist strength! Leather work gloves are suggested, as is the avoidance of loose
clothing that could catch in the system! Please use caution.

1. Power up the device and start QuickControl. Start polling the motor and verify that the system is
operating properly.

2. Select File — Open. Navigate to “...\QCIl Examples\Profile Moves\” and select the file, Absolute
and Profile Move with Drag Mode.qcp.

3. Notice the error limits set with the ERL command in line 3. Also note that Drag Mode is enabled with
this command.

4. Editthe TQL command in Line 7. Set the Closed Loop Moving and Open Loop Moving torque limits
to 30%. Click OK when done.

5. Select Tools — Register Watch. Click Add Register; select Target Position[0] and Position data
format. Click OK when done.

6. Repeat Step 5 but add Actual Position[1] and User | Profile Move Position[20]. Choose Position
for the data format for both.

7. Edit the Absolute Location data of Line 10 (MAV) to read +10,000 counts. Click OK when done.

8. Edit the Data value in Line 14 (WRP) to read -10,000 counts. Click OK when done.

Drag Mode with the MAV Command

9. Get ready to grab the servo's shaft and click Run to download and start the program (remember, only
try this with small motors running at relatively low speeds). The motor will begin a slow MAV move to
the absolute location of 10,000 counts. The Target Position register and Actual Position registers will
begin incrementing to 10,000 counts. While the motor is in motion, grab the flywheel on the motor
shaft. Physically stop it from rotating until the move command completes its trajectory. Notice that
the Actual Position Register stops counting up and reports the location where the motor was first
stopped. Target position will advance to the location of “Actual Position + Moving Error Limit”. If Drag
Mode were turned off, the target position would increase to 10,000 counts. When the flywheel is
released, the motor may or may not continue moving, depending on how long it was held. Either
way, once the motion has stopped, the Actual Position register will not read 10,000 counts because
the shaft was jammed for a period of time.

Drag Mode with the PMV Command

10. After 10 secs the motor will begin to move in the opposite direction using the PMV command.

11. While it is moving, grab the flywheel and stop the motion. Hold for a few seconds and release it.
Hold and release again. Regardless of how long the servo was held, it will eventually reach the target
position of -10,000 counts. The Profile Move command recalculates the trajectory for the motion
parameters every servo cycle (120 microsecond) so the device will always reach its target position.

SilverLode User Manual Rev 4.4 Page 101 of 149

Chapter 3 — Unique Features and Commands

Anti-Hunt™ Feature

Digital servo systems share a common characteristic called “dithering” when holding a
position. Dithering typically occurs when the holding position is near the count transition
point of the digital feedback device (i.e. optical encoder or resolver), causing the shaft to
oscillate between counts. For some applications, dither is desirable and may even be
intentionally created. In other applications, however, any dither is unacceptable and in
severe cases, can cause large oscillations in the whole system.

SilverLode servos have a unique operation called Anti-Hunt that is designed to eliminate
dither by switching from closed loop control to open loop control. When using open loop
control, the device ignores any error feedback so small errors in position do not result in
constant corrections. These constant small corrections are what cause servo dither. In
addition to eliminating dither, the device can use Anti-Hunt to help smooth out some
kinds of motion profiles by using open loop control during some parts of the move. This
section explains the operation of Anti-Hunt, describes how to use it, and covers the
commands used to set it up.

Using Anti-Hunt™

Anti-Hunt is used to automatically switch between closed loop and open loop control,
based on position error and torque level. The servo can be set to enter Anti-Hunt only
when holding a position, or it can be set to enter Anti-Hunt any time position error is low
enough. When using open loop control to hold position, the device ignores small
position errors and lets the shaft sit at the position it held when it stopped. When using
open loop control during a move, the servo ignores small errors and commutates the
motor based only on the motion profile from the Trajectory Generator. Both settings for
Anti-Hunt can make the servo operate more smoothly, but they also limit the final
position accuracy.

Anti-Hunt is mainly used in two situations:
1) Holding position firm and steady without servo dithering.
2) A particular operation requires using open loop control for part of a move or hold.

If the accuracy of final position in an application requires strict compliance, Anti-Hunt
may need to be turned off because it creates a feedback deadband around the final
position. When the shaft is anywhere inside this deadband, the device ignores position
feedback and it will not correct the final position error. Likewise, when Anti-Hunt is used
during a move, the device ignores position feedback (as well as velocity and
acceleration feedback) and blindly commutates the motor based only on the target
position. In general, open loop control should not be used during motion unless there is
a specific design reason (e.g. it eliminates dither in slow, high-inertia moves).

Anti-Hunt Operation

Anti-Hunt essentially sets up a open-loop deadband around the target position. Inside
this deadband, the servo uses open loop control and therefore ignores error feedback.
The width of the deadband is defined by the Anti-Hunt Constants (AHC) command.
When the position error (the difference between actual position and target position)
becomes low enough to enter the deadband, the device performs some other checks
(explained below) and then enters Anti-Hunt by switching to open loop control. When

SilverLode User Manual Rev 4.4 Page 102 of 149

Chapter 3 — Unique Features and Commands

the position error becomes too large, the device immediately switches to closed loop
control and exits Anti-Hunt. The Anti-Hunt deadband can be a different width
depending on whether the device is entering Anti-Hunt or exiting it.

The servo checks only one condition to exit Anti-Hunt: position error. As soon as
position error exceeds the Open to Closed value set with the AHC command, the device
switches to closed loop control in order to correct the error. It then operates in closed
loop control until conditions to enter Anti-Hunt are met again.

The servo checks several conditions before entering Anti-Hunt. The conditions checked
before entering Anti-Hunt are:

« Position error. The servo compares position error to the Closed to Open value set
with the AHC command. If the position error (the difference between actual position
in Register #1 and target position in Register #0) is less than or equal to the AHC
value, this condition is met and the servo can enter Anti-Hunt.

- Anti-Hunt delay timer. Once the position error is low enough, the servo starts the
Anti-Hunt delay timer. The time delay is set with the Anti-Hunt Delay (AHD)
command. The servo uses closed loop control and does not enter Anti-Hunt until
the timer expires. The timer resets if position error exceeds the limit set with the
AHC command while the timer is counting down. If the closed loop torque condition
(see below) is enabled, the timer will not start until the closed loop torque being used
drops below the open loop torque limit.

« Moving status (optional). When the Anti-Hunt Mode (AHM) command is set to its
default value, the servo only enters Anti-Hunt after the end of a move when it is
holding a position. The end of a move occurs when the Trajectory Generator goes
inactive. In this default setting, the servo uses closed loop control throughout the
move. When the AHM command is set to the non-default value, the servo can enter
Anti-Hunt at any time, moving or stopped. This allows the servo to use open loop
control during a move if the other Anti-Hunt conditions are met.

« Closed loop torque (optional). If the AHC command is set to its default state, the
servo compares the torque being used during closed loop operation with the open
loop torque limit (the open loop moving limit during a move, the open loop holding
limit while holding position). If the closed loop torque exceeds the open loop torque
limit, the device will not enter Anti-Hunt and switch to open loop control. This extra
condition can be disabled with the AHC command. This would be used to
implement conventional dead band by setting the open loop torque

Anti-Hunt™ Commands

Five different commands are important to Anti-Hunt operation: Anti-Hunt Constants
(AHC), Anti-Hunt Delay (AHD), Anti-Hunt Mode (AHM), Torque Limits (TQL), and Error
Limits (ERL). The AHC and AHD commands set the conditions under which the device
enters and exits Anti-Hunt, while the AHM command sets the type of anti-hunt operation
the device uses. The AHC, AHD, and AHM commands are covered below.

SilverLode User Manual Rev 4.4 Page 103 of 149

Chapter 3 — Unique Features and Commands

Anti-Hunt Constants (AHC) Command

The AHC command sets the conditions for the device to enter and exit Anti-Hunt. The
AHC command uses three parameters: Closed to Open error, Open to Closed error,
and the Check Holding Currents flag.

The Closed to Open error parameter sets the point at which the servo can enter Anti-
Hunt and transition to open loop control. A SilverLode servo can enter Anti-Hunt once
position error is equal to or less than this value. Position error is the difference between
the target shaft position and the actual shaft

position, measured in encoder counts. Edit AHC: Anti-Hunt Constant

Anti-Hunt dizabled when both parameters = 0
The Open to Closed error parameter _ Open to Closed Corcel_|
establishes the point at which the servo exits Amount of ernor required to go aut of
Anti-Hunt and returns to closed loop control. et [
If position error ever equals or exceeds this |0 caunis Test |
value when the servo is in Anti-Hunt, the —— Ehek
device immediately exits Anti-Hunt, switching ~ Closed to Open Cunents
to closed loop control to correct the position st e eapliedlissa i i
error. Setting the Closed to Open and the : Device
Open to Closed parameters to zero disables |_8 | e
Anti-Hunt.

When the Check Holding Currents box is selected, as shown in the QuickControl
screenshot, the servo checks another condition besides position error before entering
Anti-Hunt. The servo compares the actual torque required by closed loop control (as
indicated by the current flow through the motor windings) to the open loop torque limit.
If the closed loop torque required exceeds the open loop torque limit, the servo will not
enter Anti-Hunt. The servo does not compare the closed loop torque used to the open
loop torque limit if the Check Holding Currents condition is disabled.

The "Use Default For Device" checkbox is, by default, checked. This causes
QuickControl to set AHC at download time dependent on the device's encoder CPR.

See the Command Reference for more details.

Anti-Hunt Delay (AHD) Command
The AHD command sets the time delay the device uses before entering Anti-Hunt. This
delay is useful for allowing a system to settle (stop ringing) before switching to open
loop control, since position error and torque must remain within the limits set with the
AHC command for the duration of the delay.

Edit AHM: Anti-Hunt Mode ||
Anti-Hunt Mode (AHM) Command
The AHM command controls the operation of Anti-

Hunt. Anti-Hunt operates in one of two states, PRV S I - |
shown in the QuickControl screenshot. In its default | @ orbpwhensiopped | Desciton |
state, the servo will only enter Anti-Hunt when the | e ;
servo is holding a position (meaning that the e when maving or \

shopped

Trajectory Generator is inactive). If this default
setting is changed, the servo can enter Anti-Hunt

SilverLode User Manual Rev 4.4 Page 104 of 149

Chapter 3 — Unique Features and Commands

when moving or when holding position. This means that the servo can switch to open
loop control whenever the position error is low enough, so an entire move could be
executed using open loop control.

Error Limits (ERL) and Torque Limits (TQL) Commands

These commands are covered in their own sections, but are important for Anti-Hunt.
When the servo enters Anti-Hunt, the ERL delay timer starts. Until the timer expires,
the servo applies torque equal to the open loop moving torque limit, as set by the TQL
command. After the timer expires, the servo uses torque equal to the open loop holding
torque limit. This is true even if the AHM command is set to allow Anti-Hunt operation
while moving or stopped. In this case, once the ERL timer expires, the servo will use
the open loop holding torque limit torque during the move. If the optional closed loop
torque condition has been enabled with the AHC command (the Check Holding
Currents box in QuickControl), the servo will compare the closed loop torque being used
to the open loop moving torque limit before the ERL timer expires. After the ERL timer
expires, the servo compares closed loop torque to the open loop holding torque limit.

Multi-Tasking

Multi-tasking is a very important feature of the device. A SilverLode servo can execute
programs with multi-tasking either enabled or disabled. With multi-tasking disabled, a
program executes one command at a time. If a command starts a move that takes
twenty seconds to complete, the program will wait and do nothing for twenty seconds.
With multi-tasking enabled, the move command will execute normally, but the rest of the
program will also continue to run. Disabling multi-tasking makes the logic of a program
much simpler and prevents some common programming errors. This is why multi-
tasking is disabled by default. Some applications, however, require multi-tasking, and a
good understanding of how multi-tasking works is essential for these applications. This
section explains how multi-tasking operates, describes how to properly use multi-
tasking, and gives some examples of the effects of multi-tasking on a program written
with QuickControl.

Multi-Tasking Operation

Multi-tasking enables the servo to continue executing a program while a motion is in
progress. With multi-tasking disabled, when the servo executes a motion command the
program stops execution until the move is complete (i.e. the Trajectory Generator is
inactive) or until a stop condition is met. With multi-tasking enabled, the program
continues to run during the move, allowing much greater versatility in the program. The
Enable Multi-Tasking (EMT) command enables multi-tasking and the Disable Multi-
Tasking (DMT) command disables it. Using multi-tasking correctly requires a firm
understanding of how the servo controls program timing, the system tasks that the
servo executes in the background along with program commands, and the ways the
servo responds to different motion commands when multi-tasking is enabled.

Servo Cycle

A SilverLode servo uses a 120-microsecond period for its digital control calculations.
This period is called the servo cycle. All functions, including command execution, are
synchronized by the servo cycle. When multi-tasking is enabled, with a few exceptions,
(such as a delay or wait command), a command in a program takes one servo cycle to

SilverLode User Manual Rev 4.4 Page 105 of 149

Chapter 3 — Unique Features and Commands

execute. When multi-tasking is disabled, the device still performs its regular functions
like servo calculations and communications every servo cycle, but does not execute
program commands if a move operation is still underway (i.e. the Trajectory Generator
is active).

The tasks the device completes during each cycle are shown below. Notice that the
serial communications task is completed three times per servo cycle.

Task #1 Task #2 Task #3 Task #4 Task #5 Task #6
Serial
Every 120 Comrgt;r:;;:lanons Servo Control| _Program Motion |Update Status Error
usec
Communications Loop Comme.md Comme}nd Words and Checking
- Execution Execution I/O
Serial
Communications

Task #1—Serial Communications. A SilverLode servo checks for serial
communications every 40 microseconds, or three times per servo cycle. During
each 40-microsecond period, the device can send or receive one ASCII character (if
using the ASCII communications protocol) or eight bits of data (if using the binary
protocol). Technical Document QCI-TD053 Serial Communications on our website
covers serial communications in detail.

Task #2—Servo Control Loop. If set to closed loop control, the device updates the
output of the control algorithm every servo cycle. When using open loop control, the
control loop is bypassed.

Task #3—Program Command Execution. If a program is running, the Program
Buffer will have at least one command in it. If multi-tasking is disabled, the device
will execute the next command in the program buffer only if the last command has
finished executing. If multi-tasking is enabled, the device will generally execute a
new command from the Program Buffer every servo cycle, although there are
exceptions. The way the device treats different motion commands when multi-
tasking is explained in the next part of this section.

Task #4—Motion Command Execution. When the device receives a motion
command, either by reading the next command in the Program Buffer or by receiving
an Immediate command from an external host, the Trajectory Generator goes active
and the move starts. If multi-tasking is disabled, the device will not execute the next
command in the Program Buffer until the move is complete. If multi-tasking is
enabled, the next command in the Program Buffer will be executed as soon as the
Trajectory Generator goes active and the move starts.

Task #5—Update Status Words and 1/0. A SilverLode servo updates each bit of
the three status words and checks or changes the 1/O status every servo cycle. The
analog input, digital input, and digital output capabilities of the device are covered in
Chapter 6. The status words are used internally by the device, as explained earlier
in this chapter, and are integral to the polling routines used with external hosts, as
explained in Chapter 2.

SilverLode User Manual Rev 4.4 Page 106 of 149

Chapter 3 — Unique Features and Commands

Task #6—Error Checking. A SilverLode servo checks for errors once every servo
cycle. Some of the errors it checks for are user-defined, such as position error and
Kill Motor Conditions, while others are preset, such as over-voltage errors.

Multi-Tasking Operation Rules

The purpose of multi-tasking is to allow the device to continue to execute commands
while a motion command is running. The ideal way for this to happen would be for the
Trajectory Generator to go active as soon as a motion command is issued and for the
next command in the program buffer to be executed the next servo cycle. In some
cases, this is exactly what happens, but some motion commands still stop program flow
right after they are issued, just like a delay or wait command. Different types of motion
commands also work differently when multi-tasking is enabled. These multi-tasking
exceptions and special cases are explained below.

Delays with Motion Commands. The time and velocity based motion commands
(MRV, MRT, MAV, MAT, RRV, RRT, RAV, RAT, XRV, XRT, XAV, and XAT) are all
pre-calculated. This means that the device uses the motion parameters specified
with each command and calculates the entire trajectory for the move before sending
the calculated trajectory to the Trajectory Generator and actually starting the move.
During this calculation period, the device does not execute the next command in the
program buffer, even if multi-tasking is enabled. For the SilverNugget, this
calculation period is up to two milliseconds for the time-based moves and up to four
milliseconds for velocity-based moves. The Pre-Calculate move commands (PCM
and PCGQG) allow some control over this delay period and can be useful for some
applications. The Command Reference has more information on these two
commands.

