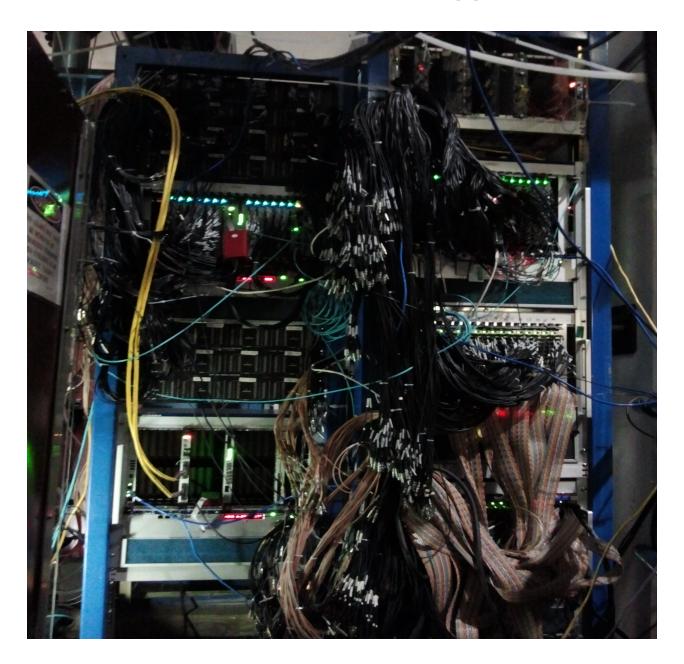
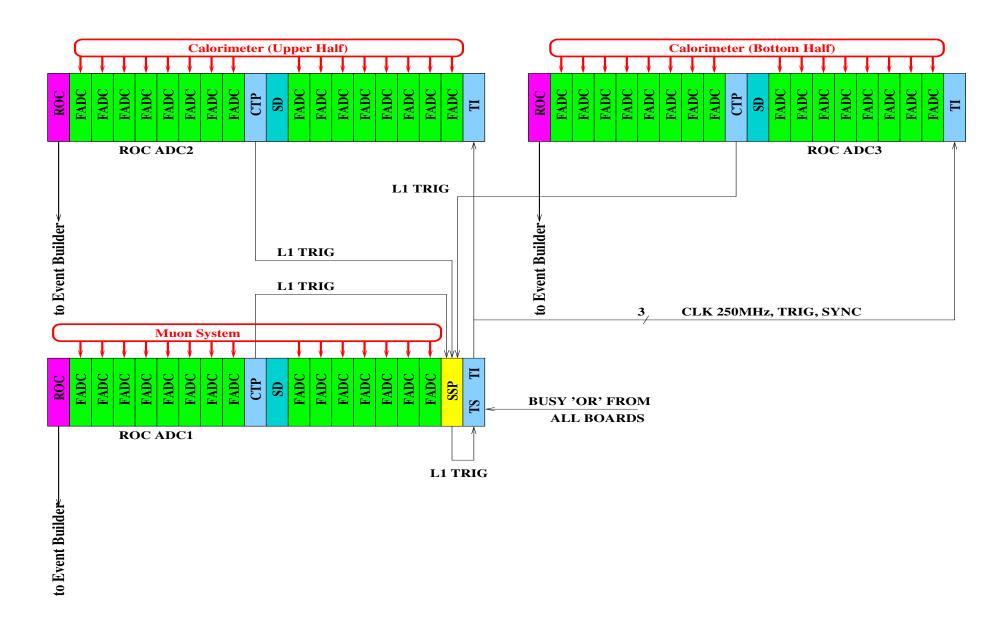
DAQ and Trigger for HPS run

Sergey Boyarinov JLAB July 11, 2013


- 1. Requirements and available test results
- 2. DAQ status
- 3. Trigger system status and upgrades
- 4. Timeline

Requirements


- 50kHz event rate, 100MB/s data rate (calorimeter 25MB/s, muon 6MB/s, SVT 33MB/s)
- Those requirements about twice less then JLAB DAQ parameters
- Dead time < 1%

 During test run event rate was limited by several kHz because of beam conditions. Performance test was conducted by lowering thresholds, event rate 120kHz was achieved with FADC readout only with small data rate (no SVT)

Test run 2012 – DAQ and Trigger worked!

