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Introduction
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HPS is the first experiment to place
* Silicon strip detector at 1.5 mm from the beam,
* Trigger counter at 2 cm from the beam.
Successful electron running is critically dependent on
* Understanding the beam background,
* Controlling the beam.
| will talk about
* How much we understand the beam background,

* How important the Test Run was,
* How we control the beam.



Beam Background from the Target
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Beam’s eye view of SVT layer 1
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Hits/(60umx60um)/sec at 100 nA

Multiple Coulomb scattered e-

Multiple Coulomb scattered e-’s are dominant background.

~80% SVT layer 1 occupancy
>99% ECal occupancy
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Multiple Scattering Models
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Geant 4
* Urban Model based on two simple functions: % e
- Gaussian at small angles s
8 \
- 1/(1-cosb+b)d at large angles ° . N o
* “..dis not far from 2.” d=2 in Rutherford scattering. "

EGS5 S Yem
* Moliere scattering integral formulated by Bethe.

- Asymptotically approaches Gaussian at small angles

- Asymptotically approaches Rutherford single scattering at large angles
- Uses small angle approximation
Goudsmit-Saunderson Model

* Most general multiple-scattering model applicable to any angle.



Multiple scattering
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Multiple Scattering
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EGS5 vs. Geant4
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» Urban model overestimates tail,
Data are consistent with Moliere



Testing Multiple Scattering Model with the Test Run

Multiple scattering in electron beam

Measure a convolution of pair prod. angle and multiple scattering H

* Comparable in size; only interested in multiple scattering contribution
* Different target thickness change multiple scattering contribution.



Absolute Trigger Rates with ECal
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Trigger Rates vs. Target Thickness is very sensitive to multiple scattering.
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* Verify Geant4 overestimation at large angles

* EGSS5 agree with data to within 10%

Further confidence in estimating the multiple Coulomb scattering

background.



Beam background from the Target
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Effect on Detector Simulation/Estimation

Multiple Coulomb Scattering

Bremsstrahlung
photons
v— e+e- (two-step tridents)
energy degraded electrons

Moller scattering (8-rays)

Hadron production

X-ray generation
Inner shell ionization followed by x-
ray transition

Physics background

Tridents
e-Z —»e-Zy*, y*—> e+e-

SVT occupancy
SVT radiation
Ecal occupancy
Ecal trigger

Ecal occupancy
Ecal trigger
Neutrons on FPGA

SVT occupancy

SVT occupancy
Ecal trigger

SVT occupancy

SVT occupancy
Ecal trigger

EGS5/Geant4

EGS5/Fluka

EGS5
Geant4/Fluka

EGS5/Geant4
NIST x-ray database

MadGraph



SVT Occupancy at 6.6 GeV

Decupancy @ 400 n A
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SVT Layer 1 Occupancy in 8 ns time window
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Ecal Trigger rates

Trigger Rate (kH2)

1.1 GeV beam background 15.7+0.4
1.1 GeV beam background + tridents 18.3+0.4
2.2 GeV beam background 11.2+0.3
2.2 GeV beam background + tridents 15.8+0.4
6.6 GeV beam background 10.2 +£0.3
6.6 GeV beam background + tridents 126+ 0.4
6.6 GeV beam background + tridents + pions (FLUKA) 13.4+0.4
6.6 GeV beam background + tridents + pions (G4) 13.5+04

The HPS trigger system is designed to handle trigger rates above 50 kHz.
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CEBAF Beam Stability and Beam Halo
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Beam is stable within 30 um.
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Beam halo is <10,

F=

Clean and stable beam was demonstrated during the 6 GeV era.
We are confident that similar performance will be achieved in the 12 GeV machine.
However, since we are getting a brand new beam in 2014, we are taking

a conservative approach.
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Beam Offset monitor and Protection Collimator
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Beam halo counter and beam offset monitor
* Continuous and fast monitoring the beam condition

* If there is a significant orbit deviation, the fast shutdown
system (FSD) will shut off the beam in ~40 pusec.

Protection collimator

* Protect SVT from direct beam exposure.
- 1.1x108 e-’s in 40 usec with oy ~ 50 um at 6.6 GeV

* Beam halo suppression
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SVT Protection Collimator

~2 mm x 1.cm Frascati Magnet SVT Layer 1

Collimator o _
I eam pipe I

Z =-800 cm Z=-172 cm Z=10cm
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* Collimator by itself is not very effective as collimation makes
electrons “angry”.

* Collimator combined with the Frascati magnet is very
effective in sweeping out low energy particles. Only particles
above 1 GeV are potential background.
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Collimator simulation

>

)

5.-
7

=
-~F
Errant beam can be blocked. 10 halo in [Y]| > 0.5 mm
can be reduced to 2x10°
Beam survival rate at 6.6 GeV
ot | | | | | | voons L 2cm-thick W
_: | Y
g :
©
5 I ]
S o T
i 0.01 | =
E of ]
S °r ]
= T ]
0.0018:—
6:1 I I I I
0.5 1.0 1.5 2.0 2.5 3.0 3.5

Thickness (cm)




Beam-induced EM fields

RF power in lavg = 200 nA 30 nW
Direct beam field
Voltage drop in Si strip spacing 1.7 mV (t<1ps)
Induced voltage from image charge 33 uVv
Wake field
Transition radiation from target
Incoherent 35 mW (6~1/y)
Coherent 480 nW

Beam-induced EM fields are small because the bunch charge is small in
CW machine.
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Summary
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Multiple Coulomb scattering is the dominant background.

* We understand the multiple scattering model.
* Test Run trigger rate is consistent with the EGSS5 prediction.

Extensive studies have been made on the beam background.

Beam control system will be installed.

* Beam halo monitor and beam offset monitor

* Fast beam shutdown system
Protection collimator will be installed

* To protect SVT from direct beam exposure,

* To suppress beam halo.
HPS will be ready to take electron beam when the beam is
delivered to Hall B in 2014.
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