Angular Dispersion with BT Gamma data

Nicola Mazziotta and Monica Brigida
Jan 24, 2007
mazziotta@ba.infn.it

Configurations

- Normal incidence
- Tower 2: all gamma runs (both full brems. and tagged) have been used at 0°. The pion contamination has been rejected by requiring the X Vertex position in Tower 2 (VtxX < 350.)
- Tower 3: all gamma runs (both full brems. and tagged) have been used at 0°
- 30: all gamma runs (both full brems. and tagged) have been used at 30°
- 50° : all gamma runs (both full brems. and tagged) have been used at 50°
- MC at normal incidence on Tower 3

Total Triggers Vs. Run

Real Data at 50 Deg Incidence

Event classification

Score

- Class A: events with 1 vertex
- Class A.1: events with 2 tracks
- Class A.1.1: CalCsIRLn > 6 New
- Class A.2: events with 1 track
- Class A.2.1: CalCsIRLn > 6 New
- Class B: events with 2 Vertices
- Class C: events with 3 o more Vertices

The CU has been used as standalone detector Level 0 Cut: CalEnergyRaw > 0

Total Radiation Length in crystals

Tower 2 - Real Data at Normal Incidence

Real data at 30 Deg Incidence

Tower 3 - Real Data at Normal Incidence

Real Data at 50 Deg Incidence

Energy calibration - Class A events

Energy bias - Class A events

Tower 2 - Real Data at Normal Incidence

Real data at 30 Deg Incidence

Tower 3-Real Data at Normal Incidence

Real Data at 50 Deg Incidence

X Vertex position

Tower 2 - Real Data at Normal Incidence

Nicola Mazziotta - BT VRVS Jan 17, 2007

Y Vertex position

Z Vertex position

Energy distribution

5 bins per decade starting from 20 MeV have been defined

Tower 2-Real Data at Normal Incidence

Real data at 30 Deg Incidence

Nicola Mazziotta - BT VRVS Jan 17, 2007

Real Data at 50 Deg Incidence

Angular dispersion evaluation

- The gamma angle has been calculated with the respect the nominal beam direction
- Beam direction: (-Sin(theta), 0, -Cos(theta)) where theta is the tilted angle of the CU
- Measured direction: Vertex direction in the root files
- For each bin energy, the angular dispersion distribution is filled in a histogram with 0.1° bin width

Angular distribution, $79.6<\mathrm{E}(\mathrm{MeV})<126.2$

Tower 2 - Real Data at Normal Incidence

PSF evaluation

- At given fraction, f, (e.g. 68\% or 95\%), the angular bin number i is found such that the integral of events, P_{i}, is $P_{i}<f N<P_{i+1}$, where N is the total number of entries.
- The angle, θ_{f}, at the fraction f is evaluated as $\theta_{f}=\theta_{i}+h\left(f N-P_{i}\right) /\left(P_{i+1}-P_{i}\right)$, where h is the angular bin step (0.1°)
- The statistical error $\delta \theta_{f}$ has been evaluated by taking only the error (Poisson) for the number counts N, P_{i} and P_{i+1}, i.e. $\delta \theta_{i}=0$ and $\delta h=0$

Systematic errors

- Beam divergence: few mrad, $\delta \theta_{f} \sim 0.1^{\circ}$
- CU position with respect to the beam: $\delta \theta_{f} \sim 0.1^{\circ}$
- We have studied the angular distribution in the few electron runs taken just before/after the photon runs with B off.
- Gamma production angle by bremsstrahlung with respect to the electron: few mrad, $\delta \theta_{f} \sim 0.1^{\circ}$
- The quoted value comes from the cross section used in Geant code

Tower 2 - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Angular Resolution Vs. Reconstructed Energy at 30 Deg Incidence

Nicola Mazziotta - BT VRVS Jan 17, 2007

Tower 3 - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

PSF at 95\% - Class A.1.1.

Tower 2 - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Tower 3-Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Tower 2 - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Angular Resolution Vs. Reconstructed Energy at 30 Deg Incidence

Nicola Mazziotta - BT VRVS Jan 24, 2007

Tower 3 - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

18

PSF at 68\% - Class A.2.1

Tower 2 - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Angular Resolution Vs. Reconstructed Energy at 30 Deg Incidence

Tower 3-Angular Resolution Vs. Reconstructed Energy at Normal Incidence

MC normal incidence Tower 3

Tower 3 - MC Data - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

$$
\text { Tower } 3 \text { - MC Data - Angular Resolution Vs. Reconstructed Energy at Normal Incidence }
$$

Tower 3 - MC Data - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Data-MC comparison: PSF 68\%

Tower 3 - Data/MC Comparison - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Data-MC comparison: PSF 68\% in Thick and Thin layers

Tower 3-Data/Mc Comparison - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Data-MC comparison: PSF 95\%

Tower 3 - Data/MC Comparison - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Data-MC comparison: PSF 95\% in Thick and Thin layers
 Tower 3 - Data/MC Comparison - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Tower 3-Data/Mc Comparison - Ansular Reasotution Vs. Reconsatructod Enoray net Normat inciaenced

Data-MC comparison: PSF 95\% to 68\% Ratio

Tower 3 - MC Data - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Conclusion

- The angular dispersion has been evaluated at normal incidence in Tower 2 and 3 , at 30° and at 50°
- All available photon runs (both full brems and tagged) have been merged
- The data are quite in agreement with the MC, at least at normal incidence