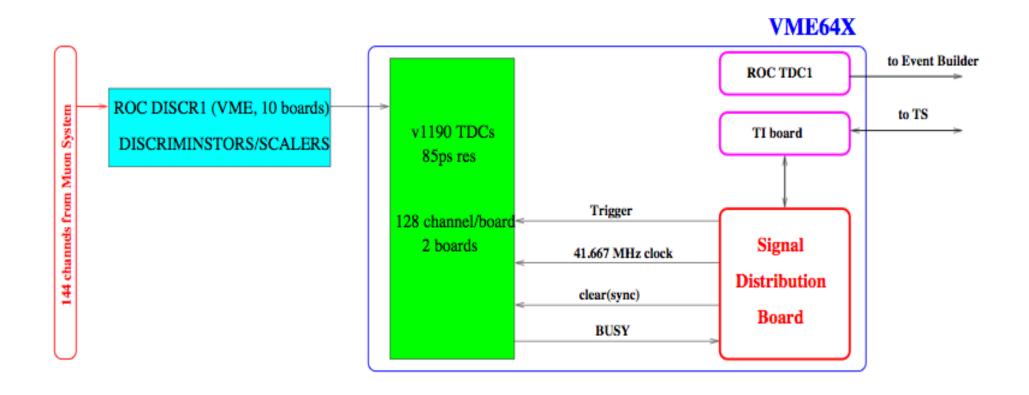
Flash ADC and Trigger System (VXS)

all modules are available

FADC250 Flash ADC

Crate Trigger Processor

Sub-System Processor

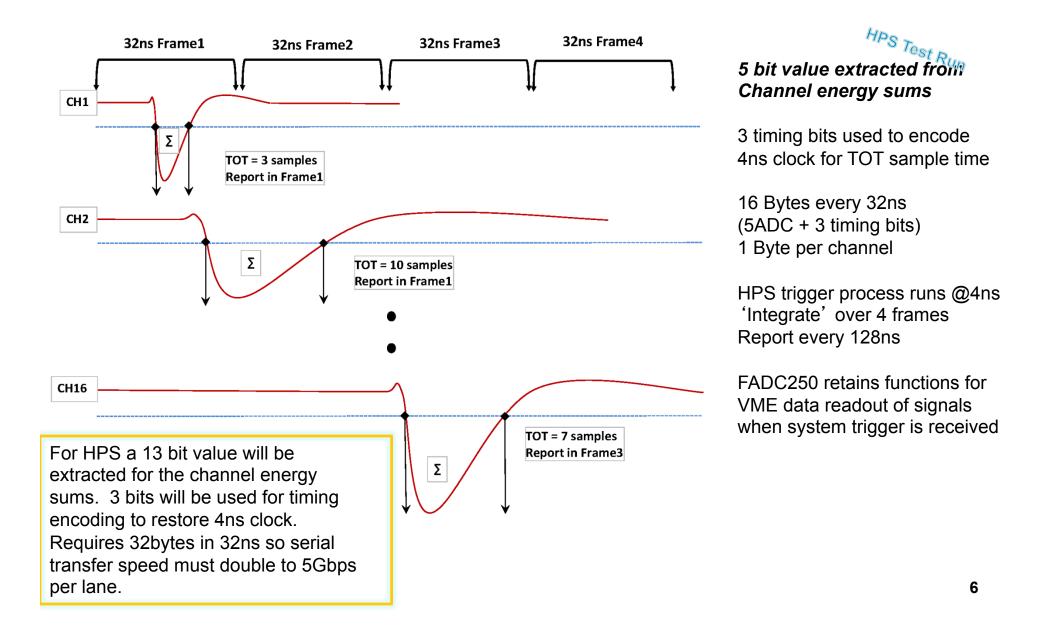


Signal Distribution

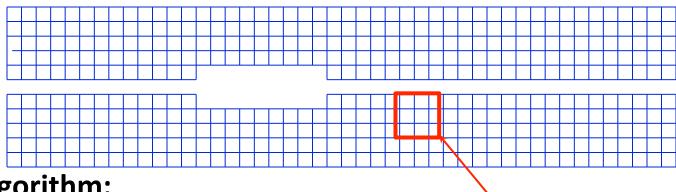
Trigger Interface

Pipeline TDC System (VME64X/VME)

NOTE: will not use it if FADCs produce timing and scalers (timing is not implemented yet)


DAQ System Overview

- Calorimeter and Muon System Readout: 442 channels of 12bit 250MHz Flash ADCs for Calorimeter, up to 256 additional FADC channels if Muon system is used
- SVT readout system (ATCA)
- Optional: 85ps resolution pipeline TDCs with discriminators
- Maximum 7 crates (3 VXS, 3 VME64X, 1 ATCA)
- JLAB CODA DAQ software
- Staff Scientist in Hall B, two supporting groups (DAQ group and Fast Electronics group, 5 people each)
- Status: ready, currently in use by several test setups


3-stage trigger processing – FADC/CTP/SSP

- FADC: pulse integration, report charge and time
- CTP: search for clusters using 3x3 crystals window
- SSP: two calorimeter clusters; cuts on cluster multiplicity, geometry (with respect to beam) and energy (two thresholds)
- Status: ready, used in 2012 HPS test run, some improvements are needed

Framing the Trigger Data from the FADC250

CTP Cluster Finder

CTP Algorithm:

- 1.Add energy from hits together for every 3x3 square of channels in ECAL
- 2. Hits are added together if they occur (leading edge) within a programmable number of clock cycles (4ns ticks)
- 3.If 3x3 energy sum >= cluster energy threshold report cluster to SSP (time, energy, position and 3x3 hit pattern)