Velocity and Time Based Motion Commands. When the servo executes a time or
velocity based motion command, it checks to see if the Trajectory Generator is busy
(active). If another move is still running, the servo will queue the time or velocity
based motion command and pause program execution. This effectively blocks multi-
tasking, although no error is generated. Once the first move finishes, multi-tasking
begins working as expected again. This is one of the most common errors
encountered when using multi-tasking. Some other commands can override the first
motion command and unblock the program. The velocity and time based motion
commands can be overridden by the VMP, VMI, HSM, HLT, STP, PMO, or PMX
commands.

Velocity Mode Motion Commands. The velocity mode commands (VMP and VMI)
do not pre-calculate their moves, so program flow is not disrupted. They also do not
check on the busy status of the Trajectory Generator, so they will override any other
move that is still executing. Setting the desired velocity to zero and issuing the VMP
or VMI command is the best way to do a controlled stop on a move, because these
two commands override the other move commands and because the deceleration
can be specified. A VMP or VMI command can be overridden by another VMP or
VMI command, a PMO command, or by an HSM, STP, or HLT command.

Profile Move Commands. The profile move commands allow the device to follow a
pre-defined motion profile. Like VMP and VMI, the Profile Move (PMV) and Profile

SilverLode User Manual Rev 4.4 Page 107 of 149

Chapter 3 — Unique Features and Commands

Move Continuous (PMC) commands do not pre-calculate their moves. They can be
overridden by other PMV and PMC commands, by VMP and VMI commands, or by
the PMO, PMX, HSM, STP, and HLT commands. Moves using profile move
commands can be dynamically changed by modifying the motion parameters when
multi-tasking is enabled. Interpolated moves using the IMS command work like
profile moves with respect to multi-tasking. Profile & interpolated moves are covered
in Chapter 5.

Step and Direction Commands. The step and direction commands allow the servo
to respond to direct motion commands from a host in a manner similar to a simple
stepper motor (although the device can still use closed loop control, unlike any
stepper). Like velocity mode and profile move commands, the Registered Step and
Direction (RSD) and Scaled Step and Direction (SSD) commands do not pre-
calculate their moves. They can be overridden by other RSD and SSD commands,
by VMP and VMI commands, or by the PMO, HSM, STP, and HLT commands. Step
and direction moves are covered in Chapter 6.

Input Mode Commands. The Velocity Input Mode (VIM), Torque Input Mode (TIM)
and Position Input Mode (PIM) commands allow the device to respond directly to the
values in registers 12 through 18. Like the last three motion commands, they do not
pre-calculate their moves. The input mode commands can be overridden by VMP
and VMI commands, or by the PMO, HSM, STP, and HLT commands. Input mode
moves can also be changed on the fly by changing the values in register 12 to 18,
and are covered in Chapter 6.

Hard Stop Move (HSM) Command. The HSM command immediately stops a
move started by any motion command.

Stop (STP) Command. The STP command immediately exits the current program
and stops any active move using the specified deceleration (see STP in command
reference for details).

Halt (HLT) Command. The HLT command immediately stops any motion, sets the halt
bit in the Internal Status Word, and calls the Kill Motor Recovery program. When multi-
tasking is enabled, the motor drivers will remain active during the Kill Motor routine if the
Kill Enable Driver (KED) command has been issued. With multi-tasking disabled, the
motor drivers are always disabled during a Kill Motor routine, regardless of whether or
not a KED command was issued. See Technical Document QCI-TD052 Shutdown And
Recovery on our website.

End Program (END) Command. If multi-tasking is enabled and an END command
is issued, the device will finish the current move if a motion command is active, and
then end the program.

SilverLode User Manual Rev 4.4 Page 108 of 149

Chapter 3 — Unique Features and Commands

Multi-Tasking Examples
The following examples illustrate how multi-tasking works with the programs.

Example 1: I/O Control During a Move

This program starts a 10- T

revolution MRV move, waits for ~ |oper |-aPe! | Command

a 1000 msec delay, then toggles T:EMT Enable Multi-T azking

/O bit #1 for 50 msec while the [5ymy e s @

move is still in progress. The vel=5 ips

WBS command in line 7 causes [#BLY Wwiait for 1000 mSec

the program to wait on that ;EEEE Eﬁrfgﬁé%u:ngil

command until the move ESOB Set Dutput Bit

command is complete. The —__— ‘wait On Bit State

move Completes before bit #2 is L|nt||Tra|ec:tDr_l,f Active is LOW FALSE
. . 2:.COE Clear Output Bit 2

cleared in line 8. This program TEMD

sends an output signal when the
move is finished, but also allows other commands to be executed before the WBS

command holds the program while the move finishes. Several non-motion commands
could be inserted between lines 2 and 7 that would all execute during the MRV move.

Example 2: Multi-Tasking Motion

Comman.d Bufferlng .) HEEF Label |Command
Multi-tasking will have no effect in this 55 E -

; . . : niable Multi-T azking
program. Since time and velocity Mave 10 revs @
based motion commands are ZMRY a-:lc? ps/s

vel=0rps
buffered, V\(hen the second MRV Move 5 revs @
command is encountered, the MR ac|c:=5'| ipsds
: : vel=0rps
program stalls until the first MRV =T el Program

command is finished executing
before starting the second MRV and continuing with the program.

Example 3: Multi-Tasking Motion Command Transitioning

In this next program, the servo begins the MRV move and then delays for 3000 msec
before continuing with the rest of the program. After the delay time, the device executes
the VMP command in line 4. As explained previously, the VMP command overrides all
other motion commands, so this command prematurely ends the move from line 2 and
accelerates the motor to turn at 20 revolutions per second.

:E:;;:i Labtel |Command
TEMT Enable kMult-T azking
b 10 rews (2
2B acc=1 1psds
vel=5 1pz
DLy Wit for 3000 mSec
Welocity Mode:
4vMP acc=h -Ilers.-"s, vel=20 1pz
B.END

SilverLode User Manual Rev 4.4 Page 109 of 149

Chapter 3 — Unique Features and Commands

Exercise 3.2 — Multi-Tasking for Advanced 1/0 Control
This example shows multi-tasking use with inputs and outputs during motion. The program
executes one of two Register Move Relative, Velocity Based (RRV) commands, depending on the

state of I/O #1 and #5. The values stored in registers 25 and 26 are used as parameters for the RRV
move commands. The loop is comprised of Jump (JMP) commands in an infinite loop that execute
continuously until one of the inputs is triggered low. Once an input is LOW, a move is executed. If /O #1
is LOW, the 1/0 #2 will flash (turn ON/OFF) during the motion. If I/O #5 is LOW, the second RRV move
will run and the 1/0O #2 will of HIGH.

1.

2.

Power up the servo and start QuickControl. Start polling the servo and verify that it is operating
properly. Ensure that I/O #1 is HIGH.

Select File — Open. Navigate to “...\QCl Examples\Multi-Tasking\” and select the file, Using Multi-
Tasking for Advanced IO Control.qcp.

Click the Run button to download and run the program.

The servo run the program and wait in the “Forever” loop for an input. Toggle I/O #1 or #5 LOW then
HIGH to select the “Move1” or “Move2” routines. If #1 is chosen, the output will flash three times at
the beginning of the move.

SilverLode User Manual Rev 4.4 Page 110 of 149

Chapter 3 — Unique Features and Commands

Multi-Thread (SD17)

Multi-Thread allows the user to simultaneously run two programs. Thread 1 is the
primary program, which runs after a power on or reset condition. It is capable of all
motion commands, etc. Thread 2 is invoked from Thread 1; the invoking command
specifies how much of the Program Buffer to allocate to Thread 2, and where the new
Thread 2 program was stored in the Non-Volatile memory. The allocated memory + 1
location are subtracted from the top of Thread 1 Program Buffer space. Thread 2
executes with the start of its Program Buffer at 0, just like Thread 1.

While the second thread is running, Thread 1 gets executed every 240us and Thread 2
gets executed every 240us, on opposite 120uS intervals.

Thread 2 has certain limitations. It is not able to execute any command which affects
the Trajectory Generator (i.e. motion). It is not able to invoke a new Thread 2 and
change its buffer allocation. It is able to read and modify registers, 10, and to use CAN
functions.

To simplify programming, each thread has its own private register 10 (Accumulator) as
this register has special uses; Thread 2’s register 10 appears as register 248 to Thread
1 and the outside world. Each thread also has its own Zero/Negative/Positive condition
flag storage.

A status bit (BIT 11) in IS2 is provided to monitor Thread 2, with a high level indicating
that Thread 2 is active. The Kill Recovery Extended (KMX) command may be used to
cause Thread 1 to automatically respond to the loss of Thread 2.

Thread 2 Kill Conditions (T2K) command specifies which conditions kill Thread 2 and
which it will survive. These include Kill Motor (which affects Thread 1), Over Voltage,
Under Voltage Driver, Under Voltage Processor, Halt command, and Stop command.
The default condition is to halt Thread 2 on any of these conditions unless the user
specifically configures Thread 2 to ignore them.

Just as Thread 1 can startup a Thread 2, Thread 2 can force a new program upon
Thread 1, acting much like a software invoked Kill Motor Recovery routine. Thread 1 is
also capable of stopping Thread 2; Thread 2 also ceases if it encounter an END
command. The time slice and the command buffer space are returned to Thread 1 if
Thread 2 execution ceases.

Attempted execution of Thread 1 only commands in a Thread 2 program will result in a
Thread 2 Command Error Code #17 (see Appendix C). All other Command Errors
Codes for Thread 2 errors are their respective Thread 1 Command Error Code plus 64
(0x40).

CIS (Clear Internal Status) clears the common register, so care must be taken if this
command is used in both threads.

SilverLode User Manual Rev 4.4 Page 111 of 149

Chapter 3 — Unique Features and Commands

The Delay counter, used in DLY, DLT and WDL, is common to both threads. Do not
use these commands in both threads. Use it in one or the other only. For timing in the
other thread, use the Count Up Timer (reg 244) or the Count Down Timer (reg 245).

Using QuickControl To Launch Thread 2

Thread 1 and Thread 2 programs are written normally and exist as programs within the
same program file (same QCP). The following is an example (QCI Examples\Multi-
Thread\Multi-Thread.qcp) contains a Thread 1 and Thread 2 program.

EI;:? Label | Command E‘;:? bl | B

1:REM . i Thread 2

5725 Start Thread 2 with THRIEN i Flash Output

. Program = "Thread 2 ZREM LOOF | kain Loop

3IREM Move forward and back FHCOB Clear "1/0 #101"
Move ta 4000 counts (& 4DLY Dielay for 500 mSec

4 MAT LOOF | ramp time=50 mSec 550 Set /0 #101"
tatal time=200 mSec

E:DLY Drelay for 500 mSec

Maove to 0 counts @ = IMP J 10 "LOOP"

BMAT ramp time=50 mSec E ump a
tatal time=200 mSec S:REM End

B:MP Jump ta "LOOP" 3:REH

Thread 1 Program Thread 2 Program

Thread 1 Program is the main program (program 0) and runs at power up. The T2S
command allocates Thread 2 Program Buffer space and launches the program "Thread
2". Thread 1 Program then executes a loop that moves the servo from 4000 counts to
0. Thread 2 Program simultaneously executes a loop the "flashes" output #101.

Program Details
. Ok
To designate a program
within a particular QCP as e [&=]
a Thread 2 program, the Fegamilans - Theos 2 o HensSEne
user selects Program Descrpion Monwelysetpagiess T
. . Stare Program inta
Details from the Programs 2l Nomiiobile [538
menu and checks Thread Nonolatils e
2 kemony Size:
l] Percent Used I??‘Z
Thread 2 v

SilverLode User Manual Rev 4.4 Page 112 of 149

Chapter 3 — Unique Features and Commands

The amount of Program Buffer allocated to Thread 2 is either calculated automatically
by QuickControl or set manually by the user. If calculated by QuickControl, it is set to
the largest Thread 2 program in the file. To manually set the Program Buffer allocation,
select Program File Properties from the File menu. In the Program File Properties
dialog box, uncheck Thread 2 Auto and enter the amount of words to allocate to Thread
2. The example below allocates 300 words of the Program Buffer to Thread 2.

Program File Properties
Scale Cancel i oK I
Scale equals counts/position unit Scale i'l = bin/bd ax
Encader Countz/Rev [CPR] Ao !D Pasz Min I_mgggn counts
[e000 -] GetCPR | vl [anz7 PosMax [100000 oounts
Enter the label to be used in Move . r-w Vel |1 on ¥
tppe command [i.e. revs'). Units |counts = e I—..
533333 cps
N_umber of Decimal Places to P?DBC 0
display. ACES Acc Max ID.‘I X
|2222222 cpads
b & Time: I
Register Mames | 1/0 Mames | 10000 m3ec
Description Upload I'I 234 410 Chars
Pagsword
;I Sort Programs in download order W
"Fun" button does not save r
Update Device Statuz Properties v
anytime this file is active.
Thread 2
= IV [Auto Pragram Euff Size iBDD ‘

SilverLode User Manual Rev 4.4 Page 113 of 149

Chapter 3 — Unique Features and Commands

CLC, CTW, CLX, CLD, WCL, and WCW Commands
This section covers the following commands
e Calculation (CLC)
Calculation Two Word (CTW)
Calculation Extended (CLX)
Calculation Extended With Data (CLD)
Write Command Word (WCW)
Write Command Word Long (WCL)

The calculation commands actually accesses a few dozen sub-commands and are used
for almost every math or logic function the device can do, as well as some binary
number operations useful for data registers.

The WCW and WCL commands are extremely powerful commands that should not be
used until fully understood, but which can add a new degree of flexibility to programs or
host applications. They turn any command that requires a data parameter into a
register-based command. This section covers the operation and usage of these
commands.

CaICUIation (CLC) Edit CLC: Calculation
Calculation Two Word (CTW) Lok
The CLC command provides basic e
math and logic functions. The ‘““E“““I““l
Ca|CU|ati0n TWO Word (CTW) Reqister Accurnulator [10] | Degcription I
command is identical to CLC except Operalion | Decrement ie Reg = Fieg -1) =]
that it requires an extra word of
memory that makes it easier to create
for a host (see Command Reference for details).

Many programs require operations to modify values stored in data registers, manipulate
binary numbers, or aid in programs using loops. Three different kinds of operations are
accessible with the CLC command. The first group of operations is basic math
functions. These include add, subtract, multiply, divide, absolute value, increment, and
decrement functions. The second group contains binary logic and number manipulation
functions, which include the bitwise AND, OR, and XOR functions, as well as several bit
shift functions. The third group contains data register and accumulator manipulation
functions. These operations are used to move data to and from the accumulator
register and to load, store, and manipulate data in the data registers. Operations of the
CLC command are accessed from a pull-down list. See Command Reference for
details.

Calculation Extended (CLX) and Calculation Extended With Data (CLD)

For SilverDust Rev 06 only. Three parameter version of the Calculation (CLC)
command that allows for such things as adding two registers and storing the result in a
third register.

SilverLode User Manual Rev 4.4 Page 114 of 149

Chapter 3 — Unique Features and Commands

i Exercise 3.3 — Calculation Example
g‘;}} This exercise demonstrates the use of several different functions of the Calculation (CLC)
command. It begins with a long move, calculates half the distance moved, and moves back that
amount. ltis strictly a demonstration of the CLC command.

1. Power up the device and start QuickControl. Start polling the motor and verify that the system is
operating properly.

2. In QuickControl, select File > Open. Navigate to “...\QCI Examples\Data Register\” and select the
file, Register Moves by half with Calculation.qcp.

3. Select Tools > Register Watch to open the Register Watch tool. Click the Add Register button and
select User (25). Select Position for the Data Format and click OK. Repeat for Accumulator (10),
Actual Position (1), and User (30). Choose Position format for each register.

The value in register 25 is how small the move position will be allowed to become before restarting.
Raising this will make the cycle time shorter. Register 30 contains the beginning position for the
move. The accumulator is used with most of the CLC operations in a similar manner to how the
accumulator is used in an assembly program. In this exercise, the accumulator’s value is not used
directly by the motion command. The value in the actual position register should be User[30] —
User[25] at the end of each move.

4. Click the Run button to download and run the program. The motor will begin its first move of 30,000
counts.

5. The calculation process is reasonably simple, using a few math operations to accomplish its task.
Any data in the accumulator is first cleared, and then the actual position is subtracted from the
accumulator. This results in a negative position value. After this, the binary value in the accumulator
is bit-shifted right, which is the binary equivalent of dividing by two. This value is placed in the
register used by the move. After this, the absolute value of the accumulator subtracted from the
value in register 25. If the result of this calculation is negative, the new move distance will be less
than the value in register 25, and the program will reset the position to 30,000 counts.

