Setup, beam line and beam properties

Stepan Stepanyan
JLAB

HPS review, July 11 (2013)

Outline

- □ Required beam parameters
- Beam line configuration and detector layout
- □ HPS in Hall-B
- Expected beam properties
- Beam detector alignment
- □ Resources and schedule
- Summary

Beamline design considerations

• HPS – High luminosity (few x10³⁴ s⁻¹ cm⁻²/N) electron scattering experiment using a high Z target (W) and multiple beam energies from 1.1 GeV to 6.6 GeV, capable of detecting and identifying leptons (e, μ) at very forward angles, ≥ 15 mrad (the edge of SVT Layer-I is at 500 μm from the beam plane)

Requirements to the beamline:

- □ An asymmetric beam to (a) improve track momentum resolution with small beam size in the non-bent plane ($\sigma_{\rm Y}$ < 50 μm), and (b) to avoid overheating the target foil by keeping larger beam size in band-plane ($\sigma_{\rm X}$ ~ 250 μm)
- Active (beam halo counters wired into machine fast shutdown system, FSD) and passive (tungsten collimator) protections for SVT to avoid direct exposure to electron beam
- \blacksquare Beam orbit locks with fast feedback to keep beam position stable at the level of ~30 μm
- □ Vacuum on the way of primary and scattered electron beams throughout the system to keep detector occupancies and trigger rates under the control
- □ Stable running at low currents (< 10 nA) for detector commissioning and alignment

Beam parameters and beam line configuration

Hall-B beam line, with minor modifications will fulfill HPS requirements

Parameter	Requirement		Unit	
E	1100	2200	6600	MeV
δΕ/Ε		< 10 ⁻⁴		
Current	<200	<400	<500	nA
Current Instability		< 5		%
σ_{χ}		< 300		μm
σ_{γ}		< 50		μm
Position Stability		< 30		μm
Divergence		< 100		μrad
Beam Halo (> 5σ)		< 10 ⁻⁵		

2-correctors and BPMs

Layout of the HPS setup

- HPS will use the three magnet chicane that has been used in Hall-B experiments before
- The Hall B pair spectrometer magnet, an 18D36, will serve as the analyzing magnet. The Hall B "Frascati" H-magnets will be used as the first and the last dipoles of the chicane
- □ The total length of the system is ~740 cm (without muon system it will be < 650cm)
- □ The analyzing magnet will be operated at 0.25 T-m/0.5 T-m/1.5 T-m fields for 1.1 GeV/2.2 GeV/6.6 GeV running, respectively

Magnets, magnet power supplies, beam profile scatters, beam halo counters, vacuum chambers, most of beam pipes, and parts of magnet stands do exist

HPS in Hall-B downstream alcove

- Hall-B downstream alcove is 600cm deep, 490 cm wide, enough to house HPS detector system
- Space between upstream end of the HPS setup and the Hall-B forward carriage is ~200 cm and will allow installation of H-V corrector magnets and a BPM
- There will be a 3" vacuum beam pipe from the Hall-B space frame to the HPS chicane through the CLAS12 systems (torus, solenoid, and the forward carriage)
- No need for additional shielding, additional beam line, and a special photon beam dump after HPS

Conceptual design of the HPS magnet supports in alcove. Hilman rollers will allow easy positioning and alignment

HPS with CLAS12 running

Additional girders

		Distance to first	Distance to Tagger
What	MyName	HPS dipole	harp
		(m)	(m)
nA Beam Position Monitor	IPM2H01	27.505	12.914
Beam Position Monitor?	IPM2H02	27.255	13.164
Quadrupole	MQA2H02	26.905	13.514
Quadrupole	MQR2H03	26.305	14.114
Quadrupole	MQA2H04	25.705	14.714
Vertical Corrector	MBC2H04V	25.180	15.239
Horizontal Corrector	MBC2H04H	24.98	15.439
Beam Position Monitor	IPM2H04	24.905	15.514
CLAS Target	ETACLAS	15.415	25.004
Center of HPS 1 st Dipole	MBX2H90	0	40.419