Not in Test Run, but will be added in Production Run

Notes:

- 1) Reported cluster information has 4ns timing resolution based on when cluster condition is satisfied
- Reported cluster position is not centroid it is within +/-1 crystal index of centroid

Trigger Improvement summary

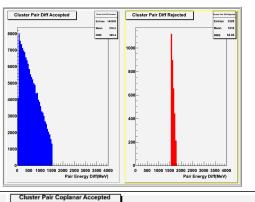
FADC	Test Run	Production Run			
Trigger Energy Resolution	~50MeV-100MeV	1MeV			
Trigger Energy Dynamic Range	31:1	8191:1			
Trigger Channel Gain Matching	Factor 2	+/-2%			

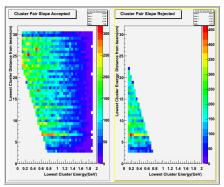
СТР	Test Run	Production Run			
Energy Units	~50MeV-100MeV	1MeV			
3x3 Cluster Hit Pattern	No	yes			

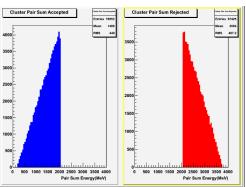
SSP	Test Run	Production Run			
Energy Units	~50MeV-100MeV	1MeV			
Hit Based Triggering	No	Yes			

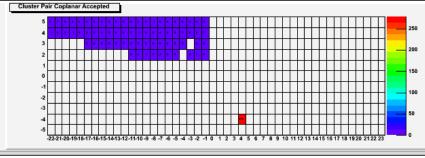
More Trigger Monitoring Histograms

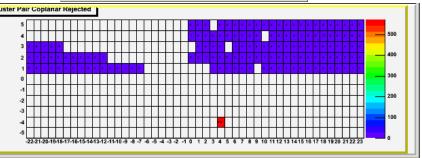
Stage 1 (FADC)


1. Scalers per channel (readout threshold based)


Stage 2 (CTP)


1. Individual ADC channel pulse energy histograms


Stage 3 (SSP)


- 1. Cluster Hits (Position)
- 2. Cluster Hits (Position+Energy) Depending on resources in SSP
- 3. Trigger cut accept/reject:

Diagnostic Additions Summary

FADC	Test Run	Production Run			
Scalers	No	Yes			

СТР	Test Run	Production Run
ADC Pulse Energy Histograms	No	Yes
Scope	No	yes

SSP	Test Run	Production Run			
Event Readout	Minimal	Clusters: energy, position, time, passed cuts			
Scope	No	Yes			
Trigger Cut Histograms	No	Yes			

In addition to trigger system diagnostics:

- Online event analysis will be used to be compared against trigger event data for immediate verification (for each trigger cut, cluster energies, & positions) – at least a fraction of events
- With identical ADC readout/trigger pulse processing and high trigger energy resolution, very precise agreement can be expected between trigger & readout

DAQ/Trigger: Schedule and Budget

WBS	Task Name							2014								
1.5	TDAQ	Feb	Mar Apr Ma	ay Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb	Mar	Ap	or N	May
												EDIOO				
1.5.1	EPICS information into data stream											= EPICS	informat	ion into	data stre	∌am
1.5.2	Software TDAQ											Softwa	are TDAQ	l		
1.5.3	Hardware TDAQ		Hardware TDA	Q												
1.5.4	Update firmware on FADC250							Update fi	rmware o	n FADC2	50					
1.5.5	New firmware for cluster finding						`		New firm	ware for	luster find	ding				
1.5.6	New firmware for SSP							*	New	firmware	for SSP					
1.5.7	Trigger monitoring tools								*	Trigg	er monito	ring tools				
1.5.8	TDAQ ready								12/	6 🧩 TDA	Q ready					
1.5.9	Data Storage															

	Labor	Material	Total	Capital Eq.
TDAQ	\$151	\$10	\$161	\$151
Update firmware on FADC250	\$21	\$0	\$21	\$21
New firmware for cluster finding	\$50	\$0	\$50	\$50
New firmware for SSP	\$37	\$0	\$37	\$37
Trigger monitoring tools	\$43	\$0	\$43	\$43
Data Storage	\$0	\$10	\$10	\$0

Conclusion

- DAQ in 2012 test run was nearly final configuration, do not expect any problems in final HPS DAQ system
- Trigger logic changes will be relatively small we expect this to be an easy implementation because we will have new revisions of hardware ("CTP2" / "SSP2") which have more resources than before
- Trigger parameters should be much easier to follow with with the additional of energy calibration for trigger right at the FADC
- Remaining effort will be invested in diagnostics for real-time feedback and additional offline analysis support
- 2 JLAB electronic engineers (Ben Raydo, Scott Kaneta) assigned to the firmware development, 160K in budget will cover remaining work