GLAST CERN 2006 Beamtest

Tkr Hits for MIPs : **FRED**

Johan Bregeon (INFN-Pisa)

December 6th, 2006

Tkr Hits : MIPs with FRED – p.1/11

Data and MC

- **Proton** 6GeV/c : **3300001423 (PS)**
- **•** MC 184 : G4 cuts 10μ in tkr 70μ in CAL

<u>CUTS</u>

- \times 1Hit per plane for Tkr Top & Bottom Layers
- × TkrNumTracks==1 & TkrTotalHits[3]>=36 hits
- $\times \Delta_{time} >= 1ms$
- × Abs(dataVtxZDir)>0.999 for run 752)

Protons with FRED (MC-184)

Events : Data 1423

run 1423 - Event 9							
plane	X(view0)	Y(view1)	Comments				
34/35	772	892					
33/32	772	893					
30/31	772-773	895	2 strips				
29/28	772	895-896	2 strips				
26/27	772	897					
25/24	773	898					
22/23	773	899					
21/20	773	900					
18/19	773	900-901	2 strips				
17/16	773	901-902	2 strips				
14/15	773	903					
13/12	773	904					
10/11	773	905					
9/8	773-774	906	2 strips				
6/7	773-774	907	2 strips				
5/4	773	908-909	2 strips				
2/3	773-774	909	2 strips				
1/0 773 910							
36 Clusters - 44 Hits							

run 1423 - Event 18								
plane X(view0)		Y(view1)	Comments					
34/35	834	850						
33/32	835-836	851	2 strips					
30/31	859/837	931/851	2 clusters					
29/28	838	852						
26/27	839-840	852	2 strips					
25/24	841	853						
22/23	842	854						
21/20	843	855						
18/19	844	855						
17/16	846	855-856	2 strips					
14/15	847	856						
13/12	848-849	857	2 strips					
10/11	850	857						
9/8	851-852	858	2 strips					
6/7	853-854	859	2 strips					
5/4	856	860						
2/3	858	861						
1/0	859	862						
38 Clusters - 44 Hits								

run 1423 - Event 2098							
plane	X(view0)	Y(view1)	Comments				
34/35	847	833					
33/32	848	833					
30/31	849	834					
29/28	850-851	834	2 strips				
26/27	852/837-838	834/830-831	lots of stuff				
25/24	853	835					
22/23	854	835					
21/20	855	836					
18/19	855-856	836	2 strips				
17/16	856-857	837	2 strips				
14/15	858	837					
13/12	859	838					
10/11	860	838-839	2 strips				
9/8	858-859-860-861	839	4 strips				
6/7	862	840					
5/4	863	840					
2/3	863	841					
1/0	864	841					
38 Clusters - 47 Hits							

- Many clusters with 2 strips
- sometimes 2 clusters, *more or less* close one to each other ($\Delta L < 1 cm$).
- higher probability of 2 strip cluster when the proton is drifting from a strip to the following one ?

Events : MC-184

MC 184 - Event 5]	MC 184 - Event 5			MC 184 - Event 5						
plane	X(view0)	Y(view1)	Comments		plane	X(view0)	Y(view1)	Comments	plane	X(view0)	Y(view1)	Comment
34/35	823	785			34/35	894	927		34/35	735	726	
33/32	821	785			33/32	893	927		33/32	734	725	
30/31	820	785			30/31	892	927		30/31	732	725	
29/28	818	784			29/28	891	928		29/28	731	737-738/724	2 clusters
26/27	817	784			26/27	889	928		26/27	729	723-724	2 strips
25/24	815	783			25/24	888	928		25/24	728	722	
22/23	813	783			22/23	886	928		22/23	726	721-722	2 strips
21/20	812	782			21/20	885-886	929/919-920	2 clusters	21/20	725	720	
18/19	810	782			18/19	884	929		18/19	724	720	
17/16	809	782			17/16	882	930		17/16	722	719	
14/15	807	781			14/15	881	930		14/15	721	718	
13/12	806	780			13/12	880	930		13/12	719	717	
10/11	804	779-780	2 strips		10/11	878	931		10/11	718	715-716-717	3 strips
9/8	803	779			9/8	877	931-932	2 strips	9/8	716	716	
6/7	801	779			6/7	870-871/875	931	2 clusters	6/7	714	715	
5/4	800	778			5/4	874	932		5/4	712	714/698-699	2 clusters
2/3	798	777			2/3	872	932		2/3	711	713	
1/0	797	776			1/0	871			1/0	709	712	
36 Clusters - 37 Hits				38 Clusters - 42 Hits			38 Clusters - 42 Hits					

- some clusters with 2 strips
- sometimes 2 clusters, **close** one to each other (few strips).
- higher probability of 2 strip cluster when the proton is drifting from a strip to the following one ?

