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Questions in y-ray astronomy

¢ |s a source significantly detected?

e |f sO, what is its flux?

e |f not, what is upper limit on the flux?
e \What kind of spectrum does it have?
e \What is its spectral index?

e \What is its location in the sky?

e \What are the errors on these values?

e |s the source variable?



Questions in DM astrophysics

e Does Fermi detect y-ray line emission
from DM particle annihilation?

e With what significance?

e \What is the energy of the line?

e \What is the measurement error?
e \What is the spatial distribution?

e \What kind of systematic errors may be
present?
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Questions in y-ray astronomy
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Is a source significantly detected?

If so, what is its flux?

If not, what is upper limit on the flux?
What kind of spectrum does it have?
What is its spectral index?

What is its location in the sky?

What are the errors on these values?

Is the source variable?
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Maximum likelihood estimation

e (Given a set of observed data:

e ... produce a model that accurately
describes the data, including parameters
that we wish to estimate,

e ... derive the probability (density) for the
data given the model (PDF),

e .. treat this as a function of the model
parameters (likelihood function), and

e ... maximize the likelihood with respect to
the parameters - ML estimation.



Maximum likelihood basics

Data X = {CEz} — {371, LDy wney CL’N}
Model parameters: © ={6;} = {61,60s,...,00}
Likelihood: L(O|X) = P(X]|6)

Conditional probability rule for independent
events:  P(A, B) = P(A)P(B|A) = P(A)P(B)

CPR Independence

For independent data:
P(X|0) = P({zi}|©) = P(21|0)P(22, .., 2n|O) =
— P(21|0)P(z4|0) - - - P(zy|O) H.sz

L(6]X) = HP z;|©)



ML estimation (MLE)

e Parameters can be estimated by maximizing
likelinood. Easier to work with log-likelihood:

In£(0) =InL(0|X) = ZlnP (z;|©)

e Estimates of {fx} from solving simultaneous

equations: [ 5y,
=0
005 1143 ' oiy
e For one parameter, if we have: L£(#) ~e 20
then: 0?InC 1 caucciom
892 5 — —O-_g approximation

so 2"d derivative is related to “errors”



Why maximum likelihood...

...rather than some ad-hoc estimation method?

ML framework provides a “cookbook”
through which problems can be solved.

In other methods ad-hoc choices may have to be made.

ML provides unbiased, minimum variance
estimate as sample size increases.

Same may not be case for ad-hoc methods.

Asymptotically Gaussian: evaluation of
confidence bounds & hypothesis testing.

Well studied in the literature.

Starting point for Bayesian analysis.



MLE example 1:

x2 fit of constant - |

e Data: independent measurements of
flux of some source with errors - (z;, o)

e Model: all measurements are of a
constant flux F with Gaussian errors.
1  (zy—F)?

e 20'?.’2
\V 2o

e Probabilities: P(z;|F) =

e | og likelihood:
o I\2
lnﬁ(F):—Z(xz F) zmai—ganW

2
20;
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MLE example 1:

x2 fit of constant - ||

e | og likelihood:

Constant with respect to F

mL:(F):—2(5'3’5_}7)2

2
20;

M

e Maximize for MLE of F:

Oln L z; — F 5 N anlar
oF = 2 M
e Curvature gives “error” on F:
1 L 1 1
_ — — i S—
0% OF? |p 2 o7 | Jx1a
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MLE example 2:

Event counting experiment

e Experiment detects n events (e.g. y rays)

e Model: Poisson process with mean of of A:
Ane—A

P(z|0) —» P(n|)\) =

n!

e | 0g likelihood: InL(A) =nlnA — A —Inn!

e ML estimate and error in Gaussian regime:
OlnL n A

=——1 = A=n
O\ A
2
. SO 0“In L _ E s 2 __ n Gaussian
O 8)\2 N o 5\2 OX = approximation




MLE example 2:

Event counting experiment

e Experiment detects n events (e.g. y rays)

e Model: Poisson process with mean of of A:
Ane—A

n' Constant WRT A

e Log likelihood: InL(\) =nln\ — X\ =Tzl

Data cpt Npred

e ML estimate and error in Gaussian regime:
OlnL n

P(z|0) —» P(n|)\) =

———1 =|A=n
O\ A
2
2. 0“In L _ E s 0_2 —n Gaussian
O O\2 N o 5\2 AT approximation




MLE example 2:

Log -likelihood profiles

e (Gaussian approximation
% IS reasonable when nis
: “large enough”. In this

: case 03 = n is a good

estimate of the “error”.