NOTE: Single Step or Trace through the program to see how each CLC command effects the
registers in Register Watch.

NOTE: Using the commands CLX and CLD simplifies this example and should be used on SilverDust
servos.

SilverLode User Manual Rev 4.4 Page 115 of 149

Chapter 3 — Unique Features and Commands

WCW and WCL Commands

The Write Command Word (WCW) and Write Command Word Long (WCL) commands
are two of the most powerful commands available. They allow a program to modify
itself by overwriting data in the Program Buffer. These two commands can effectively
make any command requiring a parameter into a register-based command. A
SilverLode servo does not do any error checking on the data that is changed, potentially
making these commands very dangerous. QuickControl, however, does check for
errors by keeping track of which line in the buffer will be modified and by querying for
the parameter to be changed, rather than blindly changing data. QCI highly
recommends that QuickControl be used to implement the WCW and WCL commands.

Both the WCW and the WCL commands Edit WCL:Write Command Buffer Longword
work the same way. The difference

between them is that the WCW
command is used for 16-bit parameters Register Cancel |
and the WCL command is used for 32-bit Accumulator [10] | Desciplon]
numbers. When either of the commands

is issued in a program, the device Command toWite To

replaces part of the data in the Program

Buffer with the data in the register the o i

WCW or WCL command SpeCiﬁeS. With Command |RRV:Register Move Relative, Velogity Based

QuickControl, the Program Buffer data to
be replaced is specified symbolically,
rather than with an actual memory
location, reducing the chance for error.
The QuickControl screenshot shows the

Parameter

WCL dialog box used with QuickControl.

The parameters for both commands are the same. QuickControl requires the register
containing the value that will overwrite the old data, the label of the line containing the
command that will be modified, and the command parameter that will actually be
modified.

The WCW and WCL commands can turn any command into a register-based
command. A simple command to do this with is the Velocity Mode, Program Type
(VMP) command. The VMP command requires two parameters: velocity and
acceleration. Normally, these parameters are entered with the VMP command and are
fixed until a second VMP command is issued. However, if multi-tasking is enabled and
a WCL is issued in the program, this can change. One WCL command can link the
value in one 32-bit register to either the velocity or the acceleration parameter of the
VMP command. This means that two WCL commands could link the values in two user
registers (registers 30 and 31, for example) to the VMP parameters. Every time the
VMP command is issued, it will use the values copied from the user register specified
by the WCL commands. Data in the user registers can be changed by a program, by an
external host, or by an analog input.

SilverLode User Manual Rev 4.4 Page 116 of 149

Chapter 3 — Unique Features and Commands

G 1 Exercise 3.4 — Dynamic Speed and Acceleration Adjust

This exercise uses “multi-tasking “ with Write Command Buffer Longword (WCL) commands to
dynamically adjust the velocity and acceleration parameters of a Velocity Mode, Program (VMP)

command. The parameter data is loaded into two registers directly by the user. This program consists
primarily of a loop that contains two WCL commands and a VMP command. The WCL commands move
data from register 25 and register 26 into the velocity and acceleration parameters of the VMP command,
respectively. Using the Register watch tool, both parameters of the VMP command can be modified.

In a real world application, a host could issue Write Register, Immediate Type (WRI) commands via serial
communications to change the parameter values. Additionally, the Calculation (CLC) command can be
used to modify the register data.

1.

2.

XX

Within QuickControl, select File > Open and navigate to ‘...\QCI Examples\Applications\’ and select
the file ‘Dynamic speed & accel in VMP.qcp’

Click the Run button to download and execute the program. The motor will NOT start moving, since
the default Velocity is 0 rps and the default Acceleration is O rps/s.

Open the Register Watch Tool (Tools > Register Watch). Click the ‘Add Register’ Button and select
User (25), select Velocity for the Data Format and click OK. Repeat again for User (26) except select
Acceleration for the Data Format. Both should have 0 values listed.

Click once in the data column of the User (25) entry. Enter a value of 5 rps for the velocity (be aware
of the scaling being used) and press enter. Select the data field of User (26) and enter a value of 2
rps/s into the cell.

Note: If no “units” are shown in the right column, double click on the units field of the Register Watch
Tool and choose the appropriate type (Velocity for Reg. 25, rps & Acceleration for Reg. 26, rps/s).
Experiment with other values in these registers and note the effect on the motor operation. Try
starting with a very slow Acceleration rate (0.5 rps) and a Velocity rate of 30 rps. After motion begins,
increase the Velocity rate to 1 rps, then 5 rps, and then 10 rps... Notice the dynamic Acceleration
change.

SilverLode User Manual Rev 4.4 Page 117 of 149

Chapter 4 — Motion Control Using Inputs and Registers

Chapter 4 — Motion Control Using Inputs and
Registers

The SilverLode servo has two primary methods for interfacing with external devices.
The methods can be used to stop motions, modify motion parameters at execution time,
and control program flow. The two methods are the I/0O and internal data registers. See
Chapter 6 for more information on the physical properties and setup of the 1/0O.

Most motion commands have built-in stop conditions. These additional parameters are
issued with a motion command to prematurely end the programmed motion based on
the condition of the digital /0. There are also several internal signals available as stop
conditions. More complex control of a motion is possible using the Advanced stop
conditions, allowing precise positioning.

The registers can be adjusted by either an external host or an internal program. The
registers, in turn, can be used by various motion commands to adjust parameters at
execution time. This allows a program to react to real-time input, and to be extremely
flexible. Use of the registers also makes many advanced motion commands available,
such as Profile Move or Input Modes. These are discussed in Chapters 5 and 6.

The QuickControl software package provides an easy way to implement these
commands. The Register Watch tool in QuickControl gives easy access to the
registers. This allows emulation of a serial host, while allowing use of the powerful tools
in the QuickControl software.

Using Inputs to Stop Motion

All basic motion commands, as well as the input mode and velocity mode commands,
have integrated stop conditions. The stop conditions include the seven digital inputs, as
well as six other signals tabled below. Digital inputs can be wired to sensors, switches,
or digital I/O from a PLC or other host. Whatever the hardware connected, the servo's
I/O can be used either alone or in conjunction to affect the operation of motion
commands.

When a move is stopped using an input the servo decelerates to a stop using the
acceleration parameter given in the move command. Because the deceleration begins
at the moment the 1/O is detected, the servo will come to rest some distance past the
sensor depending on velocity and acceleration. To compensate for this ramp down,
register 4 is loaded with the exact position at which the input was triggered. This
register value can be used to move back to the exact position where the input was
triggered.

Commands can be entered in either their native form or scaled within QuickControl.

The native form is used when commanding the servo from a host controller such as a
PC.

SilverLode User Manual Rev 4.4 Page 118 of 149

Chapter 4 — Motion Control Using Inputs and Registers

Standard Stop Conditions - QuickControl

Most moves have a dialog box that looks something like the Edit MAT dialog box
pictured here. Even if the dialog box looks a little different for a particular move
command, the Stop conditions can be accessed by pressing the “Advanced” button.

Standaid | Advanced |

This brings up the standard “Edit Stop s kR oo
Conditions” dialog box, which presents a simple

interface displaying the available inputs and
conditions. o

Standard Stop Conditions — Serial
Communications =

The same stop conditions presented within QuickControl . |
are available when sending commands from a host. o ——f—— Do |

Adhvanced |

Siop I

Stop Enable el L
This move parameter is Stop Enable and is the same as
the Jump Command Enable Code parameter with the exception of 0 which means "Do
Not Check for Input". See Enable Code on page 81.

Stop State
Stop states are setup using the following parameters:
Stop State | Stop on the Following Condition
0 FALSE
1 TRUE
2 FALLING (TRUE to FALSE Transition)
3 RISING (FALSE to TRUE Transition)

For example, to issue a Velocity Mode, Immediate (VMI) command that will stop when
I/O #7 is high, the following string would be issued.

@16 15 200000 100000000 -7 1<CR>

See Command Reference for details on the VMI command.

Advanced Stop Conditions
For details o Advanced Stop Conditions, see Technical Document QCI-TD039: Move
Command Stop Conditions - Advanced.

Register Based Motion Commands
The standard motion commands (MRV, MRT, MAV, MAT) all have corresponding
register and extended register versions. The trajectory for each of these moves is

SilverLode User Manual Rev 4.4 Page 119 of 149

Chapter 4 — Motion Control Using Inputs and Registers

entirely pre-calculated; the contents of the register(s) are checked only once when the
command is issued. Changing the value of the register(s) has no impact on a move
already in progress. All values stored in the registers used by these commands must
be in native units.

Register Moves

(RRV, RRT, RAV, RAT) These register commands are the same as their standard
counterparts, except that the first parameter (position/distance) is a register number,
rather than a value. The value in the register, at the time of execution, is used to
generate motion.

Extended Register Moves

(XRV, XRT, XAV, XAT) The extended register version of the standard motion
commands take only a single register as a parameter. The specified register is used as
the position/distance parameter. The following two registers are used for the second
two parameters.

A SilverLode servo has other register based motion types. They are even more
powerful, with changes in register values being applied on the fly. These commands
are covered in detail in other chapters. Following is a quick listing of these command
types.

Profile Moves
All Profile Move commands (PMV, PMC, PMO, PMX) use the contents of registers 20-
24 as parameters. See chapter 5 for more information on Profile Moves.

Registered Step and Direction (RSD)

This command is operationally the same as Scaled Step and Direction (SSD), but the
scale factor is retrieved from the specified register, to allow dynamic scaling. See
chapter 6 for details on Step and Direction commands.

Input Modes

A SilverLode servo has three input modes: position, velocity, and torque (PIM, VIM,
TIM). Each of these modes uses registers 12-18 as scaling parameters. All registers
must be specified before entering these modes. See Chapter 6 for more information on
Input Modes.

SilverLode User Manual Rev 4.4 Page 120 of 149

i

Chapter 4 — Motion Control Using Inputs and Registers

Exercise 4.1 — Simple Register Based Motion
The servo will execute two moves depending on the state of the I/O #1 and 1/0O #3. The program
runs in a continuous loop monitoring the two inputs. If data in the User Registers is modified, the

motion profiles of the moves can be changed.

1.

2.

8.
9

Select File > Open. Navigate to the “.. \QCIl Examples\Using Inputs for Move Selection\” folder and
select the file “Two Inputs Two Moves with RRV.qcp”.

Open the Register Watch Tool (Tools > Register Watch). Click the ‘Add Register’ Button, select User
[25], select Position for the Data Format, and click OK. Click the ‘Add Register’ Button again, select
User [26], select Position for the Data Format, and click OK.

Click the ‘Run’ button to download and begin execution of the program. Once the program is
downloaded click on the OK button.

Notice the values placed in the selected Data Registers by the program. Toggle I/O #1 LOW, then
back to HIGH. The servo will execute a simple move.

Toggle /0 #3 LOW/HIGH. The servo will execute a different move.

Click once in the Data column of the User [25] Register. Enter the value 10 into the cell and push the
Enter key on the keyboard. Toggle I/O #1 LOW/HIGH.

Click once in the Data column of the User [26] Register. Enter the value -100 into the cell and push
the Enter key on the keyboard. Toggle I/O #3 LOW/HIGH.

Experiment with different values for the registers used in this position control example.

When finished close the active program.

Question: What type of applications can this program work in?

SilverLode User Manual Rev 4.4 Page 121 of 149

Chapter 4 — Motion Control Using Inputs and Registers

i 1 Exercise 4.2- Complete Register Based Motion

The purpose of this exercise to get familiar with the basic XRV, JMP, and JOI commands. the
servo will execute two moves depending on the state of the I/O #1 and I/O #3. The program runs

in a continuous loop monitoring the two inputs. The complete motion profile of each move can be
changed if data in the User Registers is modified.

1.

2.

10.

11.
12.

Select File > Open. Navigate to the “.. \QCIl Examples\Using Inputs for Move Selection\” folder and
select the file “Two Inputs Two Moves with XRV.qcp”.

Open the Register Watch Tool (Tools > Register Watch). Delete all listed Data Registers. Click the
‘Add Register’ Button, select User [25], select Position for the Data Format, and click OK. Click the
‘Add Register’ Button again, select User [26], select Acceleration for the Data Format, and click OK.
Click the ‘Add Register’ Button again, select User [27], select Velocity for the Data Format, and click
OK.

Click the ‘Add Register’ Button, select User [28], select Position for the Data Format, and click OK.
Click the ‘Add Register’ Button again, select User [29], select Acceleration for the Data Format, and
click OK. Click the ‘Add Register’ Button again, select User [30], select Velocity for the Data Format,
and click OK.

Click the ‘Run’ button to download and begin execution of the program. Once the program is
downloaded click on the OK button.

Notice the values placed in the selected Data Registers by the program. Toggle I/O #1 LOW/HIGH.
The servo will execute a simple move.

Toggle 1/0 #3 LOW/HIGH. the servo will execute a different move.

Click once in the Data column of the User [25] Register. Enter the position value 100 “revs” into the
cell and push the Enter key on the keyboard.

Click once in the Data column of the User [26] Register. Enter the acceleration value 150 “rps/s” into
the cell and push the Enter key on the keyboard.

Click once in the Data column of the User [27] Register. Enter the velocity value 25 “rps” into the cell
and push the Enter key on the keyboard. Toggle I/0O #1 LOW/HIGH.

Note: Acceleration Range is 0 to 277.78 rps/s. Velocity Range is 0 to 66.66 rps (4000 rpm).

Modify the Position User [28], Acceleration User [29] & Velocity User [30] data for the second move.
Toggle 1/0 #3 LOW/HIGH

Experiment with different values.

When finished close the active program, delete all registers on the register list & close the Register
Watch Tool.

SilverLode User Manual Rev 4.4 Page 122 of 149

Chapter 4 — Motion Control Using Inputs and Registers

&5:; Exercise 4.3 — Cut, Copy & Paste Programming

This exercise provides the user a technique for building up an entire motion profile. Several QCI

Example programs are opened up and the entire list of command is copied into a “New” program.

1.

2.
3.

10.

Select File > Open. Navigate to the “...\QCIl Examples\Homing\” folder and select the file “Homing
against a hard stop.qcp. Select File > Save As. Enter the filename testfile.qcp.

Select Programs > Program Details. Edit the program name to be “home”.

Select Programs > New Program. Enter the program name, “move”. Repeat again using the
program name “tune”.

Verify all three (3) programs are in the Program List of the Program Info Toolbar. Click on the small
down arrow button to see the list contents. If all three are listed, save the file again. If all programs
are not listed, repeat Step 3, then save the file.

Select File > Open. Navigate to the “...\QCl Examples\Stopping Moves\” folder and select the file
“Stop Move Using Input #1.qcp”. Select Edit > Select All. Select Edit > Copy.

Select Window > testfile.qcp. From the Program List, choose the “move (1)” program.

a. Select Edit > paste. Highlight the last line of the program.

b. Click on Add, choose the Flow tab, double click on the LRP command, click on the button,
and choose the “tune” program. Select File > Save.

Select File > Open. Navigate to the “...\QCl Examples\ Miscellaneous\” folder and select the file “Ode
To Joy.qcp”. Select Edit > Select All. Select Edit > Copy.
Select Window > testfile.qcp. From the Program List, choose the “tune (2)” program.

a. Select Edit > paste. Highlight the last line of the program.

b. Click on Add, choose the Flow tab, double click on the LRP command, click on the button,
and choose the “home” program. Select File > Save.

c. Click once in the Label column of the new LRP command. Enter the text “home” and push
the Enter key on the keyboard. Put another label on the first line of the program. Name the
label “tune”. Now, highlight the last line of the program.

d. Click on Insert, choose the Flow tab, and double click on the JOI command. Choose “HOME”
from the Program List. Click on the Conditions button, choose “I/O #3” from the Condition list
and “LOW / FALSE” as the State. Click OK twice to get back to the program.

e. Highlight the last line of the program. Click on Insert, choose the Flow tab, and double click
on the JMP command. Choose “TUNE” from the Program List. Click OK to return. Select
File > Save.

From the Program List, choose the “home (0)” program. Highlight the last line of the program.

a. Click on Add, choose the Flow tab, double click on the LRP command, click on the button,
and choose the “move” program. Select File > Save.

Make sure all inputs are in the HIGH state and click the ‘Run’ button to download and begin execution
of the program. Once the program is downloaded click on the OK button.

