Studying the Morphology and Energy Spectra of Geminga and Boomerang at TeV Energies

Hao Zhou Michigan Technological University

Pulsar and Pulsar Wind Nebula

Radiation from a **Pulsar-wind-nebula** complex

Pulsar Wind Nebula

PWN Modeling

Milagro PSF-smoothed map Bin size: 0.1 deg

- Associated with PSR J0634.0+1745
- Age ~ 370 k year
- Spin-down energy ~ 3.26×10^{34} erg/s
- Period 0.237s
- Distance ~ 250 parsec
- 2.6 degree extent seen by Milagro

22h30m

22h45m

J2229.0+6114 VERITAS excess map A.Abdo, et al.,ApJ, 700, 127 61.3 Declination (d 62 61.2 61.1 0 6 60.9 2 60.8 60 60.7 0 PSF 60.6 -2 22h32m 22^h30^m 22^h28^m 22^h26^m 22^h24^m **Right Ascension (hours)** 58

22h15m

- Associated with PSR J2229+6114 and SNR G106.3+2.7
- Age ~ 10 k year
- Spin-down energy ~ 2.2 * 10³⁷ erg/s
- P = 51.6ms
- Distance ~ 800 parsec

250

200

150

100

50

0

Spectral Analysis on Geminga

Optimizing the Method on Extended Sources

Point source analysis:

 excess in one 0.1 by 0.1 degree bin on PSF-smoothed map may underestimate the flux for extended sources

Extended source analysis (preliminary): Integrate over (source radius + 1.58 PSF)

Testing on Crab nebula

	Crab (point) Power law	Crab (extended) Power law
flux norm [10 ⁻¹⁴ cm ⁻² s ⁻¹ TeV ⁻¹]	6.5 6.1-6.9	7.88 7.1 3-8.6 5
energy norm [TeV]	10	+0
index	3.1 3.0-3.2	2.975 2.9-3.05
Integral flux I-100 TeV [10 ⁻¹⁰ cm ⁻² s ⁻¹]	39.0	37.7

Optimizing the Method on Extended Sources

Extended source analysis (preliminary):

Integrate over (1.3 deg + 1.58 PSF)

	Geminga (point) Power law	Geminga (extended) Power law	
flux norm [10 ⁻¹⁴ cm ⁻² s ⁻¹ TeV ⁻¹]	1.05 0.27-1.80	5.32 3.38-7.17	
energy norm [TeV]	10	10	
index	3.2 2.6-3.5	2.725 2.475-3.0	
Integral flux I-100 TeV [10 ⁻¹⁰ cm ⁻² s ⁻¹]	7.6	16.3	

HAWC

- •High Altitude Water Cherenkov
- •Altitude: 4100 meters
- •0.1 TeV~100 TeV, FoV ~2 sr, >90% duty cycle
- •300 water Cherenkov detectors
- •10% of the array is operational from last fall
- •30% of the array will be deployed this summer
- •100% in summer 2014

HAWC Sensitivity

HAWC Sensitivity to PWNe

Milagro dec = +35 HAWC dec = +19

source	declination	sigma in 8 year Milagro	sigma in 1 year HAWC
Crab	+22.05	17.2	169.0
Geminga	+17.76	3.5	41.8
Boomerang	+61.24	6.6	10.5
MGRO J1908+06	+6.03	7.4	58.0
MGRO J2019+37	+36.83	12.4	51.2
MGRO J2031+41	+41.19	7.6	64.3
0FGL J0631.8+1034	+10.57	3.7	24.5

Improvement on sensitivity!

Hawc gamma-ray telescope captures its first image

By Jason Palmer BBC News, Deriver

The Hawc facility is able to spot the highest-energy light ever seen on Earth - possibly the highest we wil over see

Outlook

- Majority of galactic TeV sources are PWNe.
- Spectral analysis on extended sources needs to be optimized.
- Multi-wavelength study and model development on PWNe are important to understand the spectra and features.
- HAWC is a ground-based gamma ray detector that will detect the PWNe with the highest sensitivity at the highest energy range.

HAWC construction Jan 2012 - Feb 2013

Thank you!