

Energy reconstruction

Tomi Ylinen

Royal Institute of Technology (KTH) Kalmar University

GLAST BEAM TEST EVO MEETING - JUL. 25, 2007

Introduction

- 5 GeV, 0 deg electron run 1460 (data: v1r030603p7, MC: v6r0919p1) from PS 10 GeV, 0 deg electron run 2338 (data: v1r030604p6, MC: v6r0919p1) from SPS 20 GeV, 0 deg electron run 2083 (data: v1r030604p6, MC: v6r0919p1) from SPS 50 GeV, 0 deg electron run 2039 (data: v1r030604p6, MC: v6r0919p1) from SPS 99 GeV, 0 deg electron run 1980 (data: v1r030604p6, MC: v6r0919p1) from SPS 196 GeV, 0 deg electron run 1911 (data: v1r030604p6, MC: v6r0925p2) from SPS 282 GeV, 0 deg electron run 1922 (data: v1r030604p6, MC: v6r0925p2) from SPS
- Idea:

Comparison of the different energy reconstruction methods in single tower for a center of tower head-on beam

• Normalization by number of counts in histograms

• Using the following cuts:

GemDeltaEventTime > 10000 (50 ns)	(for correct read out and no pile-up)
CalEnergyRaw > 1000 MeV	(for cosmic muon rejection)
CalEnergyRaw < beam energy	(to avoid simultaneous cosmic rays)
CalCsIRLn > 1 X_0	(so that suffient energy is deposited)
CalTwrEdgeCntr > 50 mm	(to avoid crack effects)
TkrNumTracks > 0	(to be able to do a space angle cut)
Space angle(TkrDir vs. CalDir) < 0.5 rad	(correctly reconstructed directions)
Tkr1X0 > 50 && Tkr1X0 < 350 && Tkr1Y0 > -150 && Tkr1Y0 < 150 (to make it is in the right tower)	
CalXEcntr > 50 && CalXEcntr < 350 && CalYEcntr > -150 && CalYEcntr < 150 (same as above)	

Cut variables after cuts (1)

Cut variables after cuts (2)

GLAST beam test at CERN - T. Ylinen - BT EVO - 25.7.2007

Energy reconstruction algorithms

• CalCfpEnergy

Estimation of energy using shower profile fitting in the calorimeter

CalLllEnergy

Estimation of energy using CAL last layer parametrization.

CalTklEnergy

Estimation of energy using TKR hits parametrization.

EvtEnergyCorr

Event energy formed by adding the corrected TKR energy (TkrEnergyCorr) to the layer-by-layer corrected CAL energy (CalEnergyCorr)

CTBBestEnergy

The best of the above?

Energy reconstructions (1)

<u>Step 1</u> Find peaks by fitting Gaussian These particular plots from 5 GeV, 0 degree electrons

•

Energy reconstructions (2)

• <u>Step 2</u>

Increase bin number dramatically and calculate 68% containment symmetrically around calculated peak position. Higher bin number \rightarrow Higher precision in quantile calculation

Energy reconstructions (3)

• Merged into the same plot (again for 5 GeV, 0deg electrons)

Energy resolutions

- Resolution = 68% energy interval symmetrically around most probable energy / most probable energy
- LAT science requirement according to beam test plan: On axis, 1-10 GeV: ≤ 10% On axis, 10-300 GeV: ≤ 20%

Energy resolutions

 Difference in percent between data and MC

$$\Delta E_{res} = \frac{\Delta E_{68\%,MC} - \Delta E_{68\%,data}}{\Delta E_{68\%,data}}$$

Positive percentage → MC is larger
Negative percentage → Data is larger

Issues

CTBBestEnergy has strange shape at 282 GeV

• A small peak, centered at 50 GeV, of unknown origin in CalCfpEnergy at 196 GeV

Summary/Conclusions

- If energy resolution of e.g. CTBBestEnergy is compared to the LAT science requirement, it is below the required 20% for energies 10-196 GeV for data but somewhat above for MC. For 5 GeV, the resolution is above the 10% requirement. 282 GeV was omitted due to the shape of the peak
- MC consistently has worse resolution for energies 20-196 GeV than data. For e.g. CTBBestEnergy the difference is as high as ≈70%. For CalEnergyRaw the difference is ≈10%
- CTBBestEnergy not meant for CU (?) → Distribution peak shape distorsions → Large resolution differences between data and MC
- Electrons are not equivalent to photons in terms of conversion point (≈0.1% of the electrons and ≈21.4% of fullbrems photons are CALonly in BT-data) → Resolutions probably different for photons