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Neutrinos are fantastic indicators of proton acceleration

‣ TeV gamma-ray sources are all good candidates

‣ Neutrino detection would confirm hadronic over leptonic models 
e.g., in blazars.   cf. Orphan flares in 1ES 1959+650

‣ characteristics of neutrino --> characteristics of protons

‣ Probe both galactic CRs and identify the source of UHECRs

p + nucleus -->    π0, π+, π-

π0 -->ϒϒ
π+ or π-  --> μ+or μ-  νμ

μ+ --> e+ νμ νe

μ- --> e- νe νμ

Similar neutrino production from p-ϒ interactions, via Δ+ resonance
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Neutrinos are difficult to detect

ANTARES
IceCube
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Neutrino detectors have a large background of atmospheric 
muons and atmospheric neutrinos

ANTARES
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Expected neutrino fluxes as a function of energy
give hope for > TeV detection from astrophysical sources

Spiering 2012

Low-energy
ν seen from sun and

SN 1987A
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Limits from current neutrino experiments approach 
Waxman-Bahcall bound
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PeV neutrinos have been detected by IceCube
Bert and Ernie, origin unknown, but possibly astrophysical
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We expect to be able to detect neutrinos from GRBs
with IceCube unless the conditions in the GRB are unsuitable
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IceCube saw no neutrinos from a collection of 196 GRBs
implying GRBs cannot be the sole source of UHECRs

Abbasi+ 2012
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IceCube saw no neutrinos from a collection of 196 GRBs
implying low p content or high bulk Lorentz factor
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FIG. 4. Constraints on fireball parameters. The shaded re-
gion, based on the result of the model-dependent analysis,
shows the values of GRB energy in protons and the average
fireball bulk Lorentz factor for modeled fireballs6,9 allowed by
this result at the 90% confidence level. The dotted line in-
dicates the values of the parameters to which the completed
IceCube detector is expected to be sensitive after 3 years of
data. The standard values considered9 are shown as dashed-
dotted lines and are excluded by this analysis. Note that the
quantities shown here are model-dependent.

boost factor �. Increasing � increases the proton en-
ergy threshold for pion production in the observer frame,
thereby reducing the neutrino flux due to the lower pro-
ton density at higher energies. Astrophysical lower limits
on � are established by pair production arguments9, but
the upper limit is less clear. Although it is possible that
� may take values of up to 1000 in some unusual bursts,
the average value is likely lower (usually assumed to be
around 3006,9) and the non-thermal gamma-ray spectra
from the bursts set a weak constraint that � . 200021.
For all considered models, with uniform fixed proton con-
tent, very high average values of � are required to be
compatible with our limits (Figs. 3, 4).

In the case of models where cosmic rays escape from
the GRB fireball as neutrons8,10, the neutrons and neu-
trinos are created in the same p� interactions, directly
relating the cosmic ray and neutrino fluxes and remov-
ing many uncertainties in the flux calculation. In these
models, � also sets the threshold energy for production
of cosmic rays. The requirement that the extragalactic
cosmic rays be produced in GRBs therefore does set a
strong upper limit on �: increasing it beyond ⇠ 3000
causes the proton flux from GRBs to disagree with the
measured cosmic ray flux above 4⇥1018 eV, where extra-
galactic cosmic rays are believed to be dominant. Limits
on � in neutron-origin models from this analysis (& 2000,
Fig. 3) are very close to this point, and as a result all
such models in which GRBs are responsible for the entire
extragalactic cosmic-ray flux are now largely ruled out.

Although the precise constraints are model dependent,

the general conclusion is the same for all the versions of
fireball phenomenology we have considered here: either
the proton density in gamma ray burst fireballs is sub-
stantially below the level required to explain the highest
energy cosmic rays or the physics in gamma ray burst
shocks is significantly di↵erent from that included in cur-
rent models. In either case, our current theories of cos-
mic ray and neutrino production in gamma ray bursts
will have to be revisited.
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Limits from individual GRBs: non-detection of GRB 130427A

‣ Is this really a good GRB candidate?  100 GeV photons --> high 𝛤

Gao, Kashiyama & Meszaros 2013
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Is there a distribution of Bulk Lorentz factors in GRBs?
This might be a way to explain LAT non-detections
and give hope to the neutrino community!
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Future of high-energy neutrino detection

‣ IceCube is concentrating on its low-energy supplement 
DeepCore

‣ Km3NeT is a new water-based km3 array
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Gravitational wave detection is expected from General Relativity 
from sources such as merger GRBs

Inspiral signal enters sensitive band (> 50 Hz) about 50 s before coalescence.
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Gravitational Waves are difficult to detect
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Gravitational Wave detectors have a strong background 
that limits their sensitive frequency range

from hermes.aei.mpg.de
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Gravitational waves have not been detected in a study of 154 
GRBs with data from at least 2 GW stations (26 short GRBs)

Abadie+  2012
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Advanced LIGO will be much more sensitive and will begin 
to come online (with A-Virgo and others) in 2016
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We expect good overlap between GBM-detected short GRBs
and gravitational wave candidates from Advanced LIGO/Virgo

Pelassa+ 2012
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GW detectors have crude localizationsGW trigger
• Simulated early aLIGO-aVirgo 

event near threshold

• SNR 8.7 (H1), 7.2 (L1), 3.1 (V1)

• localization from Bayesian 
parameter estimation (quite 
slow, but optimal)

• 1σ: 30 deg2  2σ: 180 deg2

• Also time (ms), component 
masses (NS vs BH), etc.

• First detections likely to be at 
threshold (100 deg2, etc)

• However routine detection also 
implies there will be a few strong 
events well above threshold

Sunday, March 24, 13
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Search 
GW data

Localization of GW-GRB 

Simultaneous GW 
Trigger + Swift 

short GRB

XRT 
localization

Optical 
Counterpart

Simultaneous GW 
Trigger + GBM 

short GRB
XRT Tiling XRT 

localization
Optical 

Counterpart

GW Trigger
No γ-ray XRT Tiling XRT 

localization
Optical 

Counterpart
Spectrum

Spectrum

Spectrum

GRB 
Trigger

XRT Tiling XRT 
localization

Optical 
Counterpart

Spectrum

From Judy Racusin
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There is a danger that a GW will be seen and nobody will
believe it because nobody else can look!

Keep Swift & Fermi in operation in the A-LIGO era!
Encourage follow-up of GBM error boxes for short GRBs.

CTA in survey mode might get the best localization for follow-
up of a short GRB seen in GW!

TeV astrophysics, too, used to be an exotic field viewed 
skeptically by real astronomers.
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