

Gamma-ray Large Area Space Telescope

Measuring the PSF and the energy resolution with the GLAST-LAT Calibration Unit

Ph. Bruel

on behalf of the beam test working group

- Data/Simulation agreement and the LAT analysis
- Beam tests at CERN (PS and SPS)
 - Tracker and PSF
 - Calorimeter and energy resolution
- Conclusions

Data/simulation agreement and analysis

- Event processing steps :
 - Trigger and On Board Filter
 - Reconstruction algorithms
 - Classification trees (-> IRFs and Background rejection)
- Example 1 : PSF
 - Tracks, vertices are reconstructed
 - Using not only tkr variables, the classification tree gives :
 - The best estimate of the incoming direction of the gamma
 - A quality variable used to select the best measured gammas
- Example 2 : Energy resolution
 - 3 energy reconstruction algorithms -> 3 estimates
 - Using not only cal variables, the classification tree gives :
 - The best estimate of the energy of the gamma
 - A quality variable used to select the best measured gammas
- The calibration unit is different from the LAT
 - We can not apply directly and simply the classification tree analysis
 - But we can compare between data and MC
 - the PSF of each direction estimate
 - The energy resolution of each energy estimate

Dealing with a huge phase space...

1700 runs, 94M events, 330 configurations (particle, energy, angle, impact position) For PSF and energy resolution analysis : gammas (->2.5 GeV), electrons (5->280 GeV)

First GLAST symposium

Mass simulation

Site	Particle	Energy	Angle	•
PS	Full-brem	2.5	0,30,50,-215	
PS	Tagged g	0.5,1,1.5 ,2.5	0,10,20,30,50	
PS	e+, e-	1		•
PS	e- scan	5		•
PS	р	6,10	0,30,60,90	
SPS	е-	10,20,50 ,100,200 ,280	10,20,30,45,60 degree	
SPS	р	20,100	0	

- Simulation of the beam upstream the CU (Geant4)
 - Trigger/veto scintillators & cerenkov
 - Electron tagger at PS
- LAT simulation (GLEAM-Geant4)
 - Automatic generation of the run configuration
 - Allowing the best comparison
- Efficient processing through the pipeline at SLAC
- Geant4 optimization
 - Simulation parameters
 - Physics lists

Tracker (work in progress...)

Hit multiplicity for gammas (0.5 to 2.5 GeV)

Hit multiplicity for 100 GeV electrons

- 10-20% more hits in data than in MC
- Effect almost independent of particle, E
- Clusters are well reproduced by MC
- More secondary particles / preshower ?
 - Lower range cuts in Geant4 : no effect
 - Testing low energy processes
 - The calorimeter should say if there is extra material upstream the CU

Tracker (work in progress...)

- Preliminary PSF results for events with 1 vertex and 2 tracks shows a good agreement between data and the simulation
- This not yet the PSF from the IRFs (i.e after signal selection and background rejection)

Calorimeter (work in progress...)

- Importance of quality/fiducial cuts
- Raw energy : 10% more energy in data for electrons at SPS

First GLAST symposium

Calorimeter (work in progress...)

- The beam tests allow us to fully understand the electronics of the calorimeter
 - High rates
 - Cross-talk
 - Non linearity
- The 10% energy excess at high energy is mainly due to calibration issues
 - 2diodes x 2gains : 4 ranges from 1 MeV -> 70 GeV
 - Ground calibration : muon peak at 11 MeV
 - CERN data allow a complete check of our procedure to extrapolate the energy scale from 11 MeV up to 70 GeV

Calorimeter (work in progress...)

- Very good agreement at PS energies
- Thanks to the electron tagger, we can measure the energy resolution from 50 MeV up to 2.5 GeV
- After naive calibration correction, very good agreement at SPS energies

Conclusions

- A huge amount of good quality data to ensure that our simulation well reproduces the data through the LAT very large phase space
- Data reprocessing and mass simulation are fast and easy
- Ongoing tests to understand the current low-level disagreements
- The preliminary results show that PSF and energy resolution are well reproduced by the simulation