Girder-I:

- total length ~2.5 m, will be installed on the platform where Hall-B pair spectrometer magnet is currently located
- will be useful for any Hall-B experiment

		Distance	
		to first	
What	MyName	HPS dipole	Provenance
		(m)	
Vertical Corrector	MBC2H08V	2.5	New
Horizontal Corrector	MBC2H08H	2.35	New
Beam Position Monitor	IPM2H08	2.075	New
Drift			
Beam Viewer	ITV2H09	0.89	ITV2H01?
Wire Scanner	IHA2H09	0.69	IHA2H00
Beam Position Monitor	IPM2H09	0.5	New
Center of HPS 1 st Dipole	MBX2H90	0	Frascati

D:----

Girder-II:

- total length <2 m, will be installed on the forward carriage
- correctors can be used by CLAS12
 experiments to correct beam trajectory
 after the central solenoid or target
 fields

Beam profile

Optimization of the Hall-B beamline with expected changes for 12-GeV operations, with 12-GeV machine design parameters, and with proposed additional two girders has been done using optics algorithm "elegant" (ELEctron Generation ANd Tracking)

The factor of two on σ_{y} is a safety factor

Test of the optimization of beam optics

- □ Optics optimization with "elegant" was tested during the Hall-B TPE experiment using the 2.2 GeV (2 pass) electron beam
- □ Parameters were set for a beam profile of σ_{χ} ≈300 μm and σ_{γ} ≈10 μm at the Hall B "tagger" beam profiler (~1 meters downstream of the Hall-B tagger dipole)

Optics optimization tests (February 2011)

- □ Several beam profile scans with different speed of the wire scanner (0.1 mm/s to 0.5 mm/s) and data readout (0.014s to 0.7s) have been performed during 1 hour of tests
- □ Measured position and widths of X and Y projections suggests:
 - · no beam motion faster than 1 Hz
 - beam position stability is better than 20 μm

Beam tune and beam-detector alignment

- Initial beam tune will be performed according to standard procedures for Hall-B using low current beams (<
 10 nA) directed to the Hall-B tagger dump, and two wire harps located in the upstream tunnel
- Without energizing the HPS chicane, tuned, low current (< 10 nA) beam will be directed to the Hall-B downstream electron beam dump. More tuning will be done with new sets of quads and correctors using wire harp located just upstream of the first chicane dipole
- After desired beam profile is achieved, chicane magnets will be energized. Analyzing magnet will be set to
 its nominal value for a given beam energy, while currents on "Frascati" H-dipoles will be varied to optimize
 counts on downstream halo counters and to have the same beam position on the YAG viewer
- Final adjustments of the beam profile and position will be done using wires mounted on the HPS target
- SVT protection collimator will be positioned on the beam before aligning the first three layers of SVT on the beam using beam-fiducial wires mounted immediately in front of SVT planes

Resources

- Engineering and design will be done at JLAB, SLAC, and ORSAY
- □ Hall B engineering group will be involved in coordinating of the design and engineering efforts from contributing institutions, and in integrating of various new elements into the beam line
- Installation and the commissioning of the new girders will be done by accelerator engineering group
- □ Key personal for beam line design, installation, and operations are:
 - □ A. Freyberger (5%), F-X Girod (50%), and S. Stepanyan (50%) at JLAB, K. Moffeit (20%), T. Maruyama (20%) and C. Field (20%) at SLAC, P. Rosier (10%) and E. Rindel (10%) at Orsay
 - □ beam diagnostics and slow controls N. Gevorgyan (25%) (YrPhI) and H. Egiyan (20%) (JLAB)

