Angular Dispersion with BT Gamma data

Nicola Mazziotta and Monica Brigida Jan 24, 2007 mazziotta@ba.infn.it

Configurations

- Normal incidence
 - Tower 2: all gamma runs (both full brems. and tagged) have been used at 0°. The pion contamination has been rejected by requiring the X Vertex position in Tower 2 (VtxX < 350.)
 - Tower 3: all gamma runs (both full brems. and tagged) have been used at 0°
- 30°: all gamma runs (both full brems. and tagged) have been used at 30°
- 50°: all gamma runs (both full brems. and tagged) have been used at 50°
- MC at normal incidence on Tower 3

Total Triggers Vs. Run

Nicola Mazziotta - BT VRVS Jan 17, 2007

Event classification

Score

- Class A: events with 1 vertex
 - Class A.1: events with 2 tracks
 - Class A.1.1: CalCsIRLn > 6 New
 - Class A.2: events with 1 track
 - Class A.2.1: CalCsIRLn > 6 New
- Class B: events with 2 Vertices
- Class C: events with 3 o more Vertices

The CU has been used as standalone detector Level 0 Cut: CalEnergyRaw > 0

Total Radiation Length in crystals

Nicola Mazziotta - BT VRVS Jan 17, 2007

Energy calibration - Class A events

Nicola Mazziotta - BT VRVS Jan 17, 2007

Energy bias – Class A events

Nicola Mazziotta - BT VRVS Jan 17, 2007

X Vertex position

8

Y Vertex position

Z Vertex position

Nicola Mazziotta - BT VRVS Jan 17, 2007

Energy distribution

Angular dispersion evaluation

- The gamma angle has been calculated with the respect the nominal beam direction
 - Beam direction: (-Sin(theta), 0, -Cos(theta))
 where theta is the tilted angle of the CU
 - Measured direction: Vertex direction in the root files
- For each bin energy, the angular dispersion distribution is filled in a histogram with 0.1° bin width

Angular distribution, 79.6 < E(MeV) < 126.2

Tower 2 - Real Data at Normal Incidence

Nicola Mazziotta - BT VRVS Jan 17, 2007

PSF evaluation

- At given fraction, *f*, (e.g. 68% or 95%), the angular bin number *i* is found such that the integral of events, *P_i*, is *P_i < fN < P_{i+1}*, where N is the total number of entries.
- The angle, θ_f , at the fraction f is evaluated as $\theta_f = \theta_i + h (fN P_i)/(P_{i+1} P_i)$, where h is the angular bin step (0.1°)
- The statistical error $\delta \theta_f$ has been evaluated by taking only the error (Poisson) for the number counts *N*, *P*_i and *P*_{i+1}, i.e. $\delta \theta_i = 0$ and $\delta h = 0$

Systematic errors

- Beam divergence: few mrad, $\delta \theta_f \sim 0.1^\circ$
- CU position with respect to the beam: $\delta \theta_f \sim 0.1^{\circ}$
 - We have studied the angular distribution in the few electron runs taken just before/after the photon runs with B off.
- Gamma production angle by bremsstrahlung with respect to the electron: few mrad, $\delta \theta_f \sim 0.1^\circ$

The quoted value comes from the cross section used in Geant code

PSF at 68% - Class A.1.1

Tower 3 - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

PSF at 95% - Class A.1.1.

Tower 2 - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Tower 3 - Angular Resolution Vs. Reconstructed Energy at Normal Incidence

Nicola Mazziotta - BT VRVS Jan 17, 2007

PSF 95% to 68% ratio – Class A.1.1

Tower 3 - Angular Resolution Vs. Reconstructed Energy at Normal Incidence 5 5 Class A.1.1 with systematic erro 4.5Class A.1.1 with systematic error 4.5 Class A.1.1 Thin with systematic error Class A.1.1 Thin with systematic error 4 Class A.1.1 Tkick with systematic error Δ Class A 1 1 Tkick with systematic erro 3 2 0.5 0.5 0 0 10^{3} 10² 10² 10³ Energy (MeV) Energy (MeV) Angular Resolution Vs. Reconstructed Energy at 30 Deg Incidence Angular Resolution Vs. Reconstructed Energy at 50 Deg Incidence 5 5 Class A.1.1 with systematic error 4.5 Class A.1.1 with systematic error 4.5 Class A.1.1 Thin with systematic error Class A.1.1 Thin with systematic error Δ Δ Class A 1 1 Tkick with systematic erro Class A.1.1 Tkick with systematic error ມູ ເຊັ່ງ .5 1⊦ 0.5 0.5 0 0 10^{2} 10³ 10² 10³ Energy (MeV) Energy (MeV)

Nicola Mazziotta - BT VRVS Jan 24, 2007

PSF at 68% - Class A.2.1

Nicola Mazziotta - BT VRVS Jan 17, 2007

MC normal incidence Tower 3

Nicola Mazziotta - BT VRVS Jan 17, 2007

Data-MC comparison: PSF 68%

Nicola Mazziotta - BT VRVS Jan 17, 2007

Data-MC comparison: PSF 68% in Thick and Thin layers

Nicola Mazziotta - BT VRVS Jan 17, 2007

Data-MC comparison: PSF 95%

Data-MC comparison: PSF 95% in Thick and Thin layers

Nicola Mazziotta - BT VRVS Jan 17, 2007

Data-MC comparison: PSF 95% to 68% Ratio

Nicola Mazziotta - BT VRVS Jan 17, 2007

Conclusion

- The angular dispersion has been evaluated at normal incidence in Tower 2 and 3, at 30° and at 50°
 - All available photon runs (both full brems and tagged) have been merged
- The data are quite in agreement with the MC, at least at normal incidence