Angular resolution with electrons (v1r030604p6) Vs beam incoming direction

Nicola Mazziotta
Sep 19, 2007
mazziotta@ba.infn.it

Introduction

> The angular resolution increases with the energy, i.e. it is less than 0.1° above 1 GeV .
> To evaluate the angular resolution with high energy electrons, the beam incoming direction must be well known, e.g. the beam direction cosine precision must be of order 10^{-6} or better (see David talk given on July $\mathbf{2 5}^{\text {th }}$)
$>$ A scanning procedure could be used to align the beam to the CU

CU-Beam Alignment

The alignment is performed by a scanning procedure starting from the nominal incoming beam direction defined by the first track cosine directions.

$$
\begin{gathered}
\left(\varphi_{\text {beam }}^{\text {nominal }}, \vartheta_{\text {beam }}^{\text {nominal }}\right) \\
\Downarrow
\end{gathered}
$$

$$
\left(\varphi_{\text {beam }}^{\text {nominal }}+\Delta \varphi, \vartheta_{\text {beam }}^{\text {nominal }}+\Delta \vartheta\right)
$$

where

$$
\Delta \varphi=\Delta \vartheta=-1^{0}+\text { Nstep } * 0.01^{0}
$$

Nstep = 0, 1,, 200

$10 \mathrm{GeV}-0 \mathrm{deg}$

Class A.2.1 PSF (deg) Vs ($\Delta \phi, \Delta \theta)$

Class A.2.1 PSF (deg) Vs $(\Delta \phi, \Delta \theta)$

$20 \mathrm{GeV}-30 \mathrm{deg}$

Class A.2.1 PSF (deg) Vs ($\Delta \phi, \Delta \theta)$

Class A.2.1 PSF (deg) Vs $(\Delta \phi, \Delta \theta)$

Photon + Electron Data

Normal Beam Incidence

Nicola Mazziotta - BT EVO Sep 19, 2007

