Angular Dispersion with BT Gamma data

Nicola Mazziotta and Monica Brigida
Jan 17, 2007
mazziotta@ba.infn.it

Event classification

Score

- Class A: events with 1 vertex
- Class A.1: events with 2 tracks
- Class A.2: events with 1 track
- Class B: events with 2 Vertices
- Class C: events with 30 more Vertices

Input root files and cuts

- The Recon, Svac and Merit root files have been used (latest version available)
- The standard variables available in the root files have been used
- The CU has been used as standalone detector
- Level 0 Cuts:
- CalEnergyRaw > 0

Tower 2 Full Brems at 0° 2.5 GeV/c Beam Electron

X Vertex position

Class A. 1 Vtx X Dist without geometrical CUT

Class A. 2 Vtx X Dist without geometrical CUT

Y and Z Vertex position with geometrical cut in X axis

Z Vertex position with geometrical cut in the X axis

Nicola Mazziotta - BT VRVS Jan 17, 2007

Energy distribution

5 bins per decade starting from 20 MeV have been defined

Class A. 1

About the energy: Comparison with the tagged energy in the Tagged runs

Class A Events: 2.5 GeV/C beam

Class A Events: 1.5 GeV/C beam

Class A Events: 1.0 GeV/C beam

Class A Events: 0.5 GeV/C beam

Comparison (2.5 GeV/c Beam)

Comparison (1.5 GeV/c Beam)

So, we select the EvtEneCorr to describe the angular dispersion as function of the gamma energy.

Angular dispersion evaluation

- The gamma angle has been calculated with the respect the nominal beam direction
- Beam direction: (-Sin(theta), 0, -Cos(theta)) where theta is the tilted angle of the CU
- Measured direction: Vertex direction in the root files
- For each bin energy, the angular dispersion distribution is filled in a histogram with 0.01° bin width

Angular distributions

Angular distributions

Angular distributions

PSF evaluation

- At given fraction, f, (e.g. 68\% or 95\%), the angular bin number i is found such that the integral of events, P_{i}, is $P_{i}<f N<P_{i+1}$, where N is the total number of entries.
- The angle, θ_{f}, at the fraction f is evaluated as $\theta_{f}=\theta_{i}+h\left(f N-P_{i}\right) /\left(P_{i+1}-P_{i}\right)$, where h is the angular bin step (0.01°)
- The statistical error $\delta \theta_{f}$ has been evaluated by taking only the error (Poisson) for the number counts N, P_{i} and P_{i+1}, i.e. $\delta \theta_{i}=0$ and $\delta h=0$

PSF at 68\% and at 95\% (only statistic error)

Systematic errors

- Beam divergence: few mrad, $\delta \theta_{f} \sim 0.1^{\circ}$
- CU position with respect to the beam: $\delta \theta_{f} \sim 0.1^{\circ}$
- Gamma production angle by bremsstrahlung with respect to the electron: few mrad, $\delta \theta_{f} \sim 0.1^{\circ}$
- Gamma Energy evaluation: the effect is to shift to the left/right the PSF

Class A. 1 PSF at 68\% and at 95\% (statistic + systematic errors)

Conclusion

- The angular dispersion has been evaluated in the full brems data in tower 2 , at 0° and 2.5 GeV electron beam energy
- An events classification has been introduced
- Class A is well understood
- Class B needs to be investigated. We think that in these events there are a pion pollution, so many of Class B events will fall in the Class A
- The analysis need to be reviewed with further cut, e.g. a minimal track length should be requested in the CAL
- An attempt to evaluate the systematic error is discussed
- The angular dispersion is being to evaluated at 30° and 50°