P0|sson I|ke||hood
Gaussiaq approximation

2Alog(L)
N

3 f n = 100 .
B A S — e |f not, estimate errors by

80 85 90 95 100 105 110 115 120

Poisson mean (N finding points where
L lssonlkeindos —— - 21In L(\) decreases by

Gaussian approximation

1.0 from maximum, i.e.,
2In L(\) =2InL()) —

2Alog(L)

e n=100: X\ =100.0"g%>"

Poisson mean (A) o n=2 : A JE— 2 0+i ’{g 13
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MLE example 2:

# errors poisson.py - 2013-05-07 SJF

# Evaluate the errors on the Poisson mean

import math, scipy.optimize

n meas = 2

logL = lambda lam: n meas*math.log(lam)-lam

opt fn = lambda lam: -logL (lam)

opt res = scipy.optimize.minimize (opt fn, le-8)

lam est = opt res.x[0]

logL max = logL(lam est)

root fn = lambda lam: 2.0* (logL(lam)-logL max)+1.0
lam lo = scipy.optimize.brentg(root fn, le-8, lam est)
lam hi = sclpy.optimize.brentg(root fn, lam est, 1le8)
print lam est, lam lo-lam est, lam hi-lam est

O [ I I

Gaussian approximation

2Alog(L)
N

pfsso lkelood —— - 21n L(\) decreases by
1.0 from maximum, i.e.,

2In L(A) =2InL()) — 1

e nN=100: \ = 100.0710:33

Poisson mean (A) o n=2: A S 2.0‘1'}::']7.’(7) i



Hypothesis testing

Compare likelihoods of two hypotheses to
see which is better supported by the data.

Likelihood-ratio test (LRT) & Wilks’ theorem.

Given a model with N+M parameters:
© = {91, 2 -70N,9N+1, S -,9N+M}
where N have true values: 47,...,0;

Values of likelihood under two hypotheses:

Li=L(0:,...,08,0n41,..
Lo=L0T,...,0%,0n41,...,0
“Ratio” distributed as:

0N ar)

79N+M)

2(In L1 — In Ly) ~ x*(N)

Terms and conditions apply

15



Why is that useful?

(We don’t know the true values of any parameters!)

We make an assumption about | reareeevesions

ARE ST TEACHING KIDS

the model (the null hy,DOTheSIS), ABOUTTPE,NULLHWHESIS.
in which the parameters have SO0 THAT CNCLOSVELY

y - DISPROVED IT MARS AGO.
some presumed “true” values.

‘0
Compute £, from these values f%\(
and £, using MLE for all params. ﬁ

HOpe tO ShOW th at 9 (ln L ;| — In LO) http://xkcd.com/892/
is so large that it is improbable from x*(V),

and, hence, reject the null hypothesis.
Usually cannot say hypothesis is true!

16
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MLE example 3:

Source & Background

e Data: events detected in two independent
“channels”. X = {ny,n,}

e Model: Poisson process with...
— Unknown “source” and “background”:

© = {61,6,} = {S, B} é:(gl):(g>

— Response matrix ( ri Tio )
) T

(presumed known 21 T22

— Poisson means: / x\ \ [ ry ro
XIR@ Ao )\ ra1 T



MLE example 3:

MLE

e | og likelihood:
In ,C(S, B) =M1 111(7'118 -+ TlgB) -+ 9 111(7"213 -+ TQQB)
e (7"11 -+ 7'21)8 e (7"12 -+ T22)B -+ const

e MLE: 9InL OInL S _ Rp-lz
55 — 9B =) ='© n

S o 1 T929 —7T12 T
B 11722 — T12T21 =21 Fii Mo

IRy = lnL(S', B) =ny1nn; + nylnng — (N1 + ny)

e If likelihood: L(6) ~ ¢ 2= =7670) | caussian
(C L} approximacion
errors” are: 0%°InL

