

HPS ECal & Trigger

Raphaël Dupré

IPN Orsay CNRS-IN2P3 Université Paris-Sud

Unité mixte de recherche

CNRS-IN2P3 Université Paris-Sud

91406 Orsay cedex Tél.: +33 1 69 15 73 40 Fax: +33 1 69 15 64 70 http://ipnweb.in2p3.fr

The ECal

The calorimeter and its vacuum box

- 442 Crystals of PbWO4
- Used for electron/positron identification
- Provide signal for the trigger

The Detection Chain

Detection Chain

- Light produced in the crystal
- Processed by Avalanche Photo-Diode (APD)
- Amplified with preamplifier
- Signal sent to FADC
 - Trigger path
 - Readout path

The Trigger

Trigger system

- Timing directly provided by FADCs
- One Crate Trigger Processor (CTP) per side
 - Form clusters every 4 ns
 - Time coincidence in a given cluster (8 ns)
 - Send cluster information to SSP
- Sub-System Processor (SSP)
 - Time coincidence between clusters (4 ns)
 - Topological selection

Trigger Algorithm

Cluster finding

- Look at energy deposit for all 3x3 configurations of crystal
- Look for maximum configuration if several neighboring clusters pass the threshold

Topological Selection

- High energy sum
- Time coincidence
- Reduced energy difference
- Coplanarity
- Energy slope

Trigger Rates

- Maximum rate for electronics 43 kHz
- Monte-Carlo Simulation
 - Reproduce bunches of electrons
 - We simulated 50 millions bunches per energy
 - Simulation also helped determine trigger cuts

Sample	Rate (kHz)
1.1 GeV beam background	15.7 ± 0.4
1.1 GeV beam background+tridents	18.3 ± 0.4
2.2 GeV beam background	11.2 ± 0.3
2.2 GeV beam background+tridents	15.8 ± 0.4
6.6 GeV beam background	10.2 ± 0.3
6.6 GeV beam background+tridents	12.6 ± 0.4
6.6 GeV beam background+tridents+pions (FLUKA)	13.4 ± 0.4
6.6 GeV beam background+tridents+pions (G4)	13.5 ± 0.4

The Test Run ECal

Mostly the final detector

- Same crystal pattern
- Same cooling system
- Same mechanical structure

Few differences with final ECal

- Several repairs and upgrade in electronics
- More precise Mechanical mounting system

One big addition

Light monitoring system

Test Run Issues

- Mostly linked to electronics
 - Two mother boards not working properly
 - HV shortage & HV group issues
 - One FADC not working properly
 - LV control only in the hall
- Leads to several dead channels
 - 39 disabled or disconnected
- Trigger worked as intended
 - Some problem of gain variations
- Some difficulties for precise positioning of the ECal
- All these can be easily solved

Mother Board

Exit through the top/bottom instead of sides

- Possible because of the reduction of the ECal size compared to first plans
- Reduce the constraints to get the signal out of the box
 - From 16 to 11 levels in the board

Mechanics

Mechanical Structure

- Mostly as developed for the test run
- Including cooling system and thermal isolation
- Adaptation for
 - new mother boards
 - · light monitoring system
- Addition of more precise mounting system

Pre-amplificators

New setting

- Find the good balance of three parameters
 - gain speed noise
- Adapt to new environment without splitters
- Need to renew the stock of spares
- Tests during the Summer in IPNO
 - What is the best balance while keeping linearity on the full band width?
- Production in IPNO end of 2013, early 2014

Light Monitoring System

- Used to follow radiation damages and electronics status
- Design based on tests in INFN
 - Place one LED in front of each crystal
 - Including electronics to control the system
- Use of individual LEDs placed directly in front of each crystals
 - Cheap system compared to optic fibers used for the previous IC calorimeter since each LED costs only ~ 1 \$

Light Monitoring System

Some results are already available

- LED was selected to match the PbWO4 emission spectrum
- LED need to be individually tested
 - factor 2 rejection
- Very high stability
 - ~2% for a given channel over 100h
 - ~0.1% from one channel to another

Other tests are ongoing or planned

- How to fix the LEDs to the crystals?
- Should we use bi-color LEDs?
- Test radiation damages to the LEDs

(A. Celentano & G. Mini' are testing and developing the system in INFN & a postdoc will also be hired on this project in IPNO)