Labor	M&S	Total
\$202	\$118	\$320
\$57	\$53	\$110
\$9	\$26	\$35
\$136	\$39	\$175
Labor	M&S	Total
Labor \$8	M&S \$65	Total \$74
\$8	\$65	\$74
	\$202 \$57 \$9	\$202 \$118 \$57 \$53 \$9 \$26

Increase \$320k -

Saving \$74k =

Net Incr. \$246k

The additional costs to refurbish the Alcove are considered HPS Infrastructures

Schedule

- HPS beamline installation will be performed in two steps:
 - I. installation of the chicane in alcove, 6 weeks during Q2 and Q3 of FY14
 - II. installation of the beamline (including vacuum chambers) and beam diagnostic devices, 4 weeks in August September of 2014
- Installation will require efforts from HPS, Hall B and accelerator engineering groups
- Beamline will be surveyed before detectors are installed. HPS detectors can be installed after magnets and vacuum chambers are surveyed
- Final beam line and detector survey will be done after after everything is installed

WBS	Task Name	Duration	Start	Finish	2014 2015
1	HPS	889.13 days?	Fri 3/1/13	Thu 8/25/16	F M A M J J A S O N D J F M A M J J A S O N D J F M
1.1	Beamline	401 days?	Fri 3/1/13	Fri 9/26/14	Beamline
1.1.1	Beamline Design	10 mons	Fri 3/1/13	Thu 12/5/13	Beamline Design
1.1.2	Beamline Review	1 day	Fri 12/20/13	Fri 12/20/13	12/20 🐆 Beamline Review
1.1.3	Platform in the Alcove	6 wks	Mon 5/12/14	Fri 6/20/14	Platform in the Alcove
1.1.4	Magnet Power	7.5 days?	Mon 6/2/14	Wed 6/11/14	□ Nagnet Power
1.1.5	New Beamline Elements & Diagnostics	20 wks	Mon 3/24/14	Fri 8/8/14	New Beamline Elements & Diagnostics
1.1.6	Frascati beampipe 1	8 wks	Tue 4/1/14	Mon 5/26/14	Francati beampipe 1
1.1.7	SVT Vacuum Box	8 wks	Mon 1/6/14	Fri 2/28/14	SVT Vacuum Box
1.1.8	Electron Target	10 days	Mon 1/6/14	Fri 1/17/14	Electron Target
1.1.9	SVT Collimator Protection	4 wks	Mon 6/16/14	Fri 7/11/14	SVT Collimator Protection
1.1.10	Beam Offset Monitor	4 wks	Mon 6/23/14	Fri 7/18/14	Beam Offset Monitor
1.1.11	Beam Profile Monitor	4 wks	Tue 6/24/14	Mon 7/21/14	Beam Profile Monitor
1.1.12	Installation review	1 day	Mon 8/18/14	Mon 8/18/14	8/18 ★ nstallation review
1.1.13	HPS Beamline Installation	4 wks	Mon 9/1/14	Fri 9/26/14	
1.1.14	Beamline Installed	0 days	Fri 9/26/14	Fri 9/26/14	9/26 🔀 Beamline Installed

Summary

- □ HPS experiment will be located in downstream alcove of the experimental Hall B at JLAB, and will utilize standard beamline of Hall-B, with minor additions
- □ The three-magnet chicane has been used successfully before, magnets and power supplies do exist, and relocation of only one of PS's is needed for HPS in alcove
- □ Requested beam parameters are comparable to ones routinely delivered to Hall-B in 6-GeV era. It is expected that 12-GeV machine will behave similarly, especially at low energies (below or at 3 pass)
- □ Critical beam optics parameters have been simulated using design parameters of the 12-GeV machine. Simulation algorithm has been tested with 6-GeV machine
- □ Installation of the chicane in alcove will be done during Q2-Q3 of FY14
- □ Beam line commissioning for HPS is planned during Q1 FY15
- □ Design of new beam line elements started, critical parts have workable solutions
- □ Existing manpower is adequate for timely completion of the design, fabrication, test and installation of the beamline

