Longitudinal shower profile study

- playing with the longitudinal shower parameterization (as Benoit has already shown at the last workshop)
- in order to compare data and Geant4 simulation

Longitudinal shower parameterization

$$\frac{dE}{dt} = Eb\frac{(bt)^{a-1}e^{-bt}}{\Gamma(a)}$$

- b : scaling parameter
 - it almost does not depend on energy
 - it should lie between 0.50 and 0.54
- a : shape parameter
 - $t_{max} = (a-1)/b = \ln(E/E_c) 1$ (Rossi approximation)
 - $\Rightarrow a = 1 + b(\ln(E/E_c) 1)$
 - with $E_c = 610/(Z + 1.24) = 11.04 \text{ MeV}$

1.45 X0 in front of the calorimeter E, Ec and b completely free

1.45 X0 in front of the calorimeter E is free but Ec=11.04 and b=0.52

Search the optimal X0 E, Ec and b completely free

Search the optimal X0 E is free but Ec=11.04 and b=0.52

1.45 X0 in front of the calorimeter E, Ec and b completely free

1.45 X0 in front of the calorimeter E is free but Ec=11.04 and b=0.52

1.55 X0 in front of the calorimeter E, Ec and b completely free

1.55 X0 in front of the calorimeter E is free but Ec=11.04 and b=0.52

Search the optimal X0 E, Ec and b completely free

Search the optimal X0 E is free but Ec=11.04 and b=0.52

All MC (10 to 280 GeV)

Search the optimal X0 all E, Ec and b completely free

All MC (10 to 280 GeV)

Search the optimal X0 all E are free but Ec=11.04 and b=0.52

All MC (10 to 280 GeV)

Search the optimal X0 all E are free but Ec=11.04 and b=0.54

All data (10 to 280 GeV)

Search the optimal X0 all E, Ec and b completely free

All data (10 to 280 GeV)

Search the optimal X0 all E are free but Ec=11.04 and b=0.52

All data (10 to 280 GeV)

Search the optimal X0 all E are free but Ec=11.04 and b=0.50

Discussion

- standard parameterization tends to favor :
 - MC : \sim 1.4 X0 but \sim 5% less energy
 - data : \sim right energy but \sim 1.6 X0
- standard parameterization is for homogeneous material :
 - cal structure between layers
 - Solution of a logs of the set of a logs of the set of a log should not be so huge for particles hitting the center of a log
 Solution
 Soluti

Search the optimal X0 E, Ec and b completely free

Search the optimal X0 E is free but Ec=11.04 and b=0.52

E, Ec and b completely free

E is free but Ec=11.04 and b=0.52

Conclusion

MC

- no difference between CU simulation and pure CsI simulation
- why 5% less energy ?
- 🍠 data
 - we need first to solve our pure calibration problems
 - and then we will be able to estimate the amount of extra material
- other angles : the problem is that for some layers the trajectory crosses two logs and therefore the CU simulation and the pure CsI simulation are no more identical