Monitoring and Calibration

Online monitoring to insure data quality

- Characterization of crystals/APD before making the HV groups
- LED light monitoring system
- Dedicated cosmic runs (self triggered)

Offline calibration

- Track based calibration (used in test run)
- Pi0 mass reconstruction

Schedule

Budget

Tasks				Costs (€)				
	Title	Start	End	Lab	Labor	Travel	Material	Total
	Mechanics for MBs	01/06/13	01/07/13	IPNO	4 000			4 000
MB	MB Design	01/07/13	01/09/13	INFN	6 000			6 000
sp.	MB Construction	01/09/13	01/11/13	INFN	4 000	1 000	10 000	15 000
Soar	MB Test	01/11/13	01/12/13	INFN	6 000	8 000	3 000	17 000
Mother Boards (MB)	Ship to IPN Orsay	01/12/13	15/12/13	INFN			2 000	2 000
lg l	Mechanics Assembly	01/01/14	01/02/14	IPNO	12 000		2 000	14 000
_	Ship to JLab	01/02/14	15/02/14	IPNO	1 000			1 000
								59 000
20	PA tests	01/07/13	01/09/13	IPNO	6 000		1 000	7 000
Ě	PA Production	01/11/13	01/03/14	IPNO	9 000		12 000	21 000
Preamplifiers	PA Tests	01/01/14	01/04/14	IPNO	4 000			4 000
Pa	Ship to JLab	01/04/14	15/04/14	IPNO	1 000			1 000
								33 000
SE	Mounting System Design	01/12/13	01/01/14	IPNO	4 000			4 000
Σ	MS construction	01/01/14	01/02/14	IPNO	1 000	2 000	2 000	5 000
								9 000
	LED LMS Design	01/07/13	01/12/13	INFN	6 000	3 000		9 000
	LED holder production	01/09/13	01/12/13	INFN	4 000		5 000	9 000
MS	LMS prototyping	01/10/13	01/01/14	INFN	1 000	3 000	5 000	9 000
_	LMS mechanic	01/12/13	01/01/14	IPNO	4 000		2 000	6 000
	Procurements LMS	01/12/13	01/02/14	IPNO			15 000	15 000
								48 000
	Crystal characterization	01/12/13	01/02/14	INFN	10 000	10 000	8 000	28 000
ECal	Assemble ECal	01/02/14	01/06/14	IPNO	12 000	16 000		28 000
Ш	Test and calibrate ECal	01/06/14	01/08/14	IPNO	6 000	8 000		14 000
	ECal installation	01/08/14	01/09/14	IPNO		4 000		4 000
								74 000
	TOTAL	01/06/13	01/09/14	INFN	37 000	25 000	33 000	95 000
	TOTAL	01/06/13	01/09/14	IPNO	64 000	30 000	34 000	128 000
	TOTAL	01/06/13	01/09/14	IPNO + INFN	101 000	55 000	67 00 0	223 000

Emphasis here on European contribution

- INFN committed to
 - MB Design and construction
 - LMS Design
 - Crystal characterization tooling & manpower
- IPNO committed to
 - All mechanic design and most construction
 - Preamplifier design and production
 - LMS construction
 - Manpower for ECal assembly

Total 223 k€ (290 k\$)

+ contingency 65k€

Conclusions

ECal is already in good shape

- Core elements are ready
 - Crystals, mechanics and DAQ electronics

Many improvements are planned

- Various replacements/improvements in electronics
- Small adjustments in mechanics
- Addition of a light monitoring system
- Most work will be carried on by the European partners

Test run showed that trigger works as expected

No major change here but will take advantage of ECal upgrades

INSTITUT DE PHYSIQUE NUCLÉAIRE ORSAY

ANR Grant

ANR young researcher grant

- 256,880€ (~330k\$)
- Dedicated to HPS

Budget

- 95k€ two years of post doc
- 55k€ of travels
- 100k€ of equipment
 - Thanks to Italians, significant savings (65k€)
- 10k of overhead

Labor

Labor is provided by the lab without charge to the project

APD plans

- Orsay have ~65k€ extra money on ANR grant dedicated to HPS (already secured) and has an application pending for 350k€ more
- INFN will also apply for local funding (~250k€)
- If one of the grant application is successful it will lead to
 - Reduction of preamplifiers gains (reducing noise and/or timing)
 - Allow better calibration with cosmic muons
 - But will make the schedule tight for replacement
 - Travel money is included in INFN grant to have technicians come to JLab to help for the replacement