Review: The program begins by running the homing to hard stop program, the next program is run
with motion stopping on I/O #1 = LOW, followed by the Ode to Joy tune program. The tune will
continue to run until /0 #3 = LOW, then the entire process repeats. Click on the Red Stop Hand Icon
to end.

SilverLode User Manual Rev 4.4 Page 123 of 149

Chapter 5 —Advanced Topics

Chapter 5 — Advanced Topics

This chapter briefly covers advanced topics. Where the topic is beyond the scope of
this document, the pertinent technical document is referenced. QCI Technical
Documents are available from our website.

Techniques for Stopping Motion

When using dynamic systems to control complex motion, provisions for stopping
movement, and exiting those operations must be addressed. the servo has the
functionality to accomplish this through software or through hardware (on some models)
via the Drive Enable option.

Software Stop Options

The commands described below are the software stop options available to stop the
servo's motion. All of these options are part of the Command Set and can be used as
interrupts to stop motion as described below. Some commands initiate immediate stops
while others allow for a predetermined deceleration profile. Immediate stops use
maximum acceleration available (and consequentially maximum current available) to
stop the servo as quickly as possible; immediate stop options may re-generate a
significant amount of power back into the power rail that could damage the driver
circuitry or motor windings of the servo. Technical Document QCI-TD0006 contains
more information regarding QCI voltage clamp modules that safely dissipate the re-
generated power. (Note SilverDust |G and IGB have onboard clamp circuits; only use
with load resistor attached!) When designing a stop for the motion, consider the move
velocity, load inertia, available back EMF protection, and importance of the stop
condition.

The Stop (STP) command not only stops the present motion, but also exits the current
program and puts the servo into a holding state once stopped. The STP command can
be formatted to use a specific deceleration, use the current move’s acceleration
parameter to decelerate to a stop, or use maximum deceleration to achieve an
immediate stop where the target position is set to the present position.

E The red stop hand button in the QuickControl Icon Bar is issues an all stop
command. It sends the Stop (STP) command to address 255 and all the servos
connected to the PC will stop.

The Halt (HLT) command stops the execution of any command, program, and motion in
progress. It also disables the servo drive, which allows the shaft to spin freely and
starts the Kill Motor Recovery routine where the recovery method can be programmed
(see Technical Document QCI-TD052 Shutdown And Recovery on our website).

The Hard Stop Move (HSM) command provides a means to execute a hard stop while
multi-tasking. A hard stop immediately disables the Trajectory Generator stopping any
movement and exiting any move operation (e.g. Step & Direction). This causes an
abrupt stop, which in many cases will cause the servo to overshoot the stop position
and oscillate until settled.

SilverLode User Manual Rev 4.4 Page 124 of 149

Chapter 5 —Advanced Topics

More controlled stops can be accomplished by using the Velocity Mode (VMP or VMI)
command, which allows a predetermined deceleration profile to stop the servo. Use this
command to specify a deceleration to zero velocity, stopping the servo.

The Profile Move Exit (PMX) works much like the VMP stop and will be discussed in the
Profile Move section of this chapter. With this syntax it is unnecessary to specify a
velocity. PMX uses the deceleration register for Profiled Moves (Register #23) to slow
to a stop.

Soft Stop Limits (SSL) can also be used to stop any type of move. This command
defines two data registers as end of travel limits. Once values are stored in these
registers, any motion affecting the target is limited to keep the target position more than
the first register value and less than the second. Motion that exceeds a limit is hard
stopped (see HSM) at the point that the limit is encountered so no ramping occurs. A
status bit is set (allowing Kill Motor to respond if desired), but the active command
and/or motion are not affected. This allows motions including VIM, TIM,PIM to be limited
without exiting their operation.

Hardware Stop: Drive Enable feature

A hardware driver enable/disable feature is available as an additional option for most
SilverLode servos, but is standard on those servos with separate motor winding power
(i.e. SilverLode products designed for 34 from motors). It is also standard on the
SilverDust IG and IGB. This feature allows the motor driver circuit to be disabled via a
solid-state switch. Disabling the motor driver cuts off torque, while the DSP control
electronics remain active to track position and respond to commands. With the absence
of torque, the load inertia will cause the servo to coast to an uncontrolled stop.

Profile Move Operation

The Profile Move commands add a new dimension to the servo by allowing the move
parameters to be changed on the fly. This gives the servo the ability to create just
about any shape of move that is required.

Profile Move commands can perform very complex motion profiles by allowing the move
parameters to be changed dynamically. Move parameters (stored in Data Registers)
can be changed by an external Host controller or by an internal program.

There are two Profile Move commands:

1. For a single move; use the Profile Move (PMV) command to execute a single
move where the command ends when the target position is reached.

2. For a continuous move; use the Profile Move Continuous (PMC) command to
execute a move that does not stop when the target position is reached. Once in
position, this operation will wait until the position parameter is changed so there
is no need to reissue a move command. Multi-Tasking must be enabled for PMC
to function properly. This continuous move can be terminated with a Stop on
Input condition, or the stop techniques mentioned previously.

SilverLode User Manual Rev 4.4 Page 125 of 149

Chapter 5 —Advanced Topics

Both Profile Move commands use Data Registers #20 to #24 for parameter storage.
The Profile Move commands use linear acceleration and deceleration parameters,
where a separate deceleration parameter is provided for different acceleration and
deceleration profiles. The S-Curve Factor (SCF) command does not work with the
Profile Move command. Profile Move commands also use an offset parameter, which
causes the servo to move an offset distance after a Stop on Input condition is met (see
Chapter 4 for stopping on inputs).

Register Description | Comment
Number
20 Position Absolute destination value.
. Sets the acceleration rate that is used when increasing the move
21 Acceleration speed
22 Velocity The maximum speed that is allowed during a move.
. Sets the deceleration rate that is used when decreasing the move
23 Deceleration speed
When a stop condition is met, this value is added to the current
24 Offset position and copied to Register 20 for a profiled stop. If set to
zero, only the deceleration values is used to ramp down to a stop.

Advanced Dynamic Motion Control !

1600 - Change Velocity Separate

On-The-Fly Deceleration
1400 N\ / \ Parameter
1200 N\ // A\ z

\
1000
800 / \/
/ Control \
600 / chelelration or \
400 cceleration
200 / \\\

0 T T T T T
0.00 0.50 1.00 1.50 2.00 2.50 3.00

Velocity (RPM)

Distance (revs)

Using both the Enable Multi-Tasking (EMT) and Calculation (CLC) commands with the
PMV and PMC commands allows the functionality to create custom motion profiles
similar to the one shown (see Chapter 3 for a discussion on EMT and CLC). In the
following example program a PMV command is automatically updated. The velocity
register is being incremented by the CLC command, which increases the velocity every
2 seconds.

SilverLode User Manual Rev 4.4 Page 126 of 149

Chapter 5 —Advanced Topics

EIEEF Label Command ‘

T:EMT Enable Multi-T azking

Write 200 rev to
User | Profile Move Pos[20] Register

Wite 0.5 pads ta
User | Profile Move Acc{21] Register

2w RP

IWwWRP

. “Wiite 1 rps to
SRl User | Profile Move Wel[22] Register
y Wirite 40 1pefz to
5'/RP User | Profile Move Dec[23] Fegister
. Wiike (e to
Bw/RP User | Profile Move Offzet{24] R egister
Filaika Prafile Move:
8oLy LOOF Drelay for 2000 mSec
9.CLC Increment Uzer | Profile Mowe Wel[22]
10:JMP Jurnp bo "LOOP"

Related Profile Move Commands

The Profile Move Override (PMO) command will override any other motion currently in
progress and execute a PMV command using the parameters loaded into the Profile
Move registers (#20 to #24). When this command follows a PMC command, the PMC
operation will end when the target position is reached, effectively changing the
functionality of PMC command to act like the simpler PMV command. Normally, the
PMC command will not end unless explicitly stopped by a stop condition. Using the
PMO command after a standard PMV command will have no effect (other than using
any new stopping conditions contained in the PMO command). PMO will also override
other modes if Multi-Tasking is enabled (e.g. Step and Direction).

The Profile Move Exit (PMX) command will stop any profile move currently executing,
bringing the servo to a halt using the Profile Move deceleration register (#23).

Interpolated Motion Control
This powerful feature is beyond the scope of this manual. See Technical Document:
QCI-TD044 Interpolated Motion for details.

Register Files
Register files are a powerful feature but are beyond the scope of this document. See
Application Note QCI-AN048: Register Files for details and examples of Register Files.

Camming
Camming is the following of a master encoder with a dynamic gear ratio. See
Application Note QCI-AN029.

Torque Control

Motor torque can be dynamically set and monitored. Primarily this is done using the
Torque Limits (TQL) command. Details on this advanced topic can be found in
Technical Document QCI-TD051 Torque Control (see our website).

SilverLode User Manual Rev 4.4 Page 127 of 149

Chapter 5 —Advanced Topics

Shutdown and Recovery

Every servo cycle (120 microseconds), the SilverLode servo performs an error check
based on the settings issued in the Kill Motor Conditions (KMC) (SilverDust Rev 06 or
KMX command). If any of these kill conditions are met, the program specified by the Kill
Motor Recovery (KMR) command is immediately loaded. The program specified by
KMR can then perform any operation, a shutdown, recovery, or other technique. For
details on this advanced topic, see Technical Document QCI-TD052 Shutdown and
Recovery on our website.

Serial Communications

Operating in a host configuration, or accessing the servo's serial communications,
requires networking. Networking the SilverLode servos uses industry standard
protocols and serial interfaces. For details on the SilverLode’s serial interface, see
Technical Document QCI-TD053 Serial Communications on our website.

Servo Tuning

The factory default servo loop parameters have been optimized for a nominal load
range (inertial mismatch up to 10:1) for each servomotor. Given a fairly tight coupling,
the default tuning parameters meets the performance requirements of most systems.
Generally, 9 out of 10 applications can use the factory default tuning parameters. The
QuickSilver PVIA™ servo control algorithm can be tuned to provide stable operation
over a very broad range. In addition, it can be tuned for precise control with mismatch
ratios greater than 100:1. For details on this advanced topic, see Technical Document
QCI-TD054 Servo Tuning on our website.

SilverLode User Manual Rev 4.4 Page 128 of 149

Chapter 6 — Input and Output Functions

Chapter 6 — Input and Output Functions

The SilverNugget servos have I/O voltages level from 0 to +5 Volts for both digital and
analog operations.

The SilverDust servos have 1/O voltages level from 0 to +3.3 Volts for both digital and
analog operation. The SilverDust servos accept 0 to +5V inputs but can only output 3.3
V.

The SilverDust IGB have 16 expanded IO lines. These 10 are optically isolated from the
rest of the controller, and must be powered from 12v to 24v. They are open collector
outputs with a feedback comparator set to approximately 1.5v. Each output is
connected to a diode isolated +5v pull-up resistor. This allows the outputs to drive logic
without additional pull-ups, while also allowing the outputs to drive 250mA 24v loads.
The outputs include active clamping for inductive loads. The output sense comparator is
always active, so that an actively driven output (set LOW) which is not able to drive its
load and has gone into over current protection will read back as a high. These outputs
are updated every 120 microseconds with the inputs sampled every 120 microseconds.
As with the other inputs, a software digital filter may be used to reduce noise
susceptibility, with a default filter value of 10 milliseconds. These IO are numbered 101
to 116. Each the expanded 10O lines is provided with a diode isolated pull-up / LED. This
network requires ~3mA sink to ground for a valid low. The diode isolation allows these
inputs to be used with 24v inputs with no problem (the pull-up is automatically
disconnected when the input is greater than approximately 5v).

One of the most important features of a SilverLode servo is the input/output capability.
The servo has seven multi-purpose 1/O lines. These seven lines can be independently
software configured for a variety of functions. This chapter covers the basic operation
of all the I/O lines as well as their different uses. There are four kinds of 1/0O functions:

- Digital Inputs. All seven of the I/O lines can be used as digital inputs, allowing
the servo to react to on/off inputs like a PLC.

- Digital Outputs. All seven of the I/O lines can also be configured for use as
digital outputs, allowing the servo to send on/off signals and control simple
systems.

« Analog Inputs. I/O lines 4, 5, 6, and 7 can be configured as 0 to +5 V analog
inputs for the SilverNugget and 0 to +3.3 V for the SilverDust. These /O lines
allow the servo to use analog signals for direct motion control or as analog
sensor inputs.

+ High-Speed I/O Functions. The SilverLode servo can use its input lines for
scalable step and direction input. This input functions is used in several the
applications, including electronic gearing and caming operations. For normal
uses, the fastest sampling rate for an input line is once every servo cycle (every
120 usec). For high-speed functions, however, the maximum sampling rate is
about 1 MHz, or once every 1 usec.

SilverLode User Manual Rev 4.4 Page 129 of 149

Chapter 6 — Input and Output Functions

These functions can be used in many different types of applications. This chapter
covers each 1/O function’s operation, the commands used with each function, and the
different uses for each function in an application.

Input and Output Operation

The SilverLode servo has seven fully programmable 1/O lines. Each line can be used
as a digital output or a digital input, while some of the lines can be used as analog
inputs or configured for special uses. Each I/O line can be configured dynamically,
either by a program or by an external host. This section covers the functions that the
I/O lines can be used for, the operation of the 1/O lines, and the conflicts that can occur
between different 1/0 functions.

I/O Lines

The 1/O lines on the servo are TTL level. TTL/LVTTL signals are 0 or +5V and 0 or 3.3
V respectively. TTL signals are only capable of driving low currents. QCI offers an
optical isolation module designed to work with the 1/O lines that provide input and output
optical isolation and can handle larger currents. 1/O lines 1 through 7 can be used as
digital inputs or digital outputs. 1/O lines 4 through 7 can be used as digital inputs or
outputs, but can also be used as analog inputs. When used as analog inputs, they must
receive a 0 to +5 V signal for the SilverNugget and 0 to +3.3 V for the SilverDust. An
understanding of the electrical characteristics and requirements of the seven /O lines is
essential to properly using the 1/O.

I/0 Functions

The seven I/O lines can be used for many different functions. The table below lists the
I/O functions, their type, their description, and the 1/O lines they use. 1/0 101 through
116 are only available on the SilverDust-IGB (I-Grade with Extended I/O) series.

. o /0 Lines
Function T Description
unctio ype escriptio Used
All'l/O lines can be used as general-purpose digital inputs.
General Digital Diaital Input The inputs can be used for a number of uses within a 1-7
Input 9 P program, including loading new programs and controlling 101-116.
program flow.
Motion Control | Digital Input All /O lines can be used as input stop conditions for motion 1-7
commands. 101-116
1-3
. . o SilverDust
Kill Motor Digital Input Three? I/0 Ilqes can be used as Kill Motor C(_)ndmons, Rev 05:
allowing for immediate shutdown based on input. 1-7
101-116
Modulo I/O #1 can be used as a special digital input to trigger, 1
Triqger* Digital Input | enable, or disable the modulo output function.
99 (SilverNugget ONLY)
All I/O lines can be used as general-purpose digital
General Digital Digital outputs, allowing the servo to control on/off devices such 1-7
Output Output as valves and switches. An output can also be connected 101-116
to an I/O line on another device and used as an input.

SilverLode User Manual Rev 4.4 Page 130 of 149

Chapter 6 — Input and Output Functions

General Analog

Analog

Four I/O lines can receive analog signals. These signals

(PCP).

Input Input can be used within programs. 4-7
Input Mode Analog An analog signal received on one of these I/O lines can be 4-7
Analog Input Input used directly for motion control.
Internal . Three 1/O lines can send the raw signal from the internal
Encoder H'%?'tSp‘?[ed encoder as an output. (SilverNugget ONLY) 1-3
Output* HPYY 1 (Note: silverDust-1G/IGB have dedicated lines.)
High-Speed Two 1/O lines can send a scaled signal from the internal
Modulo Output* Outout encoder as an output while I/O #1 can toggle the function 1,6-7
P on and off. (SilverNugget ONLY)
Three 1/O lines can receive a position feedback signal from
an external encoder (or another feedback device like a
External High-Speed _resolver).f 'Ir']his_ signalI can be usgd folr clofsed Ioop cI:ontroI 2.3,
Encoder Input Input mste_ad 0 t e interna gncoder signal, or for specia 4 g
applications like camming and electronic gearing. The
main signal can be formatted in several ways and use
several combinations of 1/0 lines.
Digital SilverDust (Rev 05) allows 1/0 #2 to function as a 25kHz
PWM output o PWM output, registered controlled, with the PWM width 2
utput . : .
adjusted every 120uS as a function of register values.
I/0 #1 can be configured as a “Done” output, indicating that
Done output Digital the error is within the configured limit and the sequence 1
Output has completed. See Enable Done High (EDH) and Enable
Done Low (EDL) for more details.
I/0O #1 can be configured as a Position Compare output,
Position Digital updated every 120 uS. This may be configured for a single 1
Compare Output compare or for cyclic operation. See Position Compare

*SilverNugget Only
** SilverNugget, SilverDust-IG and -IGB Only. See SEE in command reference for
SilverDust options.

