Scanning around cracks

- Iooking at how things change around cracks
- especially efficiencies
- in order to define beam test configurations

1mm radius electron simulation based on GlastRelease v8r0 but with CalRecon corrected for :

- CU geometry;
- new event axis definition for the parametric method.

From where to where ?

- from the last complete trajectory into Csl on the left hand side of the crack : calorimeter left top
- to the first complete trajectory into Csl on the right hand side of the crack : calorimeter right bottom

depends on the incidence angle

Scan along X description

Fraction of events with Tkr1Z0>0

TkrTotalHits average

TkrNumTracks average

Tracker point of view

- things are rather constant
- except at 0 deg inside the crack (|374.5-x|<15)</p>
- and at 5 deg and 10 GeV (the PSF gets larger)

X0 point of view

from 0 to 16 deg : crack can lead to 0 X0

above 26 deg : always more than 4 X0

Tkr1Z0>0 ++ CalEnergyRaw>10 ++ CalCsIRLn>4

Energy reconstruction efficiency

- the energy reconstruction Classifi cation Tree analysis compares each algorithm to the same resolution model;
- CTBBestEnergyProb>0.5 selects events for which CTBBestEnergy/McEnergy is within $[1 2\sigma_{model}, 1 + 2\sigma_{model}]$ more than half of the time

 \Rightarrow for each algorithm we should look to the fraction of events for which: AlgorithmEnergy/McEnergy is within [1 - 0.2, 1 + 0.2]

CTBBestEnergyProb

- CTBBestEnergyProb is correlated with CalEnergyRaw/McEnergy (allGamma-GR-v9r6-full-merit.root)
- \Rightarrow we should look at the variation of CalEnergyRaw/McEnergy

CalEnergyRaw average

CalEnergyRaw/McEnergy>0.25 fraction

|EvtEnergyCorr/McEnergy-1|<0.2 fraction

|CalLkHdEnergy/McEnergy-1|<0.2 fraction

|CalCfpEnergy/McEnergy-1|<0.2 fraction

Conclusions

almost always the same pattern : almost a symetric decrease between the cal left top configuration and the cal right bottom configuration

 \Rightarrow testing the following confi gurations :

- cal left top
- cal right bottom
- in the middle of them
- and at least two other ones in order to check :
 - the decreasing edge
 - the increasing edge