ROYAL INSTITUTE
OF TECHNOLOGY
K

Bremsstrahlung photons at PS (created December 6, 2006)

Tomi Ylinen
Royal Institute of Technology (KTH)
Kalmar University

Information

- Runs used for analysis:

Data:
700001182 (v1r030603p9) - fullbrems Y
$2.5 \mathrm{GeV}, 0 \mathrm{deg}, \mathrm{xyz}=[201,0,0]$

```
MC:
0129 (v5r3p4(?))- fullbrems \(Y\)
2.5 GeV, 0 deg, xyz = [201, 13.9, -47.4]
```

(note: not exactly the same position)

- Distributions normalized by the number of counts

Variables used for cuts - before cut

Variables used for cuts - after cut

CalTwrEdgeCntr > 50 mm
DATA MC

190 mm < $\mathrm{Tkr1X0}<225 \mathrm{~mm}$ $-20 \mathrm{~mm}<\mathrm{Tkr} 1 \mathrm{YO}<40 \mathrm{~mm}$

TkrNumTracks > 0
Events left: 3300

Energy in calorimeter layers - qualitatively

\square DATA
MC

Energy in calorimeter layers - quantitatively

Moments comparision between data and MC ~10 \% difference \rightarrow The calibration issue?

CalELayer	Mean (MeV)	RMS (MeV)
0	67.099760 .6948	54.675050 .2390
1	86.853976 .5774	83.166576 .3547
2	88.705677 .5877	94.203485 .9081
3	78.667170 .0377	89.430085 .4455
4	66.925059 .5572	81.485976 .4615
5	53.531447 .8309	69.634165 .3499
6	42.320937 .2790	58.436953 .6610
7	31.335227 .2015	46.515241 .2417

Position in TKR vs CAL - qualitatively

Direction in TKR vs CAL - qualitatively

- Space angle between direction vector in TKR and CAL
- Direction recon in CAL fails! Riccardo's talk in BT-VRVS Nov. 8, 2006

CalTransRms

- Shapes seem to be comparable

Position \& direction - quantitatively

- 68% containment integrals of space angle and position distributions
- Kolmogorov statistical test for shape compatibility ($0=b a d, 1=g o o d$)

	Data 68%	MC 68%	Kolmogorov test
Direction	$43.2392 \pm 1.8655 \mathrm{deg}$	$63.8477 \pm 1.4993 \mathrm{deg}$	$3.7336 \cdot 10^{-13}$
Position X	$18.1664 \pm 0.5785 \mathrm{~mm}$	$18.6242 \pm 0.6209 \mathrm{~mm}$	0.445865
Position Y	$18.0727 \pm 0.5126 \mathrm{~mm}$	$17.1923 \pm 0.5153 \mathrm{~mm}$	0.315228

Summary/Conclusions

- The 10% difference in calorimeter layer variables. Calibration issue?
- Position reconstruction looks pretty good, shapes and quantiles are comparable
- Shapes are comparable in direction distributions but reconstruction in CAL is not working well. Perhaps related to presentation by Riccardo on BT-VRVS Nov. 8, 2006?
\rightarrow moments analysis seems to cause a radical direction change
- Why do 80% of the fullbrems photon events have no track associated (i.e. TkrNumTracks==0)?
- In conclusion, photons seem to be pretty well modeled in Geant4

Extra slide

- Study the difference between the recorded particle position in TKR and recorded centroid position in CAL, extrapolated to the top of the CAL

Tkrl [X/Y]0 - position at first hit in the TKR
Cal $[X / Y]$ Ecntr - recorded position of CAL energy centroid

- Difference distributions calculated as the absolute value of the position difference

Simplified and exaggerated!

Direction reconstruction

Extra slide

- Study the difference between the generated particle direction and the recorded particle direction in the calorimeter

Tkrl [X/Y/Z]Dir - recorded particle direction cosines in the TKR for best track

Cal[X/Y/Z]Dir - recorded particle direction cosines

Simplified and exaggerated! in the CAL

- Space angle is given by
$\psi=\pi-\arccos ($ Tkr1XDir \cdot CalXDir + Tkr1YDir \cdot CalYDir + Tkr1ZDir \cdot CalZDir $)$

Direction Reconstruction

Extra slide

- The 68% integral is done with GetQuantiles (quantile) in ROOT, which calculates a given fractional (quantile) integral starting from the left and gives the space angle corresponding to that fraction
- Error in counts is assumed to have binomial distribution

$$
\Delta N=\sqrt{\left.N_{\text {tot }} \cdot \text { Quantile (1-Quantile }\right)}
$$

- New integrals are calculated for Quantile $\pm \Delta N / N_{\text {tot }}$
- Symmetric error is assumed

Error $=0.5 \cdot\left(\left(Q+\Delta N / N_{\text {tot }}\right)-\left(Q-\Delta N / N_{\text {tot }}\right)\right)$