Digital Inputs and Outputs
The standard I/O lines are designed to interface with either totem pole or open collector
TTL circuits when used as digital inputs or outputs. On the SilverNugget I/O lines 1, 2,
and 3 have an internal 4.7 kQ pull-up resistor, making them ideal as digital inputs for
interfacing with open-collector circuits. 1/O lines 4, 5, 6, and 7 have an effective internal
impedance of approximately 200 kQ, but no pull-up resistors, so these lines may require
an external pull-up resistor if they are used as inputs with open-collector circuits. Al
seven I/O lines work equally well as inputs with totem pole TTL circuits. The pull-up
resistors on I/O lines 1, 2, and 3 hold those lines high when they are inactive. When 1/O
lines 4, 5, 6, and 7 are inactive, they float between 2.5V to +5 V for the SilverNugget
and 0 to +3.3 V for the SilverDust because they are not held high. As digital outputs,
the 1/O lines have the following sink or source characteristics:

SilverLode User Manual Rev 4.4

Page 131 of 149

Chapter 6 — Input and Output Functions

SilverNugget
All 7 lines | 5 mA

SilverDust

4 mA
2 mA
2 mA
4 mA
4 mA

8 mA
4 mA

N~ WIN|—~

A +5 VDC, regulated power supply capable of supplying 100 mA is available from the
controller. This power supply is intended for use with external sensors or switches.

QCI recommends using the QCI optical isolation module, QCI-OPTMC-5 or
QCI-OPTMC-24, to optically isolate the I/O lines when they are used as digital inputs or
digital outputs. In addition to the circuit protection gained from optical isolation, the QCI
optical isolation module allows the TTL signal from the servo to be interfaced to other
types of circuits and used to trigger higher power outputs. A full description of the QCI
optical isolation module can be found on the QCI website.

Analog Inputs

I/O lines 4, 5, 6, and 7 can be used as analog inputs. These lines have an effective
internal impedance of approximately 200 kQ connected to the internal +5 VDC power
supply, giving a slight bias on input. This resistance should be considered in circuit
designs that are passive or that have high impedance. 1/O lines used as analog inputs
must be driven from a low impedance source (10 Q or less for SilverNugget and 1KQ or
less for SilverDust) or with capacitance across the input. A minimum 0.01 uF capacitor
can be used at the input to provide the low impedance source. The internal analog to
digital converter (ADC) provides 10-bit resolution of the input signal. The SilverDust is
ok with up to a 1K

The SilverLode servo implements a 5 msec filter on all analog channels to reduce the
effects of noise & transients. This means that analog signals are averaged over 5 msec
before being used. The filtered signal is updated every servo cycle (120 usec).

High-Speed I/O Functions
Special 1/0O circuitry in the servo allows the 1/O lines to be configured for specialized
functions which include:

SilverNugget SilverDust
Raw Encoder Signal Output Raw Encoder Signal Output (1G,IGB)
Scaled Encoder Signal Output Encoder/Step&Dir Input

Encoder/Step&Dir Input

SilverLode User Manual Rev 4.4 Page 132 of 149

Chapter 6 — Input and Output Functions

When configured for any of these functions, the 1/O lines used cannot be used for any
other I/O function. The maximum reliable input or output pulse rate for any of the high-
speed functions is 1 pulse per usec, or 1 MHz. The high-speed 1/O functions must
interface with TTL circuits, just like the other I/O functions. Note: The standard Optical
Isolation Module may not support the full available speed (the QCI website contains
specifications for the maximum signal rates of the QCI optical isolation module). The
high-speed functions use three types of signals: step and direction, A and B quadrature,
and step up/step down. These signal types are explained later in this chapter.

I/0 Conflicts

The seven |I/O lines can be configured to perform many different functions. These
functions can compete for I/O resources so care must be taken when assigning I/O lines
to a given function. Careful and systematic design can usually eliminate problems
before they occur. Many of the I/O functions require the use of specific I/O lines,
meaning that those lines are not available for other I/O functions. Some I/O conflicts
can cause fatal errors in programs. Others might not cause a fatal error but might
cause serious hidden problems such as a desired Kill Motor input condition being
ignored with no error warning.

The table below shows the I/O lines used by each I/O function, as well as the special
uses for each 1/O line for the high-speed functions. This table should be used to assign
I/O functions to I/O lines and avoid conflicts.

1/0 Function 1O #1 | 1/0 #2 /10 #3 1O #4 | 1/O #5 | 1/0 #6 | 1/O #7
General Digital Input X X X X X X X
Motion Control Input X X X X X X X

Kill Motor Input X X X
Modulo Trigger X
(SilverNugget only)
General Analog Input X X X X
Input Mode Analog X X X X
Input
General Digital Output X X X X X X
Encoder Output
(SilverNugget only) A B Index
Modulo Output
(SilverNugget only) (3) (3)
('anlg‘(a;) M) | () | Index
Encoder Input L
Step Direction Index
(alt) (4) (alt) (4)

(1) SilverNugget: These lines can be used for A & B quadrature, step up/step
down, or step and direction signals.

SilverDust: These lines can be used for A & B quadrature
SilverDust-IG: These lines can be used for A & B quadrature and Step and
Direction.

SilverLode User Manual Rev 4.4 Page 133 of 149

Chapter 6 — Input and Output Functions

(2) SilverNugget only.

(83) SilverNugget only: A & B quadrature, step up/step down, or step and
direction signals.

(4) SilverDust (M-Grade); moved to #4 and #5 for SilverDust-IG (I-Grade) for
top connector access.

Using Digital Inputs

Digital inputs and digital outputs are the most basic uses for the 1/0. A digital input
could be a switch that closes and opens, sending a signal to the servo, while a digital
output might be a solid-state relay or a light connected to a I/O line. Digital inputs and
outputs are used by the servo for several purposes. Digital inputs may be used for
program flow purposes, for motion control (stop on input) purposes, or for Kill Motor
triggers. Digital outputs may be used in user programs for signaling external devices
like PLCs or controlling external devices like relays. This section covers the uses of
digital inputs and outputs and the commands used with them.

General Digital Inputs

Four uses of the digital inputs are: general digital inputs, motion control inputs, modulo
trigger input, and Kill Motor inputs. By using an I/O line as a digital input, a program can
react to an on/off signal from an external source by using a command that controls
program flow based on 1/O status. There are several commands a program can use to
do this. The “wait on bit” commands (WBS and WBE) can stop program execution until
a digital input signal changes, while “jump” commands (JOI, JOR, etc.) allow a program
to jump to another command within the program based on one or more inputs.

For example, if an application required the servo to start a move if a switch were thrown,
the Wait on Bit State (WBS) command could be used. This command can be tied to
any /O line configured as an input and can be set to wait until the input goes high or
goes low. If the command were set to wait until I/O #1 went high, for example, the
program would pause at the WBS command for as long as I/O #1 stayed low. As soon
as 1/0O #1 went high, the program would continue. If a motion command immediately
followed the WBS command, then the start of the move would be tied to the state of I1/0
#1.

A looping structure with a jump command could be used for the same application if
multitasking were enabled. A loop could be set up using the Jump (JMP) command to
repeat the loop and a Jump On Input (JOI) command could be inserted into the loop
and tied to the state of I/O #1. If I/O #1 were low, the loop would continue running
repeatedly. When I/O #1 went high, the JOI command would cause the program to
jump out of the loop. If the JOI command pointed to a motion command, the start of the
move would be tied to the state of I/O #1, just like in the previous example. The
example programs that come with QuickControl illustrate both of these program flow
techniques.

Motion Control Inputs

A digital input can control motion based on a signal from an external source like a PLC.
This is one way to allow an external host device to control motion. All motion
commands have stop conditions that can be tied to the state of an I/O line. The I/O line

SilverLode User Manual Rev 4.4 Page 134 of 149

Chapter 6 — Input and Output Functions

used must be configured as an input, and must not be in use as an output, an analog
input, or as a high-speed input. Stop conditions are explained in detail in Chapter 4.

Kill Motor on Input

Digital inputs using I/O lines 1, 2, or 3 (all are available SilverDust Rev 06) can be used
as Kill Motor Conditions to immediately stop the motor and end any move. Kill Motor
Conditions are covered in detail in Technical Document QCI-TD052 Shutdown And
Recovery on our website. As with other digital inputs, the Kill Motor routine can be set
up to trigger based on a high or a low state of an 1/O line. If an I/O line is to be used as
a Kill Motor input, extreme care must be taken to ensure that the I/O line is not used for
another function. If an I/O conflict occurred on that line, the Kill Motor routine might not
start when it was intended to.

Modulo Trigger Input (SilverNugget Only)

I/O #1 can be used as a special digital input to trigger the scaled internal encoder output
function. The input is configured with the Modulo Trigger (MDT) command and
functions just like any of the other digital input functions. More information on this
command is available in the Command Reference.

Configure 1/O (CIO) Command

The CIO command configures one I/O line at a time. At power up, all I/O lines are
configured as inputs. The CIO command is needed if an I/O line is reconfigured as an
output and then needs to be used an input again. More information on the CIO
command is available in the Command Reference.

Digital Input Filter (DIF) Command

The DIF command sets up a filter time for any of the 1/O lines used as a digital input.
The filter time affects how long a digital input state must be held for the SilverLode
servo to see the given state. This filter is useful for noisy systems or for de-bouncing
switches because it causes the servo to wait for the specified number of servo cycles
(120 usec) before recognizing a change in the state of the input.

Using Digital Outputs

The digital outputs are used as signaling or control outputs. They can be used to
indicate the internal status of the servo to an external device like a PLC, or used to
control another device like a relay or another the device. The main commands used for
this function are Configure 1/0 (ClO), Set Output Bit (SOB), and Clear Output Bit (COB).

General Digital Outputs

The servo can use any of its I/O lines as digital outputs by either setting or clearing the
output state of that line. The servo can use a digital output to communicate with
external devices including a PLC, an HMI, a switch or indicator light, or even another
SilverLode servo. The servo cannot send commands via serial connection, only receive
commands, and reply with an ACK or with data so digital outputs are the only way the
servo can initiate communication with an external device. Because of this, digital
outputs can be extremely useful for communicating the state of the servo to an external
device or to a user.

SilverLode User Manual Rev 4.4 Page 135 of 149

Chapter 6 — Input and Output Functions

For example, a program could include branching logic that would jump to one of two
sections of code based on an input. One section of code would start a rapid move while
the other section of code would start a slower move. The section of code for the rapid
move could also set I/O #2 high. That output could connect to an input on a PLC. The
section of code for the slow move could set I/O #3 high and that output could trigger
another input to the PLC. With this setup, the PLC could monitor a critical state of the
servo.

With a similar setup, a SilverLode servo with the two move speeds could use its two
digital outputs to interface with two digital inputs on a second servo. The second servo
could be programmed to respond in one way if the first servo were moving at the fast
speed and in another way if the first servo were moving at the slow speed. Interlocked
programs like this can be very useful on multi-axis machines.

Configure 1/0 (CIO) Command

The CIO command, discussed in the previous section, configures the 1/O lines. By
default, all I/0O lines are configured as inputs. The CIO command can reconfigure any of
the lines as a digital output and set the default state for the output (high or low). The 16
isolated I/O lines treat a “Set” or configure “High” command as making the output high
— that is turning off the open collector driver, and a “Clear” or configure “Low” as
asserting a low output — that is turning on the open collector driver.

Configure I/O Immediate (Cll) Command
The Cll command, SilverDust only (Rev 06), is similar to the CIO command, but may
be sent by the host via the serial port at any time.

Set Output Bit (SOB) Command

The SOB command configures the selected I/O line as a digital output and sets it high.
If the 1/O line was in use as a digital or an analog input, this command will reconfigure
the line as a digital output. If the I/O line was in use for a high-speed I/O function,
however, an error may occur. In either case, care must be taken to prevent I/O
functions from using the same 1/O lines.

Clear Output Bit (COB) Command

The COB command does the same thing as the SOB command but sets the output low.
As with the SOB command (and all of the 1/0O functions), /O functions should not be
assigned to the same 1/O line in order to avoid conflicts.

SilverLode User Manual Rev 4.4 Page 136 of 149

Chapter 6 — Input and Output Functions

Using Analog Inputs

Analog inputs are another way to use the 1/O lines. An analog input could be a
potentiometer, a Hall-effect joystick, a temperature sensor, or a pressure transducer. A
+5 V power supply is available from one of the pins that can provide up to 100 mA for
sensors and other peripherals. The analog inputs can be used for traditional PLC tasks
like event triggering or data monitoring, or they can be used for direct motion control. A
SilverLode servo also has three motion modes can directly control movement based on
an analog input. This section covers the different functions of analog inputs and the
commands used to set them up. In addition to the information presented in this chapter,
QCI has published an application note about analog inputs, available on the QCI
website.

Analog Inputs

SilverLode servo analog inputs have a range of 0 to +5 V for the SilverNugget and 0 to
+3.3 V for the SilverDust. Passive external circuitry can convert the common industrial
input signal types, including -10 to +10 V, 0 to +10 V, and 4 to 20 mA. More information
about converting signal levels is available in the QCI application note on analog inputs.
That application note also goes into detail about the twelve analog channels the servo
uses. Only six of these channels are actually used with the I/O lines. The other six
channels are used internally, but can also be used by programs or by host controllers.
Of the six channels that are used with the I/O lines, four are linked directly to the four
I/O lines used for analog inputs (1/O lines 4, 5, 6, and 7), while two more are available
as differential channels. 1/O lines 4 and 5 can be used together as a single differential
analog input. I/O lines 6 and 7 can also be used together. The Analog Read Input
(ARI) and Analog Read Continuous (ACR) commands are used to read information from
the analog inputs.

The analog to digital converter (ADC) used in the servo has 10-bit resolution. Any
analog input using only one I/O line (single analog input) has this 10-bit resolution.
When two 1/O lines are used to form one differential analog input, that input has 11-bit
resolution. In addition to having twice the resolution of a single analog input, differential
analog inputs have the advantage of noise rejection since two simultaneous signals are
subtracted from one another, eliminating much of the noise common to both lines.
Analog inputs are always 10-bit or 11-bit resolution, but the servo scales them internally
up to 16-bit numbers. A single analog input can be from 0 to 32767 in native units,
while a differential analog input can be from -32768 to +32767.

Using Analog Inputs for Program Flow and Data Monitoring

The analog inputs can be used just like the analog inputs on a PLC or other industrial
controller. When used this way, they can provide a great deal of flexibility to an
application. Two simple applications for the analog inputs are program flow and data
acquisition.

Analog inputs can be used to trigger events like digital outputs or program calls. A
program could use analog inputs within a loop. For example, one of the tasks
performed in a loop could be an analog input read. The value of the analog input could
be subtracted from a pre-defined value and an action triggered based on the result (i.e.

SilverLode User Manual Rev 4.4 Page 137 of 149

Chapter 6 — Input and Output Functions

a branch condition inside the loop could call a subroutine). If the analog input value
were to fall below a certain value, for example, a digital output could be set high.

Another use for an analog input would be for the servo to read an analog signal and
simply record it in a data register. A host connected to the servo could read the register
holding the value at a regular time interval and save the value to a file. In an application
like this, the servo would be acting as a data acquisition device. This might be useful in
an application that needed a servomotor but also needed to record temperature, for
example.

Analog Read Input (ARI) Command

The ARI command reads the value of the selected
analog input and stores that value in the selected ok |
data register. The ARl command only reads the Cancel |
value of the analog input once. This command Cranmel v+ (Main Buss votage) [l S e |

can be used for several purposes. To read the
value of any of the four analog inputs when read
as a single input, to read the value of one of the

Reqister | Accunlator [10] i

differential inputs (/0O 4 and 1/0O 5, or I/O 6 and I/O 7), or to read the value of one of the
internal analog channels. The QuickControl screenshot on the right shows the two
parameters of the ARI command. More information on the analog channels available
with this command is available in the QCI application note on analog inputs. More
information the ARI command itself is available in the Command Reference.

