

Electron-proton separation

or our first contact with Insightful Miner

Goals and data sets

- □ Long-term
 - check cuts for high energy electron identification using BT data
 - develop a classification tree for selecting electrons
- □ Short term
 - Practice with Insightful Miner
 - test as many components as possible, we have a 30 days demo version and plan to purchase license next year with fresh funds
- Data set
 - Combined most e and p runs from Golden runs list with minimal cuts (BtSysTest, see appendix)
 - Had to convert them into txt files as IM does not like ROOT
 - now have a python script to select variables from a tuple and convert into tab separated file

Beam Test Meeting 18/12/2007

Analysis – step 1

Classification Trees

- **CT** are slightly different
 - they are different data sets
- Split points reflect known discrepancies

Baldini-Latronico

Beam Test Meeting 18/12/2007

Some results – CT agreement

□ Classification intrinsically harder on data sample (1. vs 2.)

- Discrepancies in variables?
- Residual contaminations? Note e/p asymmetry in agreement
- ☐ p prediction higher (0.4%) wrt data CT (3. vs 1.)
 - due to CalTransRms shifted to higher values for p and e in data wrt MC?

□ p contamination in e sample increase factor 10 (3. vs 1.)

- let's check real p contamination in data sample

Closer look at misclassified e

Data through MC CT

A good fraction of these come from run 1951

Gaps Special

Run	Particle	Energy	Impact point	BeamXYdir
BT-1796-v6r0925p2-GLAST	Electrons	99.GeV	(190.50, 13.70)	(-0.53, 0.33)
BT-1834-HEAD1.131	Electrons	99.GeV	(578.00, -1.00)	(-0.49, 0.33)
BT-1846	Electrons	99.GeV	(-201.00, 0.00)	(-0.53, 0.33)
BT-1951	Electrons	282.GeV	(749, -7, -95)	(90.0, 0.20)

CalEnergyRaw (All data) 80 70 60 Counts Penuts 30 20 10 200,000 250,000 300,000 350,000 400,000 Bin Range Count: 1190 Missing Max 416800.0 Min: Mean: 229314.118 Std dev 34928.079

Analysis - step 2 remove run 1951

(CalCfpEnergy > 15065 & CalTransRms>30.16 & CalTransRms <30.94) | (CalCfpEnergy>14685 & CalCfpEnergy< 15065)

Select events classified differently in first two split due to variable shifts

- electrons are mainly misclassified!
- but they are not the single source of differences (176 events)

Baldini-Latronico

Beam Test Meeting 18/12/2007

Conclusions

Comparison with Alex cuts?

GLAST LAT Project

- Data must be clean to assess prediction power of a CT
- We deliberately went the wrong path building CT first and reverse-engineered data cleaning
- Current discrepancies in MC are not negligible and do produce misclassifications
 - Should we optimize the CT AFTER the main cut on CalCfpEnergy which eliminates 90% of protons?
- □ learning IM and we like it
- we can read Bill's IM worksheet and are now going through pass5 analysis
 - plan to check that directly against BT data

Appendix - Data set and cuts

- Data-v6r0922p4, MC GLAST-v7r1117p1
- CalTransRms>0 && CalTransRms>0 && Tkr1ToTTrAve>0 && CalCfpEnergy<500000</p>
- Must implement cut on GemDeltaEventTime>10000
- Proton runs: 2237, 2251: , 2252, 2253, 2363, 1755
- Electron runs:
 - 2082: 'CalEnergyRaw> 1000 && CalCfpEnergy> 1000 '
 - 2087: 'CalEnergyRaw> 1000 && CalCfpEnergy> 1000 '
 - 2092: 'CalEnergyRaw> 1000 && CalCfpEnergy> 1000 '
 - 2096: 'CalEnergyRaw> 1000 && CalCfpEnergy> 1000 '
 - 2039: 'CalEnergyRaw> 2000 && CalCfpEnergy> 20000
 - 2044: 'CalEnergyRaw> 2000 && CalCfpEnergy> 2000 '
 - 2050: 'CalEnergyRaw> 2000 && CalCfpEnergy> 2000 '
 - 2054: 'CalEnergyRaw> 2000 && CalCfpEnergy> 2000 '
 - 1981: 'CalEnergyRaw> 5000 && CalCfpEnergy> 5000 '
 - 1988: 'CalEnergyRaw> 5000 && CalCfpEnergy> 5000 '
 - 1911: 'CalEnergyRaw> 5000 && CalCfpEnergy> 5000 '
 - 1993: 'CalEnergyRaw> 5000 && CalCfpEnergy> 5000 ',
 - 1999: 'CalEnergyRaw> 5000 && CalCfpEnergy> 5000 ',
 - 1892: 'CalEnergyRaw> 5000 && CalCfpEnergy> 10000 ',
 - 1898: 'CalEnergyRaw> 5000 && CalCfpEnergy> 10000 ',
 - 1902: 'CalEnergyRaw> 10000 && CalCfpEnergy> 50000 '
 - 1922: 'CalEnergyRaw> 10000 && CalCfpEnergy> 50000 '
 - 1932: 'CalEnergyRaw> 10000 && CalCfpEnergy> 60000 '
 - 1938: 'CalEnergyRaw> 10000 && CalCfpEnergy> 50000 ',
 - 1942: 'CalEnergyRaw> 10000 && CalCfpEnergy> 50000 ',
 - 1951: 'CalEnergyRaw> 150000 && CalCfpEnergy> 100000'