=—(Z7); = -I
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MLE example 3:

MLE

e | og likelihood:
I Data component i
IILC(S, B) =M1 111(7"113 TlgB) 9 111(7"215 7‘22B)
— (11 +721)S — (112 + 722) B +>>V><

Npred

e MLE: 9InL OInL 5 _R-lz
55 — 3B =) ='© n

S . 1 o2  —T12 3]
B 11722 — T12T21 =21 “Fii T

InL;=1In E(S’, B) =ny1nny + nglnng — (N1 + ny2)

e If likelihood: L(6)~ e 20~ (O-6) | caussian
(C L} approximacion
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MLE example 3:

MLE

e | og likelihood:
I Data component i
IH,C(S, B) =M1 111(7"113 T12B) 9 ln('rzlS ’T‘QQB)
— (11 +721)S — (112 + 722) B +>>V><

Npred

e MLE: 9InL OInL -
55 — 9B =0 = 06=R™'n

S o 1 22  —T12 ni
B 11722 — T12T21 =21 “Fii T

InL;=1In E(g, B) =ny1nny + nglnng — (N1 + ny2)

o If likelihood: £(6) ~ e 2©-©"27(6-6) | caussian

approximation

“errors” are: 9In L » -
- |. = —(X7)y = I
39289] S A A

Covariance matrix Fisher information matrix




MLE example 3:

Covariances and errors

e (Calculate Fisher information matrix and invert:

2
T, — 0“In L Ly o4 cov(g, B) _ 71
06,00, | 5 cov(S, B) 0%

e [For our example we get:

T — 1 T%lnl 7"%177/2 £91 990l T ¥ 111 121l5
nN1M9 T'21T22T1 T T'11T12M2 7"%2711 T ""%znz

> 1 7"%2”1 7"%2”2 —T21T92M1 — T1171272
det(R)% \ —T21722m1 — T11712M2 r5na + Tins

* |n general parameters are correlated, but can
choose set that is uncorrelated. Here they are
{)\17 )\2} glVlng 5\1 — N1, 5\2 = N9, 2)\ — diag(nl, ng)
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MLE example 3:

Source significance

e Null hypothesis: suppose S =0, then:
el B) =Inif(S =0,8)
=n1InrieB 4+ nglnreB — (112 + 792) B

e MLE for Bgives: OlnLo _ b s n1 + N
In Lo = In Lo(By) 0B T12 + T2
M ri2(n1 + ng) iy roa(m1 + ng) (25 + 73)
T12 + 722 T12 + 722

e Test statistic: 7S =2(InL; —InLp) ~ x*(1)

(r12 + 7"22)77»2-
roo(n1 + ng) ]

(r12 + T22)M1
712 (nl . nz)

19 In

'S =2 |5 ln

20



MLE example 3:

On/Off problems

From: Berge, Funk, Hinton

Event Map

-29 -29

Event Map A&A 466, 1219-1229 (2007)

-30 /
Observation -~

Positions .|

-31 by o
Observation’ - -
Positions

22h02m 21h58m 21h55m 22h02m 21h58m 21h55m

e VHE astronomy - gamma-ray sources and a
background of cosmic rays.

e Problem - to evaluate flux of source and its statistical
significance. Define on-source (source+background)
and off-source (background) channels.
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MLE example 3:

On/Off problems

Ro '3 (SOUR(L L 129 4 G 0\ From: Aad et al.
PRL 108, 111802 (2012)

YYYYYYYYYYYY

50 F  Sign: 11 counts ()8 1))0 80 20?5 (9\ - Solccleddph! sample

800

. Data 2011
Background model
........ SM Higgs boson m = 120 GeV (MC)

p-value=0.51, x; l—)()l/)l

40

Events / GeV

700

600

T -l%l I 500

2 - "

§ 400F

10k _ 300
) M L AP . " M |

..... o
0_ + PP AN =. :

o
o

Counts

\s=7 TeV.J. Ldt=491"

S

Higgs boson?