Clusters on the same plane

- At first look : similar distributions for MC and Data
- \rightarrow cluster are very likely produced by the same kind of process
- In details : Data distribution shows more clusters close one to each other and more clusters far on from each other

Observations

- Events have the same shape in Data and MC, however...
- Wider clusters : most probable to find a cluster with 2 strips in data than in MC
- More clusters : most probable to see 2 clusters on the same plane in data than in MC
 - additionnal cluster is close to the one on the track
 - correlation X/Y planes and/or successive planes ?
- In the probability of having more strips/clusters

Ideas :

- \rightarrow Hardware problem ? (requires a lot of imagination !)
- \rightarrow Charge sharing underestimated ? (by such a big factor ?)
- \rightarrow Production of low energy electrons (δ_{rays})(hypothesis of my September 7th slides...)

Observations

- Events have the same shape in Data and MC, however...
- Wider clusters : most probable to find a cluster with 2 strips in data than in MC
- More clusters : most probable to see 2 clusters on the same plane in data than in MC
 - additionnal cluster is close to the one on the track
 - correlation X/Y planes and/or successive planes ?
- In the probability of having more strips/clusters

Ideas :

- \rightarrow Hardware problem ? (requires a lot of imagination !)
- \rightarrow Charge sharing underestimated ? (by such a big factor ?)
- \rightarrow Production of low energy electrons (δ_{rays})(hypothesis of my September 7th slides...)
- ⇒ Use FRED on the MC to see how low energy electrons produce these hits/clusters.

MC-184 : Event 5

Low energy electrons produced by 'ionization' can turn on a strip aside the one in which the proton passes, thus producing a 2 hits cluster.

MC-184 : Event 15

3D Viewer O	- 🛛 🗙 🛛 Р	article	С	lusters
Track very low	Name	Value	Name	Value
Pherov e-	Туре	Particle	Туре	TkrCluster
\energy e-	DrawAs	Line	Layer	Event
	Layer	Event	Sequence	6
<u>}</u>	Name	e-	Tower	3
	Ei	1.03614	Plane	6
electron/	Eo	0	View	0
	Initial Positio	(587.406,38.329,142.219)	First Strip	870
	Final Position	(586.339,38.940,139.186)	Last Strip	871
	Direction	(-0.53705,0.45569,-0.7098	Position	(586.308,0.000,139.538)
	Proc	hloni	RawToT	106
	PDG	11	Mips	3.17321
additional main	Status Low	0001 0100 0000 0000	Sel	True
additional	Charge	neg	Name	Value
cluster X Cluster	Color	red	Туре	TkrCluster
clusier / clusier	NumDaughte	rs O	Layer	Event
	Sel	True	Sequence	7
-D: 1-82			Tower	3
			Plane	6
			View	0
			First Strip	875
			Last Strip	875
			Position	(587.334,0.000,139.538)
			RawToT	106
			Mips	3.17321
			Ral	Train

Low energy electrons produced by 'ionization' can even create their own cluster which size can be more than 1.

Conclusions

- In the MC, additionnal hits and additional clusters (with respect to a perfect *mip*) are due to Δ_{rays}
- This hit production depends upon : the number, the creation point, the energy and the direction of the created electrons.
- We see more hits and more clusters in the data, but it looks like they come from the same process as events have the same *shape*.
- Very likely this process is underestimated in our MC

Conclusions

- In the MC, additionnal hits and additional clusters (with respect to a perfect *mip*) are due to Δ_{rays}
- This hit production depends upon : the number, the creation point, the energy and the direction of the created electrons.
- We see more hits and more clusters in the data, but it looks like they come from the same process as events have the same *shape*.
- Very likely this process is underestimated in our MC
 - Material properties?
 - Discriminator thresholds ?
 - G4 electron production/propagation process ?
 - G4 configuration in BTR

Further work

- Review our use of G4 ionization processes
- Solution Use the MC to study Δ_{ray} production in the Tracker
 - △ How many do we have ? How many do we need ?
 - Production point : in which material ?
 - Energy spectrum
 - Angular spectrum
- Consequences on the electromagnetic showers ?