Analog Read Continuous (ACR) Edit ACR:Analog Continuous Read
Com man d Continuously read analog input into fselec_ted oK !
The ACR command reads the value of the o P el |
selected analog input and stores the value in the Channel [Analog Channel #1 =l —
selected register. That register is updated every

servo cycle (120 usec), although a 5 msec filter is Registe | Aecimilator 1] |

used on the raw input. The ACR command can be

used with the input mode motion commands (PIM,
VIM, and TIM) to externally control motion. Like the ARI command, it can read the
value of any of the analog inputs: the four single analog inputs, the two differential
inputs, or the six internal channels. More information on this command is available in
the Command Reference and in the QCI application note on analog inputs. The
QuickControl screenshot to the right shows the ACR command. NOTE: Only one ACR
can be active at a time.

Input Mode Commands

Three commands, Position Input Mode (PIM), Velocity Input Mode (VIM), and Torque
Input Mode (TIM), are used to access three special operating modes. The Input Modes
use seven data registers for processing position, velocity, and torque information. They
allow the servo to use data from an analog input or an external host to directly control
motion. The most important parameter used by the Input Mode commands is the
parameter held in register 12. This register sets the target value for each input mode
(position, velocity, or torque target). A common use of these commands is to tie register
12 to an Analog Continuous Read (ACR) command, allowing an analog input, such as a
potentiometer, to directly control speed, position, or torque. An external host could also

SilverLode User Manual Rev 4.4 Page 138 of 149

Chapter 6 — Input and Output Functions

change the value of register 12 over a serial connection. (Also see Soft Stop Limits
(SSL) to limit the range of motion for velocity and torque operations.)

Input Mode Operation

Registers 12 through 18 are used for the three Input Mode commands. These registers
must be loaded with the correct data before any of these commands are issued. The
registers can be loaded by an external host with the Write Register Immediate (WRI)
command, by a host or program using the Register Load Multiple (RLM) or Register
Load from Non-Volatile (RLN) commands, or by a program using the Write Register,
Program Type (WRP) command. If the RLM or RLN commands are used, the correct
parameters must first be stored to non-volatile memory using the Register Store Multiple
(RSM) or Register Store to Non-Volatile (RSN) commands. Once the registers have
been loaded, the Input Mode move can start. The move will follow the target value
(position, velocity, or torque) in register 12. If register 12 is tied to an analog input, the
analog input value will directly control motion. If an external host can change the value
in register 12, that host directly controls motion. The table below shows the registers
used by the Input Mode motion commands and their functions.

Data Data
Register Data Range S Data Register Function
& ource
Input Source Data — Data can be placed
12 -2,147,483,648 .User or here by Analog or Data Register
to +2,147,483,647 | SilverLode commands.
13 -2,147,483,648 User Input Offset
to +2,147,483,647
14 0 to 32767 User Input Dead band
15 0 to 32767 User Maximum Scale/Limit
16 -2,147,483,648 User Maximum Output Scale
to +2,147,483,647
17 -2,147,483,648 .User or Output Offset
to +2,147,483,647 | SilverLode
0 to -
18 +2.147 483,647 User Output Rate of Change Limit

Register 12 is the most important register since its value sets the target for each Input
Mode command. For PIM, the target is a shaft position. For VIM, it is a particular shaft
velocity. For TIM, the target is a torque. The 11 bits of differential analog input
resolution or 10 bits of single analog input resolution that the analog inputs can provide
is usually sufficient for Velocity Input Mode or Torque Input Mode. However, this may
not be enough resolution for position-critical applications. QCI recommends using
another position-based motion command like Profile Move (PMV) for precise position
control. More information on the Input Mode motion commands is available in the QCI
Command Reference and in the QCI application note on analog inputs. The difference
between the three Input Modes is explained below.

SilverLode User Manual Rev 4.4 Page 139 of 149

Chapter 6 — Input and Output Functions

Velocity Input Mode (VIM)

The Velocity Input Mode (VIM) command is the most basic of the Input Mode motion
commands. The most important register used by this command (or the other two Input
Mode commands) is register 12, which is typically tied into an analog input with the ACR
command. The VIM command allows that analog input to directly control the speed of
the servo.

When using VIM, data from an analog input or from a host can be used to control
velocity. A filter parameter is used to filter the incoming data. This is the same type of
low-pass filter used with the Filter Constants (FLC) command.

Before using the VIM command, registers 12 through 18 must be loaded with
appropriate values

Position Input Mode (PIM)

The Position Input Mode (PIM) command is usually used with a simple application like a
joystick. It is used to directly control shaft position. The PIM command can work well in
an application like that because it is so simple. It is set up exactly like the VIM
command, so registers 12 through 18 control the motion profile. Like VIM, an analog
input can be used to control motion if it is tied into register 12, although it would control
shaft position, not shaft velocity. The precision of Position Input Mode is limited, so if a
precise position-based move is required, the more powerful motion commands like
Profile Move (PMV) will work better.

Torque Input Mode (TIM)

Torque Input Mode is configured with the Torque Input Mode (TIM) command. It is very
similar to VIM and PIM in that register 12 directly controls motion. However, TIM only
uses registers 13 to 17 with register 12, not registers 13 to 18. While directly controlling
torque is the way many traditional servo systems worked, directly controlling torque
bypasses many of its capabilities, requiring a program or a host controller to replicate
them. Velocity Input Mode or a simpler motion command like MRV is usually a much
better solution than Torque Input Mode because those motion commands allow the
servo to use its internal control algorithm. See Technical Document QCI-TD051 Torque
Control on our website for more details on Torque Input Mode.

Using Encoder Signals with Digital 1/0

In addition to the other functions covered in this chapter, the I/O lines can be used for
high-speed 1/O functions. This section describes the types of signals used by the high-
speed /0O functions, their use, and commands used to configure them.

The external encoder inputs (i.e. Step and Direction) drive a counter, which is sampled
every 120usec. The counts detected are scaled and summed to any remaining
fractional count left from the prior period, with the whole count being applied to the
current count. The fractional remainder is saved for the following period. Counts in
excess of the maximum (+31,-32 at 4000CPR, 4000RPM) counts per sample period are
accumulated for use in the following sample period to handle sample period to sample
period variations. The command velocity should not exceed 4000RPM to prevent count
loss.

SilverLode User Manual Rev 4.4 Page 140 of 149

Chapter 6 — Input and Output Functions

Encoder Signal Types
The high-speed digital I/O functions use several types of signal formats: step and
direction, A and B quadrature, and, for the SilverNugget, step up/step down.

For the SilverNugget, the external (secondary) encoder input function can receive all
three types of signals. For the SilverDust, the encoder input can be either step and
direction or A&B quadrature. SilverDust |G and IGB provide dedicated Encoder Outputs.

For the SilverNugget only, the scaled encoder (modulo) output can send all three types
of signals, while the encoder output function can only send A and B quadrature signals.
The internal encoder output and external encoder input functions also use an index

pulse line. This line sends or receives one pulse every time the encoder index is found.

Step and Direction Signals
A step and direction

signal consists of two

parts: a step signal

and a direction

signal. As the figure

shows, every rising —\ —| —| ﬂ H |_|
edge of the step Step Pulse
signal equals one

count. The direction

signal is high for one Direction
direction, and low for

the other.

Count 1
Count 2
Count 3
Direction
Change

Step and Direction

Step Up/Step Down Signals (SilverNugget Only)
A step up/step down

c
function consists of two z £ £ 28
. 3 >3 > O:®©
step signals. One step 8 8 8 &5
signal corresponds to one
count of motion in one —| —\ —|

direction, while the other Step Up
step signal corresponds to
one count in the other

direction. ﬂ ’_I ’_I

Step Down

Step Up/Step Down

A and B Quadrature Signals

The A and B quadrature format consists of two step-like signals that are 90° out of
phase with each other. Every rising or falling edge of each signal corresponds to a
count. Direction is determined by which phase is leading and which is lagging.

SilverLode User Manual Rev 4.4 Page 141 of 149

Chapter 6 — Input and Output Functions

c
~ < N~ o
— — — = O
c c c O C
S = = O. ©
o o o} =
@) (@] O 0o

Phase A

] i

Phase B

A & B Quadrature

The preferred encoder input and output signal is A/B quadrature. The alternative
formats of step-up/step-down and step and direction transmit one pulse per encoder
count and become subject to the bandwidth limit more rapidly. For example: during a
1000 count per second move, the step formats require 1000 pulses per second on a
single line. A/B quadrature uses two signals, and therefore requires only 250 pulses per
second on each line to transmit the same information. A/B quadrature signals have a
lower frequency than the other two types of encoder signals. This is an advantage
when operating in electrically noisy environments. AB quadrature signals also are more
resistant to noise, as a noise pulse that is short enough is filtered, and one that is longer
usually looks like a one count forward, one count back, causing its effect to be non-
cumulative. With the Step/direction inputs, sufficient noise on the step line just causes
the counter to continue to count.

External (Secondary) Encoder Inputs

A SilverLode servo uses the secondary encoder input function for two purposes: to
accept direct motion control signals from external devices and to accept position
feedback signals from an external feedback device such as an encoder. When used for
direct motion control, this function allows the servo to be used in several specialized
applications, including electronic gearing, camming, stepmotor replacement, and flying-
knife applications. When used for external position feedback, this function allows a
SilverLode servo to use a high-resolution feedback device, or to receive feedback from
a device mounted on a critical machine component. The mounting of a feedback device
at the output stage of a machine allows the servo to correct (some or all of) the effects
of error, backlash, etc. between the motor and the secondary encoder. Several
commands are used with this 1/O function: the Select External Encoder (SEE)
command, the Scaled Step and Direction (SSD) command, the Registered Step and
Direction (RSD) command, the Dual Loop Control (DLC) command, and the Single
Loop Control (SLC) command.

SilverLode User Manual Rev 4.4 Page 142 of 149

Chapter 6 — Input and Output Functions

Direct Motion Control Inputs

The external encoder input function allows the servo to accept a signal from an external
source. This feature is usually used with an external optical encoder or magnetic
resolver, but can actually be used with any kind of device that can produce the
appropriate signals. The three signal types that can be used (step and direction, step
up/step down, and A and B quadrature) were covered earlier in this section. Note, the
SilverDust only accepts step and direction or A/B quadrature.

The Scaled Step and Direction (SSD) and Registered Step and Direction (RSD)
commands are the motion commands that the servo uses for the external encoder input
function. Both commands allow scaling of the input signal. When these commands are
used, the servo generates a motion profile based on the incoming signal. This is
different from the other types of motion commands like MRV, where the device
generates the motion profile internally. The Select External Encoder (SEE) command
must be used to configure the servo to receive the external encoder input signal. More
information on these commands is available in the Command Reference.

The exact scaling procedure for SSD and RSD depends on the encoder type. The SSD
and RSD commands scale the external encoder input signal to a 1:1 base value. See
SSD in command reference for these base values. The scaling parameter for the two
commands can be set to any integer value between 1 and 32767. When the scaling
parameter is set to the base value, the servo will scale the signal at a 1:1 ratio, so one
external encoder count results in one count of the servo motion. If the scaling value is
greater than the base value, one external encoder count will result in more than one
count of the servo motion: if the scaling parameter were set to 2048 on a servo with
4000 count encoding, one count from the external encoder signal would equal two
counts of servo motion. Likewise, if the scaling value were set to 512 on the same
servo, two counts from the external encoder signal would equal one the servo count.

Common applications for the direct motion control use of the external encoder input
function include:

- Stepmotor Replacement. One common and straightforward use for this feature is
replacing a stepmotor in an existing machine design. Many stepmotor drives receive
a step signal that controls the step motion. A SilverLode servo can be programmed
to act directly on these types of step signals, allowing the servo to be used in the
existing design with no other design changes. This allows the SilverLode servo to
replace a traditional open loop stepmotor with minimal design overhead.

« Electronic Gearing (Following). A SilverLode servo can be set up to follow a
signal from an external source. This source could be the signal from the encoder on
some other motion system or the signal from some other type of device (like a linear
encoder on a slide). With the scaling feature of the SSD and RSD commands, the
device can follow the external signal with a wide variety of motion ratios. A common
use for this feature is on multi-axis systems.

« Caming. An external encoder input is one of several ways SilverLode servo can be
used in a caming application. An elliptical or other type of irregular motion profile

SilverLode User Manual Rev 4.4 Page 143 of 149

Chapter 6 — Input and Output Functions

can be sent to the device using the external encoder input function and then scaled
appropriately. Any device capable of sending a properly formatted signal can send
the caming profile signal.

Dual Loop Control

In addition to simple encoder following control, the external(secondary) encoder input
function can be used in a position feedback configuration. This Dual Loop Control
operation uses the external (secondary) encoder signal count to replace the position
portion of the internal (primary) encoder feedback in the PVIA control algorithm. The
internal encoder position signal is still used for motor commutation, velocity estimation,
and acceleration estimation. The SilverLode servo positions itself according to the
external encoder source. This feature is very useful for two applications: high-resolution
feedback applications and applications requiring feedback directly from a machine or
machine part rather than from the shaft. The input signal from the external feedback
device can be in any of the three signal formats discussed in this section: step and
direction, step up/step down (SilverNugget only), or A and B quadrature.

The Select External Encoder (SEE), the Dual Loop Control (DLC), and the Single Loop
Control (SLC) commands are used for this feature. The SEE command is used to
configure the servo to receive the external encoder input signal, just like when the signal
is used for direct motion control. The DLC command configures the servo to use the
external encoder signal for position feedback in the PVIA control algorithm. The SLC
command puts the servo back in its default state of using the internal encoder for all
control purposes. Command details are available in the Command Reference.

There are two applications where dual loop control using an external encoder is very
useful:

- High-Resolution Feedback. Some applications require very high-resolution
feedback, especially for positioning. The external encoder input function can use
encoding resolutions higher than 100,000 counts per revolution. Some serious
issues must be considered when using high-resolution encoders. First, motor
commutation and phasing is still done using the internal encoder, so the highest
available internal encoder resolution available should be chosen. Second, the
feedback control action is position error-based, so the control loop gains must be
adjusted inversely to the increase in encoder resolution. This is especially important
for the parameter Kp in the Control Constant (CTC) command. If the default gain
values were used with an external encoder that had a resolution five times higher
than the internal encoder, the control loop would be five times more sensitive than
normal and might be unstable without proper tuning.

« Local Feedback. For some applications, the motor shaft position is not the best
measure of the state of the machine. Loose couplings, elastic components like
belts, gear backlash, or simply metal flexure in the machine can add unacceptable
inaccuracy to feedback measurements taken at the internal encoder. For these
applications, using a feedback device placed on or near the critical machine part is
better than relying on the servo for feedback information. The same considerations
that apply to high-resolution external encoders apply to locally placed feedback

SilverLode User Manual Rev 4.4 Page 144 of 149

Chapter 6 — Input and Output Functions

devices. Some of these devices might have a lower resolution than the internal
encoder, so the control loop gains must be scaled up rather than down.

Encoder Outputs

A SilverNugget servo can use its I/O lines to send a raw and a scaled version of its
internal encoder signal. The main reason to use this feature is for an electronic gearing,
or following, application. This feature is useful for multi-axis systems that must move in
unison (the two servos would not be truly synchronized, however, because of the
unavoidable processing lag between the lead and following unit, so high-precision
systems may need to be coordinated with an external controller like a PLC). The raw
internal encoder output function is just that: a buffered copy of the A and B quadrature
signal that the servo uses for internal control purposes. This encoder output is not
scalable. The scaled internal encoder output, or modulo output, is fully scalable and
can be output in any of the three signal formats the servo uses: step and direction, step
up/step down, or A and B quadrature. Several commands are used with the raw and
scaled internal encoder output functions: the Enable Encoder Monitor (EEM) command,
the Disable Encoder Monitor (DEM) command, the Modulo Set (MDS) command, the
Modulo Clear (MDC) command, and the Modulo Trigger (MDT) command.

Raw Internal Encoder Output (SilverNugget Only)

A SilverNugget servo can output its raw internal encoder signal through specific 1/0
lines. This signal is the same A and B quadrature and index pulse signal that the servo
uses for internal control and motor commutation purposes. The A signal is output on

I/O line 1, the B signal on I/O line 2, and the index signal on 1/O line 3. This function has
the advantage of being simple to use but the disadvantages of not being very flexible (it
is only available in A and B quadrature and not scalable) and using I/O lines 1 through
3. The first three I/O lines are the only lines available for use as Kill Motor inputs, a
commonly used I/O function. For simple applications, or for applications that specifically
require the raw encoder signal, this I/O function can be very useful. Only one command
is needed to send the raw internal encoder signal to the 1/O lines: Enable Encoder
Monitor (EEM). This command requires no parameters and is essentially an on button
for this function. The Disable Encoder Monitor (DEM) command is the off button. 1/0
lines 1 to 3 must be configured as inputs before this function is used in order to avoid an
error (as explained previously).

