Backsplash Angular Distribution Studies

Tyrel Johnson Luis C. Reyes Steve Ritz NASA GSFC

Data runs

>200GeV e⁻ data, center of tower 2:

- > Run#700001885, 0deg beam angle
- > Run#700001892, 10deg beam angle
- > Run#700001896, 20deg beam angle
- > Run#700001902, 30deg beam angle
- > Run#700001906, 45deg beam angle
- > Run#700001909, 60deg beam angle

>Used MCs of same runs

- > NewMC with improved beam geometry
- > MIN and MAX light collection efficiency
- > ftp://ftp-glast.slac.stanford.edu/glast.u33/lreyes/beamtest_data/output
- > Also use the above link for the svac tuples of the above runs with Acd10Ids turned on

Cuts

- For data and MC
 - > TkrNumTracks>0
 - > log10(CalEnergyRaw)>3
 - > Tkr1ZDir cut for each beam angle, looked at distributions
 - > 0deg, Tkr1ZDir<-0.9998</p>
 - > 10deg,-0.99<Tkr1ZDir<-0.98</p>
 - > 20deg,-0.955<Tkr1ZDir<-0.925</p>
 - > 30deg,-0.88<Tkr1ZDir<-0.85
 - > 45deg,-0.72<Tkr1ZDir<-0.69
 - > 60deg,-0.51<Tkr1ZDir<-0.485</p>
- For data only
 - GemCondArrivalTimeTkr<30</p>
 - GemCondArrivalTimeCalLe<30</p>

Strategy

Assume all backsplash photons originate from mean showermax position.

Count the number of events with >0 hits above a given threshold in a tile and divide by the total number of events.

Longer pathlength through tile means greater likelihood for backsplash photon to interact.

- Different tiles will appear to be different sizes.
- Calculate backsplash probability/mm through tile/sr as a function of angle.
- >If backsplash is isotropic, should be flat.
- Assume no error in tile coordinates

> Error from mean shower max rms and statistics, propagated

Results

Example, 0.4Mips threshold (onboard veto)

Additional plots at end of presentation BeamTest Meeting 6/27/2007

Results

Probability is roughly isotropic up to $\sim 45^{\circ}$, then rises quickly for greater angles.

Angles are to center of tile from mean showermax.
Can't tell exactly where the photon hit.

>Data and MC have same behavior.

Data does seems to rise more quickly than the MC as the beam angle increases.

> See extra plots.

Conclusions

- The data is generally between the MAX and MIN efficiencies.
- Isotropic for low angles (<~40°) but probability rises quickly for higher angles.
- >At higher angles, data above MAX efficiency MC
 - > MC can't reproduce as well or beam not well described for nonzero incidence angle?
- Things to do:
 - > Understand the geometry of the radiating region
 - > Verify cuts for high beam angle
 - Investigate the systematic effect for onboard effective area at high energy
 - > Suggestions?

Plots from Alex's paper ≻ Beam is 200 GeV e⁻ Different geometry and calorimeter Can't directly compare C1 PS C2 S1 C3 **S2** T1 T2 T3 BD Beam Figure 2. Experimental setup. T1, T2, and T3 - triggering scintillators; BD - tile hodoscope; PS, S1, and S2 shower detectors; C1, C2, and C3 - calorimeter sections

Astroparticle Physics, Vol. 22, 2004

Figure 5. Angular distribution of backsplash for different thresholds. Data are for 200 GeV beam with the tin calorimeter placed at 45cm from BD

>0.2Mips threshold.

BeamTest Meeting 6/27/2007

>0.05/cos(θ), not a fit, just what looked "good".

BeamTest Meeting 6/27/2007

≻60° beam angle