10 F

ELSE RS
From: Weniger | | | 1:30 - 260- ) 7100 1110 120A A 1:;0 140 150 16
JCAP 1208, 7 (2012) F |Gey] m,, [GeV]

® |ine searches - DM with Fermi, or Higgs with ATLAS.

e Problem - detect line signal on top of spectrum of
background events. Define “on-source” and “off-
source” regions. Must assume that spectrum of
background is known or calculable.
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MLE example 3:

On/Off problems

e General set of problems where:
Ng — Noff

W1 =22V
Ay — )\off =i
)\1 — )‘on — (S+ OZB)T

e and where these are assumed to be known:
a - on to off-source background ratio

T - observation time (or other detector
factors)

23



MLE example 3:

MLE for On/Off problems
e Then: R:T(é ‘f) R—1:%((1) —1a>

InL(S, B) =nonIn|[(S + aB)T| + nyssln BT
—(S+(14+a)B)T

e MLE & (co)variances of S and B are:

B = = Moff 0B = T3Mof ]

A 1 2 1 2

9§ = T(nm_anoff) Og = _2(non+a nOff)
. ] A . 1

This is what you cov(S, B) = ——amn,¢y

would expect!
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MLE example 3:

TS for On/Off problems

e Test statistic for source detection in On/Off
problems is:

Lo — 2P0 il

e Significance is: ¢ = VTS

e This is the famous “Li & Ma” formula from:
Apd 272, 317 (1983) - 493 citations on ADS

e Probably, you wouldn’t arrive at this formula
using ad hoc estimation methods

e P-values: scipy.stats.chi2.sf(T7S5,1)

25



MLE example 3:

Eg: 1ES1218+304 w/VERITAS

Discovery of Variability in the Very High Energy y-Ray
Emission of 1ES 12184304 with VERITAS

Acciari, et al., ApdJ, 709, 163 (2010)

Table 1 summarizes the results of the VERITAS observations of 1ES 1218+304. For the

spectral analysis, we report an excess of 1155 events with a statistical significance of 21.8

standard deviations, o, from the direction of 1ES 1218+304 during the 2008-2009 campaign

|(2808 signal events, 4959 background events with a normalization of 0.33)| Figure 2 shows

the corresponding time-averaged differential energy spectrum. The spectrum extends from

200 GeV to 1.8 TeV and is well described (x*/dof = 8.2/7) by a power law,

Table 1. Summary of observations and analysis of 1ES 1218+304* .

Live Time Zenith Significance @(> 200 GeV) Units of Crab Nebula
[hours| o] [10-12 cm—2 5] flux (E > 200 GeV)
2006-2007" 17.4 2-35 10.4 12.2 £ 2.6 stat 0.05 £ 0.011

2008-2000 230 18.4 % 0.9 atat 0.07 + 0.004

=199~ —
Os 0.9

Ratio of value to error - used as “significance” before Li&Ma

O POE —

noff = 4959
Non = 2808

=" It

a=1/3

— 42.5hr !
—92.1hr !

= 474.9

=218}

E 18.4 P — value

— 2.8 x 10710



MLE example 3:

Eg: 1ES1218+304 w/VERITAS

# lima.py - 2013-05-15 SJF
# Example of Li & Ma significance calculation
import math, scipy.stats

def ts lima (non,noff,alpha):

opa = 1.0+alpha

ntot = nontnoff

return 2.0* (non*math.log(opa*non/alpha/ntot) \
+ noff*math.log(opa*noff/ntot))

= 2808
= 4959
alpha = 1.0/3
T = 27.2
S hat = (non - noff*alpha)/T
sig2 S = (non + noff*alpha**2)/T**2
ts = ts lima (non,noff,alpha)
signif = math.sgrt(ts)
Pval = scilpy.stats.chiZ2.sf(ts, 1)
print S, math.sgrt(sig2 S), ts, signif, Pval

~_ RdUo Of vdiug (0 €rmor - GSed das _ SIgIiicdrice” verore cixivid



MLE example 3:

Detectability / Sensitivity

¢ |nterested in detectabillity of sources, i.e.

sensitivity of instrument for given threshold.

e Consider “no fluctuations” case where:
Ngw = (St + aBy)T, ngis = BT

on

e [hen test statistic Is:

NF I (14 a)(S; + aB;)T
TSV =2 |(Si+aB)TIn os 2t
(1 + Gf)BtT ]
(St + (1 +a)B)T

+BtT h’l

28



MLE example 3:

Detectability / Sensitivity

e \Weak source case: S; < aB;

vT 8,
\/1+a\/aBt

= VTSNF o

Grows as sqrt(T)
e \Weak background case: S; > aB;

= VTSNF =~ /28,T1In(1+ 1/a) ~—

Note what happens here when ac — 0 (which corresponds to perfectly well
determined “zero” on-source background) the significance becomes
infinite. If you have no background then even one event is a significant.

29



MLE example 3:

Detectability / Sensitivity

Minimum source strength to achieve detection at some threshold 0 get

e \Weak source case: S; < aB;

1V a By
T V14«

Minimum detectable flux decreases as 1/sqgrt(T) and
depends on B;: “Background-dominated regime”

o
O s

e \Weak background case: S; > aB;

2 Roughly this says that the number
g det 1 of detected photons must be
St e larger than o2 (times some

T 2 \/ 1 1 / o constant): S,T = ng,, > Co2,

eg. must detect 25 photons for 50.

Minimum detectable flux decreases as 1/T and is
independent of B: : “Photon-limited regime”

30



MLE example 3:

Detectability / Sensitivity

“Differential sensitivity” plots, i.e. sensitivity in logarithmic energy bands

s/ c '
107 6 3
—_ | v g8
‘Tm : ,//','Crab—like" source _8 E
¢ 10_6:~ : a =
E | :
E 10 E EEEEEEE o RS
< | Background
€3] j N RS R N I i N B N
0| dominated
— 50 hours, S5
o/ 7~ Shours, 3¢
10 ™
10 10

E [TeV]

Sensitivity for ACT array of 4 telescopes

for 5 and 50 hours of observation.

Low energies: sgrt(10) x improvement.

High energies: 10 x improvement.

1

Differential sensitivity: PTSOURCE_V6, 3 years, min 10 photons per bin

Ezd_I:UdE (erg/cm?s)
o

10-12

10° 10*

Energy (MeV)

LAT sensitivity from FSSC site for

different background levels (Galactic or

extra-galactic).

Low energies: big dependency

High energies: almost no dependency. g,



MLE example 3:

Systematic errors

What if assumed value of alpha is incorrect?

e Assume there is no real source:
Mgy = ayBT = a(l1+ 6)B,T, nyy; = BT
where the error in alpha is small: § « 1

VT
— V/TSNF o/ aB
V14« e

e This looks like a real signal. Accurate
knowledge of experimental response is
critical. MLE is only as good as the model!
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Bayesian statistics

¢ | ikelihood function has no meaning itself,
e.g., it is not a probabillity. Its usefulness
comes from theorems such as the LRT.

e MLE belongs to the class of “frequentist”
statistical methods: talk about the results of
repeated hypothetical experiments.

e Can produce confidence intervals where the
true parameter value would lie inside the
interval in a certain % of hypothetical expts.
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Bayesian statistics

e |n Bayesian statistics we talk about the
“probabillity” that the parameters have
certain values.

e Bayes’ theorem:
P(©)P(X|0)
P(X)
relates probability after experiment has been

done to probability before.

P(O|X) = x P(©)L(6]|X)

e Can think of this as refining our belief about
the model through experimental results.
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Review

e ML provides “cookbook” for estimation and
hypothesis testing:

— estimates: maximum of likelihood

— errors: curvature of log-likelihood surface

— TS and significance: is improvement in log-L
over null hypothesis consistent with x2?

e Significance expected to grow as sqrt(T), but
sensitivity can improve as 1/T if photon limited.

e Systematic errors important to consider

35



Onwards to LAT analysis...

e | AT ML analysis is fundamentally the same a
what we have seen here (but more complex).

e Channels organized by sky position and energy
(i.e. 3-dimensions). Millions of channels typical.

e Model is Poisson for each channel with mean
determined by:

— gspatial-spectral model provided by user

— observational response (calculated by
software from IRFs provided by LAT team)

e MLE by software: errors, covariances, TS, etc
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