Raw Internal Encoder Output (SilverDust-IGB Only)

The encoder signals are available on 3 dedicated terminal blocks: Encoder outputs A,
B, Z. These are TTL buffered outputs. Note: the Z-channel of I-Grade motors is a
special index channel. The output is a 50% duty cycle spaced at one cycle for 1/50
revolution, with one “tooth” missing. QuickSilver documentation refers to this as a 49/50
index channel. The Select External Encoder (SEE) command for the SilverDust Rev 05
and up support this index style. See the SEE command.

Scaled Internal Encoder Output (Modulo Output)(SilverNugget Only)

In addition to the raw encoder signal, the SilverNugget can output a scaled version of its
internal encoder signal with the modulo output function. This function can also be used
to output an external encoder signal if required. A SilverNugget can only scale the

SilverLode User Manual Rev 4.4 Page 145 of 149

Chapter 6 — Input and Output Functions

modulo output signal down. The modulo output function is essential for synchronized
multi-axis applications since it allows the master to output its encoder signal for the
other servos to follow.

The modulo encoder output function can use all three high speed I/O function signal
formats: step and direction, step up/step down, and A & B quadrature. The output
signal is scaled using the modulo scaling parameter, which can be set to any integer
value between 1 and 256. (1 to 32 for SilverNugget N3.) The output signal is different
for the three signal formats. For the step and direction and step up/step down signal
formats with the scaling parameter set to “1”, the 4000 counts per revolution internal
encoder signal is output as a 2000 pulses per revolution signal. For A & B quadrature
format and a “1” scaling parameter, 4000 counts per revolution from the internal
encoder is output as a 1000 pulses per revolution. If an A & B signal is sent to another
servo, the decoding circuitry in the second servo will turn the 1000 pulses per revolution
back into a 4000 counts per revolution signal. A scaling parameter other than “1” will
scale the modulo output signal down by the scaling factor: e.g. for an A & B quadrature
output with a scaling parameter of “4”, 4000 counts from the internal encoder would be
scaled to 250 pulses (which decodes to 1000 counts).

Three commands are used with the modulo internal encoder output function. The
Modulo Set (MDS) command enables the modulo output function and starts the signal
from I/O lines 6 and 7, the lines that the modulo output function uses. The MDS
command sets the modulo divisor (1 to 256), the signal type (step and direction, step
up/step down, or A and B quadrature), and the encoder source (internal or external).
The Modulo Trigger (MDT) command enables a special modulo function that uses the
state of I/0 #1 as a trigger to start and stop the modulo internal encoder output signal
on I/O lines 6 and 7. The Modulo Clear (MDC) command disables the modulo output
function and frees the I/O lines used by the modulo output function. More information
on these commands is available in the Command Reference.

SilverLode User Manual Rev 4.4 Page 146 of 149

Index
A
Acceleration Unitscccoveeeevveeecnieennnenn. 68
Actual VeloCitycooovevveerieeiiecieeieees 67
Analog Inputs.................. 129, 132, 137, 138
Anti-Hunt

Ditheringccceeeeeviiiiienieeieieeee, 102
Automatic Index Phase Alignment........... 52
B
Break....oooooooiieeiee 87
Breakpointscccceevieeiieenieeiieieeieee 87

Real-Timeccceveeveenieeieeieeieeee 87
C
Camming.........ccccveevveeneeecreenieeieenieennens 127
Check Internal Status (CKS) Command... 97
CheckSum........ccccvveviieiiieiecieeieeceeee 92
CIS e 97
CKS e 97
CLC e 114
CLD.ciiieeeeeeeeee e 91,114
Clear Internal Status Word (CIS) Command

... 97
Clear Poll (CPL) Command...................... 93
CLX ettt 114
Comm Port.......cccooiiiiniiiiniin, 49
Communicationsc.eeeveereeerveenieennneans 128
Control Panelcccoovvvvvvvviiiiiiiinnns 41, 44
CPL e 93
CTW e 114
Cyclic Phase Alignment..............cccoeeueeee. 53
D
Data Monitor.....cccccvveveeeeivvvicieieeeeeennn. 47, 88
Data Registersccoeevveeerieeecieeeiieeeenenn 74
Debug Mode........coovvieiieniieiiecieeieeee 87
Debugging........ccceevvieevieeeiieeieeeeeeen 87
Digital Inputscccceeervennnenn. 129, 131, 134
Digital Outputs.......ccceeevveevveernnens 129, 135
Download And Chart..........cccceeevieniiennnnnn. 35
Drag Modeccvvvvvieeiieeieeeeeeee e 98
E
Enable Code......ccccooviiiiiiniiiiiiiiiee 81
Enable Statecccooovveiieiiieieeiieeeee 83
Error Limits......cooceeiiiiiiiiiiiicecee 98

SilverLode User Manual Rev 4.4

Index

Extended Register Moves 120
F

Factory Default Initialization - CAN.Qcp 58
Factory Default Initialization - CT2

FL2.QCP it 58
Factory Default Initialization - Cyclic.Qcp
... 58
Factory Default Initialization - Driver
Enable.QCp....ccvevieeiieiieieeeeeee 58
Factory Default Initialization - Open
Loop.QCP ceeiieeeiieeeeeeeeeee e 58
Filter Unitsccoveeeiieeeiieeciee e, 69
Firmware Download Wizard..................... 49
Flash Codeccovevvieeiiieiieeeeeeee, 60
H
HOSt o 128
HOSt . 21
Host Configuration............ccceceevieenieennne 21
Hybrid Configuration............ccccccveevvvennnnnne 21
I
I/0 Status Word (IOS)covveevieriieeiieiens 94
Identify (IDT)...ccooeeniiiiieiieiee e 51
IDT e 51
[-Grade Motorcocceeevieiiiiiieiieeee 53
Index Phase Alignment..............ccccueenneenne 52
Inertial Mismatch..........ccoceeniiiennnnen. 128
Initialization File.........ccccovviieiiinniiiniinnns 54
Initialization Wizardcccccoviiiiinnnn. 36
Input Mode.......cooovveevieniiiieniieieeeeee, 118
INPULS...cviiieeee e 118
INPULS..ceiieiee 131
Internal Status Word 2 (IS2).......c..eee.... 98
Internal Status Word (ISW)ccoeee. 96
Internal Status Word 2 Description........... 98
Internal Status Word 2(IS2)........cccuveeneeee. 97
INEETVIEW e 39
TOS . 94
IS2 e 97,98
ISW e 96
J
Jump Commands..................... 79, 80, 81, 95

Page 147 of 149

K
Kill Motor Conditions (KMC)................ 128
Kill Motor Recovery (KMR).................. 128
KMC e 128
KMR e 128
KMX e 128
L
Labels....c.ooiiiiiiiiieiiee 80
LedsS. oo 59
M
Manual Index Phase Alignment................ 52
Memory

Program Bufferccccoooeviiiiiinnnn 76
Memory Management...........cccceeeveuveeeennnee 76
Memory Mapcceeeeeeniiieiiniiieeeieiieeeee 75
Memory Modelccovveeeiieniieiieee, 73
Motion Commands...........cccouvvveeeene... 70,119

ADBSOIULE ..o 70

BasiC..coueiiiiee 70

Relativeooeevieeiieiieece 70
Multi-Taskingccccoeveevvieniniciieieeiee 91
Multi-Thread.......cccooovvvvvvviiiiiennnn. 74,111
N
Networkingccceeeeveeeiieeeiiieeiieeeiieens 128
Non-Volatile Memory.........ccccceevueeenennen. 75
Non-Volatile Memory Map 75
o
OPLIONS ..eeeiiieeeiieeeiee et 51
P
PCB ..o 86
PCL e 86
PCL oo 86
Phase Alignmentcccceeiieniiiiiennne 52
PIM oo 140
POL ..o 93
Poll (POL) Commandc.cccvreurennnne 93
Polling Status Word (PSW)ccccceeiieneen. 92
Position Input Mode (PIM)...................... 140
PRI .o 86
Program Bufferccccoevviviiiiinininnnen. 73
Program Callc.ccoceviiiiniiniiiiniccnee. 86
Program Call And Returnccoc..... 86
Program Flow

Wait Commands.........ccceeveevvenieeniennnene 79
Program Flow Controlc..ccccceeeneeee. 79

SilverLode User Manual Rev 4.4

Program Return........cccoceevvveeniieeniiennnen. 86
Programming..........cccceecvveevieeeciieniieeenen, 65
Protocol....cc.ooieeieniiiiiiiceee 55
PRT oo 86
PSW e 92
PVIA e 128
R
Read I/O States (RIO) Command.............. 95
Read Internal Status Word (RIS) Command
... 96
Real-Time Breakpoints...........cccccevuvenenne 87
Real-Time Traceccocceeveeeiieenieenienee 87
Recoveryccooviviiiiiiee 128
Register Based Motion Commands 119
Register Devicescocveerieeciienieeiieniians 50
Register Filesccoovvevvieeciieeieeeieeee, 127
Register MOVESccceevvieniieniieiieeieenee, 120
Register Watch.........ccccovveeeviencinennnen. 46, 88
Relative Jump Labels........cccccceeeevieninnnn. 80
RIO... e 95
RIS e 96
S
SAU.ciiiiiee e 68
SAV . 67
Scaling.....ccceevieniieieieeeee e, 66
SANN e 7
Serial Communications...............c.eeeueu.... 128
Serial Interface.........cccceeveveeneeiiniecene 55
Servo Tuning......ccceceeveeveenieneenieeienenn 128
SErvOmMOtOr.....ccouveeiiiiieeniieeieeieeieeee 128
Shutdown And Recovery........cccccuenneee. 128
Silverdust IG/IGB.........ccccovveviiiiiieee 53
Silverlode Acceleration Unit (SAU)......... 68
Silverlode Actual Velocity Unit (SAV).... 67
Silverlode Torque Units (STU)................. 69
Silverlode Velocity Unit (SVU)................ 67
Single Step .c.eevvevienieiirieceee 87
Single Step Trace......cccoeeveeerveeieecreenieenen. 87
Standard Stop Conditionscc..c....... 119
Start-Up Phase Alignment 52
Status Wordscceeeevveeiiiieeiieeciieeeieeens 91
Stop Command...........ccceeeveevrierreenirennnnns 124
Stop Stateccovvvvevieriieeeeieeeeee 119
Strip Chart.......ccceeevvevieeieeieeieeene 35, 41
Strip Chart......cceeeverieneniieeciceccne 44
SVU i 67

Page 148 of 149

T

Test LiNecoeveeniiiiieiceeeeeeeee 88
Thread 2ooeiieiieiieeeeee, 111
Three Letter Acronym (TLA)................... 29
TIM oot 140
Time Unitscooveeeieeiiiiieieeieceee 69
Torque Control..........cccevevienieeiiienieeiens 127
Torque Input Mode (TIM) 140
Torque LimitS.......ccceeveeeiienieniieiieeens 127
Torque Unitscooevveeverieeeiieeeieeeeeeeeeen 69
TQL e 127
TTACE e 87
Trajectory Generator............cceeeeveveveennennee. 65
U

Unit Id oo 55
Unit ID .o 20

SilverLode User Manual Rev 4.4

Unknown Device Wizard..........ceeeveeennnnn. 40
Using Inputs To Stop Motion 118
|4
Velocity

ACTUAL. ..o 67
Velocity Input Mode (VIM).................... 140
Velocity Units.......coeceeveeeciienieeieeniieeieee 67
View Command Details.......ccccccoeeeeeeeenn. 88
VI e 140
w
Wait Commands..........eeeeeeeeeeeeeeeeeeeeerenenenns 79
WCL e 114
WEOW e 114

Page 149 of 149

Appendix A: Data Registers

Data registers can be dedicated to a specific purpose, optionally dedicated or
continuously available for user data. They can be designated as Read Only or Read &
Write. Data registers are 32 bits in length (long word) and numbered from 0 to 255 (Not
all registers are implemented — varies by product and code revision). Many are
designed to operate as two independent 16 bit data registers with each 16 bit word
containing discrete data. Data is refreshed internally every servo cycle (120
microseconds). It can be sent or retrieved serially through a host controller or used
internally by programs downloaded into the device.

User Data Registers and Optionally Dedicated Data Registers

Data registers 11 through 40 (SilverDust Rev 06 11 through 199) are defined as user
data registers by default. These read/write registers can be used by all the device
commands that are associated with user data registers. When the device is
programmed to operate in an Input Mode, registers 12 through 18 become dedicated to
the Input Mode operation. When Profile Move commands are implemented, registers
20 through 24 become dedicated to the Profile Move operation. Registers 11, 19, and
25 through 40 are always available for user data.

Rg;;g:er Type Df_’fsa:“ o%fr:?rll:nedd'lj::;ed Dedicated Use Description
11 R/W | User Data
12 R/W | User Data *Inout Mode Inout Source Data
13 R/W | User Data *Inout Mode Inout Offset
14 R/W | User Data *Inout Mode Inout Dead band
15 R/W | User Data *Inout Mode Maximum Scale/Limit
16 R/W | User Data *Inout Mode Maximum Outout Scale
17 R/W | User Data *Inout Mode Outout Offset
18 R/W | User Data *Inout Mode Outout Rate of Chanae Limit
19 R/W | User Data
20 R/W | User Data *Profile Move Absolute Position
21 R/W | User Data *Profile Move Acceleration
22 R/W | User Data *Profile Move Velocitv
23 R/W | User Data *Profile Move Deceleration
24 R/W | User Data *Profile Move Offset (pos. from input stop)
25 R/W | User Data
thru R/W | User Data
40 (198) | R/W | User Data
199 R/W | User Data | *Default maboed I/O | Jumb/stop on Mapbped I/0O

R/W = Read and Write

Registers for Optional Dedicated Command Use:

*Input Modes - Position Input Mode (PIM), Velocity Input Mode (TIM), and Torque

Input Mode (TIM).

*Profile Move Commands - Profile Move (PMV), Profile Move Continuous (PMC),
Profile Move Override (PMO), and Profile Move Exit (PME).

Dedicated Data Registers

This type of data register is dedicated to a specific the device function. the device uses
this data extensively for many internal operations. Some data registers contain factory
specific data that directly affects the servomotor operation. Modifications to this type of
data may cause the servo to operate unexpectedly.

The table below provides information on dedicated data registers 0 through 10. These
specific registers are used frequently when programming and operating the device.

Data Dedicated Data Register Description

Register | 1YP® High word = (HW) <!> Low word = (LW)
0 R/W* | Target Position; calculated position data from trajectory generator
1 R/W | Actual Position; current internal encoder position count
> R/W Last Index Position; encoder position count of the last internal index
trigger

3F R | Internal Status Word (ISW) (HW) <|> Reserved (LW)

Last Trigger Position; encoder position count when last stop
4 R/W i e
condition was satisfied.

5 RIW Delay Counter; clock ticks for the internal delay counter (1 tick = 120
usec). This is the register used by the Delay (DLY) command.

6F R | Max Position Error (HW) <{> Current Position Error (LW)

71 r | Velocity 1; current vel. 1% filter (HW) <!> Velocity 2; current vel. 2™
filter (LW)

8 R Reserved

9% R | Reserved; (HW) <|> Torque; current torque value (LW)

10 R/W Accumulator; calc. results, reg. copy/save buffer, indirect addressing
pointer

T Data register contains two independent 16 bit data words.

R = Read Only: R/W = Read and Write
R/W* = Read and Write (Write only using CLC command with Offset Target/Position
operation)

The table below provides information on dedicated data registers 200+. These registers
are utilized for advanced operations, complex programming, troubleshooting, and
factory specific settings.

Data

Dedicated Data Register Description

Reg | 1YP® High word = (HW) <!> Low word = (LW)

200 R/W Eigtr?arlnsal Encoder Position; total count value from external encoder

201 R/W | External Index Position; count value of last external index trigger

202 Reserved

203 Reserved

204 R Target Acceleration (calculated internally by trajectory generator)

205 R Target Velocity (calculated internally by trajectory generator)

2061 | RW EJLI\?\?)ed Loop Holding Torque (HW) <!> Closed Loop Moving Torque

207 ¥ | R/W | Open Loop Holding Torque (HW) <{> Open Loop Moving Torque (LW)

208 ¥ | R/W | Error Limit Moving (HW) <;> Error Limit Holding (LW)

209 Sense Mask; shaft rotation dir for +data (HW) <!> 10 Status Word(IOS)

HOR Tuw)

210 R Program Buffer Size (HW) <|> Program Buffer Start (LW)

211 F1 | R/W | Kill Motor Conditions (HW) <!> Kill Motor States (LW)

212§ R Analog Input 1 (HW) <> Analog Input 2 (LW); raw data

213 R Analog Input 3 (HW) <!> Analog Input 4 (LW); raw data

214 t R Driver Voltage (HW) <{> Processor Temp (LW); raw data

2151 R HC Processor Voltage (HW) <{> HC Driver Temperature (LW); raw data

216 R Max Driver Voltage; raw data (HW) <}> Drive Calibrate, counts/volt (LW)

2171 | RIF Max HC Driver Temperature; raw data(HW) <}>
HC Processor Volt Calibration (counts/volt) (LW)

2181 | R/W | Reserved

219t R GrouplD:Unit ID (HW) <!> Reserved (LW)

DIF I/O Filter Data for all seven 1/O lines.

220 DIF 1/O Line Filter Constant; 0 = no filter (HW) <}> DIF I/O Line Count

thru | RW | (LW). S o . o _ _

226 1 [Notg: If c_iata is positive, /O Ilne_ is conS|dered_h|gh3 if negatlv_e, low. Counter wlll count
up with high levels, and down with low levels, jumping to +/- filter count when it crosses
zero count value (hysteresis).]

227 R/F | Reserved

2281 | R/W | Reserved

2291 | R/F | Reserved

2301 | R/F | Reserved

231 R/F | Reserved

232 R Reserved

233 R/F | Reserved

The following registers are valid for the SilverDust only. They are not valid for the
SilverNugget. The Rev column indicates the firmware revision the register first became
available.

Dedicated Data Register Description

High word = (HW) <|> Low word = (LW)

234 R 04 Encoder CPR (HW) <|> Encoder Modulo Position (LW)
235 R/IF | 04 Reserved
236 R 04 Internal Status Word 2 (1IS2) (HW) <|> Reserved

237 R/W | 04 Reserved

238 R/W 04 Extended 10 Word (XIO) de-bounced input (HW) <|> XIO
output driver enable

239 R/W | 06 Reserved

240 R/W | 06 Reserved

06 Max Motor Temp in 1/16 °C <|> Measured Motor Temp in

1/16 °C

Available in SilverDust IG/IGB with sensor equipped

motors.

242 R/W | 06 Reserved

243 R/W | 08 Command Error <|> Target State

244 R/W | 08 Count Up Timer

245 R/W | 08 Count Down Timer

R 25 CAN_ERR_REG|CAN_STATE

CAN_ERR_REG same as CAN object 1001h

Lower 8 bits of CAN_STATE are CAN NMT state, upper

bits reserved.

2471t | R/IC |25 CANESR|CANGSR

R/W | 25 Thread 2 Accumulator

248 Thread 2 local copy of Register 10 (Allows access to

Thread 2 register 10 via Serial/CAN

2491 | RIW |25 Cmd Err LOADADD | Reserved

250 | RIW |25 Thread 2 LOADADD | Reserved

R 25 Thread 2 Program Buffer Start | Size

251% Start of Program Buffer for Thread 2

Size of Program Buffer for Thread 2

252% R 25 Reserved

241 R/W

2461

T Data register contains two independent 16 bit data words.

R = Read Only: R/W = Read and Write; R/F = Read/Factory Writable (SilverDust Rev
06)

Note: Use caution when writing to 200 level data registers as some retain factory
specific data. Changing the data in specific registers may cause operation problems
with the device. Some registers labeled R/F may be user Read Only; these will
eventually be set to user Read Only.

Detailed Descriptions of Specific Data Registers

206 & 207: Provide an alternate way to set the servo torque at any time from the Serial
Interface. These may be altered within a program while a motion is in progress if
multitasking has been enabled. Reg. 206 has closed loop data, 207 open loop data.
Holding torque (HW) and moving torque (LW) for both registers.

208: Provides an alternate way to set the error limits from the Serial Interface or from
within a program while a motion is in progress if multitasking has been enabled. Moving
ERL (HW) and Holding ERL (LW).

209: The direction Sense Mask (HW) defines the direction of shaft rotation (clockwise or
counter clockwise) in relation to positive data parameters of position and velocity. The
low word contains the 1/0 Status Word used with all motion commands, I/O jump
commands, and wait commands.

211: May be used to determine the cause of a triggered Kill Motor operation. These
registers are written internally whenever the Kill Motor operation is activated. They may
be overwritten to zero to make conditional testing of a triggering event easier. Kill
Conditions (HW) and Kill States (LW).

212: Contains the filtered ADC readings for Analog Input1 (HW) and Analog Input 2
(LW). Allows these inputs to be monitored from the serial port without program
involvement or stopping program operation.

213: Same as 212, but for Analog Input 3 (HW) and Analog Input 4 (LW).

214: Contains the filtered ADC readings for the Main V+ drive voltage (HW) and the
Controller/Processor temperature (LW). Temperature data is in a raw format and
requires scaling for degree C output.

215: Contains filtered ADC readings for HC processor voltage (HW) and HC driver
temperature (LW). HC processors and drivers are used in the SilverNugget N3. Note
that the calibration for the processor power is different than that for the driver power.
The HC driver temperature does not follow the same scaling equation as for the
processor temperature. The HC driver temperature can be approximated using Temp
(centigrade) = (ADC value-2230)/228. Calculation is accurate to £ 3C between 5C and
100C.

216: Maximum driver voltage in ADC counts (HW) and Drive V+ calibrate data in ADC
counts/volt (LW). The CAl command stored in the factory memory block initializes the
data in this register.

217: Maximum driver temperature in ADC counts for HC series (HW) and Processor V+
Calibration for the HC series, counts/volt (LW). Data is initialized by factory block.

219: Communication addresses (HW; upper byte is Group ID, lower byte is Unit ID) and
Reserved

220:226 Debounce time for Bits 1 to 7 <|> debounce count

234:Encoder CPR <|> Encoder Modulo Position

CPR is the counts per revolution of internal encoder

Modulo Position - rotary location: zero = index, count is modulo CPR; This is only valid
after the index has been found at least one time.

236: 1S2 <|> Reserved

The Internal Status Word 2 has the following bit definitions
bit 15 107

bit 14 106

bit 13 105

bit 12 104

bit 11 Reserved

bit 10 Reserved

bit 9 Extended I/O has isolated power missing - LATCHED

bit 8 Encoder Analog Signals Out of Spec - LATCHED

bit 7 Hardware over temp detected

bit 6 External Drive Enable Low (disabled)

bit 5 High power driver over temp analog sensors (Silver Dust D3)

bit 4 Motor temperature fault (too high)

bit 3 Motor Driver Disabled by Factory block bit 3

bit 2 Encoder rephased itself (encoder count loss detected) - LATCHED
bit 1

bit 0

Motor temperature measurement is only available on equipped motors attached to
Silver Dust IG/IGB, with SilverDust Rev 06 or higher code.

238:R/W: Debounced XIO input values <|> XIO open collector output transistors
enabled

Input bits 0 to 15 correspond to 10 101 to 116; O for low, 1 for 1.5v or higher
Output bits 0 to 15 correspond to 10 101 to 116; 0 = transistor off, 1=transistor on

241: MAX_MOTOR_TEMP <|>MOTOR_TEMP

MOTOR_TEMP_MAX: maximum motor temperature — in 1/16 degrees C ; 0 disables
the over temperature check

MOTOR_TEMP: motor temperature, if available — in 1/16 degrees C; updates
approximately once per second.

243: Command Error <|> Trajectory State

Stores the cause of a command error when one occurs. Save trajectory state as well
incase the Command Error was as a result of changing registers used by the trajectory
generator (such as the VIM command).

Command Errors
1. Not enough writable registers, invalid register
2. Not able to perform requested motion in requested time
3. No motion was pre-calculated (or since cleared)

Command prohibited in current state

Invalid Program Buffer location

Unable to perform action

Invalid Selection: Mode, sub-command, /O bit
Parameter out of range

. Internal Error - bad calibration data

10.Invalid command number fetched from buffer
11.Stack Space Error - excess calls or returns
12.Bad EEPROM Access

©ooNOoOOA

Trajectory States:
0x81 ;Not enough writable registers, invalid register
0x84 ;Command prohibited in current state
0x88 ;Parameter out of range

244: Count Up Timer
32 bit free running up counting millisecond timer. Increments once per millisecond from
power application. Automatically rolls over. Value is user writable.

245: Count Down Timer
32 bit down counting millisecond timer. Sets a flag bit is IS2 when it reaches 0. Stops
counting when it reaches zero. Value is user writable.

246: CAN_ERR_REG|CAN_STATE
CAN_ERR_REG same as CAN object 1001h (see CANopen Manual for details)
Lower 8 bits of CAN_STATE are CAN NMT state, upper bits reserved.

247:CANESR|CANGSR

2406 hardware registers 7106h:7107h — See TI reference for more details.

Hardware status registers for the CAN subsystem. They are Read/Clear or Read Only
(see below). Read/Clear indicates that writing a 1 to the designated bit clears the bit.

CANESR = CAN Error Status Register

1 = indicated error has occurred

Bit 8 = Form Error Flag (RC)

Bit 7 = Bit Error Flag (RC)

Bit 6 = Stuck at Dominant (RC)

Bit 5= CRC Error (RC)

Bit 4 = Stuff Error (RC)

Bit 3 = Acknowledge Error (RC)

Bit 2 = Bus-Off Status (O=normal operation) (RO)
Bit 1 = Error Passive mode (0O=normal) (RO)

Bit 0 = Warning Status (1=at least one error counter reached 96) (RO)
RC = read, write a 1 to clear,

RO = Read only, writes to bit are ignored

CANGSR = CAN Global Status Register

Bit 5 = SMA = Suspend Mode Acknowledge (O=normal)
Bit 4 = CCE = Change Configuration Enable (O=normal)
Bit 3 = PDA = Power Down Mode Ack. (0=normal)

Bit 2 = Reserved
Bit 1 = RM = Receive mode = CAN module is receiving a frame
Bit 0 = TM = Transmit mode = CAN module is transmitting a frame.

248: Thread 2 Accumulator

Thread 2 local copy of Register 10. This location is accesses as register 10 when
running inside thread 2. It is mapped to register 248 for access by CAN or by Serial port
or Thread1.

249: Cmd Err LOADADD | Reserved
Copy of EEPROM load address prior to Command Error Recovery command (so
Command Error Recovery routine knows the original Command Error)

250: Thread 2 LOADADD |Reserved
Thread 2 EEPROM load address.

251: Thread 2 Program Buffer Start | Size
Start of Program Buffer for Thread 2
Size of Program Buffer for Thread 2

Appendix B: Conversion Data

Inertia - To convert from A to B, multi

ly by the constant in table

A\B oz-in’ oz-in-s? Ib-in? Ib-in-s? N-m-s? g-cm? kg-m? kgf-m-s?
oz-in’ 1 2.59*10° 6.25*10% | 1.6188*10™ | 1.8289*10° 182.9 1.8289*10° | 1.86*10°
oz-in-s? 386.09 1 24.131 6.25*10% | 7.0612*10° | 7.0612*10* | 7.0612*10° 7.2*10™*
Ib-in? 16 4.1441*107 1 2.5901*10° | 2.9262*10* 2926.2 2.9262*10* | 2.9839*10°
Ib-in-s? 6177 16 386.09 1 0.11298 | 1.1298*10° | 0.11298 | 1.1521*107
N-m-s* | 5.4678*10° 141.62 3417.4 8.8512 1 1107 1 0.10197
g-cm? | 2467810° | 4 4162%10° | 3.4174*10" | 8.8512*107 1*107 1 1*107 1.0197*10°
kg-m®> | 5.4678*10* 141.62 3417.4 8.8512 1 1107 1 0.10197
kgf-m-s® | 5.3621*10° 1388.8 3.3513*10° 86.801 9.8067 9.8067*10’ 9.8067 1

Power - To convert from A to B, multi

ly by the constant in table

A\ B Watt HP N-m-RPS | oz-in -RPM | ft-lb-RPM ft-lb/sec N-m/sec
Watt 1 1.341%10° | 0.1592 1352 7.042 0.7375 1
HP 745.7 1 118.7 1.0083*10° | 5251.4 549.93 7457
N-m-RPS 6.283 8.426*10° 1 8496 4425 4.634 6.283
oz-in -RPM | 7.396*10™ | 9.918*107 | 1.177*10" 1 5.208*10° | 5.454*10™ | 7.396*10™
ft-lb-RPM 0.142 1.904*10* | 2.26*107 192 1 0.1047 0.142
ft-lb/sec 1.356 1.818*10° | 0.2158 1833 9.549 1 1.356
N-m/sec 1 1.341%10° | 0.1592 1352 7.0423 0.7375 1

Torque - To convert from A to B, multiply by the constant in table

A\B ft-lb in-lb oz-in N-m kgf-m kgf-cm gf-cm
ft-Ib 1 12 192 1.3558 0.13825 13.825 1.3825*10*
inlb | 8.333*102 1 16 0.113 1.1521*107 1.1521 1152.1
oz-in | 5.2083*10° | 6.25*107 1 7.0615*10° | 7.2006*10™ | 7.2006*102 72.006
N-m 0.73757 8.8509 141.61 1 0.10197 10.197 1.0197*10*
kgf-m 7.2331 86.798 1388.8 9.8067 1 100 1*10°

kgf-cm | 7.2331*102 | 0.86798 13.888 9.8067*1072 1*10° 1 1000

gf-cm | 7.2331*10° | 8.6798*10™ | 1.3888*107 | 9.8067*10° 1*10° 1*103 1

Additional Conversion Data

Length 1 inch = 0.0254 meters Temperature °F=[°C+(9/5)] + 32
Mass 1 ounce = 0.02835 kilograms

Velocity 1 revolution/second (rps) = 60 revolutions/minute (rpm)

Cmd Err Hex
1 0x01
2 0x02
3 0x03
4 0x04
5 0x05
6 0x06
7 0x07
8 0x08
9 0x09

10 Ox0A
11 0x0B
12 0x0C
13 0x0D
14 0x0E
15 0xOF
16 0x10
17 0x11
18 0x12
19 0x13
65 0x41
66 0x42
67 0x43
68 0x44
69 0x45
70 0x46
710x47
72 0x48
73 0x49
74 Ox4A
75 0x4B
76 0x4C
77 0x4D
78 Ox4E
79 0x4F
80 0x50
81 0x51
82 0x52
83 0x53
129 0x81
132 0x84
136 0x88

Appendix C: Command Error Codes

Thread# Description

1 Invalid Register Or Not Enough Writable Registers

1 Not Able To Perform Requested Motion In Requested Time
1 No Motion Was Precalculated

1 Command Prohibited In Current State

1 Invalid Command Bufer Location

1 Unable To Perform Action Because Already Active

1 Invalid Selection: Mode , Subcommand, 1/O Bit

1 Parameter Out Of Range

1 Internal Error Or Bad Calibration Data

1 Invalid Command Number Found In Command Buffer

1 Stack Space Problem - Underflow/Overflow

1 Bad EEPROM Access

1 CAN Dictionary Location Not Writable

1 CAN Dictionary Location Not Readable

1 No Such Data Dictionary Entry

1 CAN Dictionary Internal Consistency Problem (Please Report To Factory)
1 Thread 2 Only Command Trying To Execute In Thread 1

1 CAN Dictionary - Write Not Sucessful Due To System State
1 CAN Dictionary - Byte Count Invalid

2 Invalid Register Or Not Enough Writable Registers

2 Not Able To Perform Requested Motion In Requested Time
2 No Motion Was Precalculated

2 Command Prohibited In Current State

2 Invalid Command Bufer Location

2 Unable To Perform Action Because Already Active

2 Invalid Selection: Mode-Subcommand-I/Obit

2 Parameter Out Of Range

2 Internal Error Or Bad Calibration Data

2 Invalid Command Number Found In Command Buffer

2 Stack Space Problem - Underflow/Overflow

2 Bad EEPROM Access

2 CAN Dictionary Location Not Writable

2 CAN Dictionary Location Not Readable

2 No Such Data Dictionary Entry

2 CAN Dictionary Internal Consistency Problem (Please Report To Factory)
2 Thread 2 Only Command Trying To Execute In Thread 1

1 CAN Dictionary - Write Not Sucessful Due To System State
1 CAN Dictionary - Byte Count Invalid

0 Invalid Register Or Not Enough Writable Registers

0 Command Prohibited In Current State

0 Parameter Out Of Range

