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Questions in γ-ray astronomy
• Is a source significantly detected?

• If so, what is its flux?

• If not, what is upper limit on the flux?

• What kind of spectrum does it have?

• What is its spectral index?

• What is its location in the sky?

• What are the errors on these values?

• Is the source variable?
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Questions in DM astrophysics

• Does Fermi detect γ-ray line emission 
from DM particle annihilation?

• With what significance?

• What is the energy of the line?

• What is the measurement error?

• What is the spatial distribution?

• What kind of systematic errors may be 
present?
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LAT paper tag cloud
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100 most frequently used words from 875 papers mentioning LAT and γ-ray on arXiv



Questions in γ-ray astronomy
• Is a source significantly detected?

• If so, what is its flux?

• If not, what is upper limit on the flux?

• What kind of spectrum does it have?

• What is its spectral index?

• What is its location in the sky?

• What are the errors on these values?

• Is the source variable?
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Maximum likelihood technique
• Given a set of observed data:

• ... produce a model that accurately 
describes the data, including parameters 
that we wish to estimate,

• ... derive the probability (density) for the 
data given the model (PDF),

• ... treat this as a function of the model 
parameters (likelihood function), and

• ... maximize the likelihood with respect to 
the parameters - ML estimation.
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Maximum likelihood basics
• Data:

• Model parameters:

• Likelihood:

• Conditional probability rule for independent 
events:

• For independent data:
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ML estimation (MLE)
• Parameters can be estimated by maximizing 

likelihood. Easier to work with log-likelihood:

• Estimates of        from solving simultaneous 
equations:

• For one parameter, if we have:
then:

so 2nd derivative is related to “errors”
8

Gaussian
approximation



Why maximum likelihood...

• ML framework provides a “cookbook” 
through which problems can be solved.
In other methods ad-hoc choices may have to be made.

• ML provides unbiased, minimum variance 
estimate as sample size increases.
Same may not be case for ad-hoc methods.

• Asymptotically Gaussian: evaluation of 
confidence bounds & hypothesis testing.

• Well studied in the literature.

• Starting point for Bayesian analysis.
9

...rather than some ad-hoc estimation method?



χ2 fit of constant - I

• Data: independent measurements of 
flux of some source with errors - 

• Model: all measurements are of a 
constant flux    with Gaussian errors.

• Probabilities: 

• Log likelihood:
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MLE example 1:



χ2 fit of constant - II

• Log likelihood:

• Maximize for MLE of    :

• Curvature gives “error” on F:
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Constant with respect to F 

MLE example 1:



Event counting experiment
• Experiment detects n events (e.g. γ rays)

• Model: Poisson process with mean of of λ:

• Log likelihood:

• ML estimate and error in Gaussian regime:
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Gaussian
approximation

Constant WRT λ

Data cpt Npred

MLE example 2:



Log-likelihood profiles

13

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 80  85  90  95  100  105  110  115  120

2Δ
lo

g
(L

)

Poisson mean (λ)

Poisson likelihood
Gaussian approximation

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0  1  2  3  4  5  6

2Δ
lo

g
(L

)

Poisson mean (λ)

Poisson likelihood
Gaussian approximation

• Gaussian approximation 
is reasonable when n is 
“large enough”. In this 
case              is a good 
estimate of the “error”.

• If not, estimate errors by 
finding points where
                decreases by 
1.0 from maximum, i.e.,

• n=100 :

• n=2 : 

MLE example 2:



Log-likelihood profiles
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• Gaussian approximation 
is reasonable when n is 
“large enough”. In this 
case              is a good 
estimate of the “error”.

• If not, estimate errors by 
finding points where
                decreases by 
1.0 from maximum, i.e.,

• n=100 :

• n=2 : 

# errors_poisson.py - 2013-05-07 SJF
# Evaluate the errors on the Poisson mean
import math, scipy.optimize
n_meas   = 2
logL     = lambda lam: n_meas*math.log(lam)-lam
opt_fn   = lambda lam: -logL(lam)
opt_res  = scipy.optimize.minimize(opt_fn, 1e-8)
lam_est  = opt_res.x[0]
logL_max = logL(lam_est)
root_fn  = lambda lam: 2.0*(logL(lam)-logL_max)+1.0
lam_lo   = scipy.optimize.brentq(root_fn, 1e-8, lam_est)
lam_hi   = scipy.optimize.brentq(root_fn, lam_est, 1e8)
print lam_est, lam_lo-lam_est, lam_hi-lam_est

MLE example 2:



Hypothesis testing
• Compare likelihoods of two hypotheses to 

see which is better supported by the data.

• Likelihood-ratio test (LRT) & Wilks’ theorem.

• Given a model with N+M parameters: 

where N have true values: 

• Values of likelihood under two hypotheses:
                   

• “Ratio” distributed as: 
15Terms and conditions apply



Why is that useful?
• We make an assumption about 

the model (the null hypothesis),
in which the parameters have
some presumed “true” values.

• Compute      from these values
and     using MLE for all params.

• Hope to show that
is so large that it is improbable from         ,   

• and, hence, reject the null hypothesis. 
Usually cannot say hypothesis is true!
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(We don’t know the true values of any parameters!)

http://xkcd.com/892/

http://xkcd.com/892/
http://xkcd.com/892/


Source & Background
• Data: events detected in two independent 

“channels”: 

• Model: Poisson process with...
- Unknown “source” and “background”:

- Response matrix 
(presumed known)

- Poisson means:
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MLE example 3:



MLE
• Log likelihood:

• MLE:

• If likelihood:
“errors” are:
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MLE example 3:

Data component

Npred

Covariance matrix Fisher information matrix

Gaussian
approximation



Covariances and errors
• Calculate Fisher information matrix and invert:

• For our example we get:

• In general parameters are correlated, but can 
choose set that is uncorrelated. Here they are
           giving
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MLE example 3:



Source significance

• Null hypothesis: suppose           , then:

• MLE for B gives:

• Test statistic:
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MLE example 3:



On/Off problems

• VHE astronomy - gamma-ray sources and a 
background of cosmic rays.

• Problem - to evaluate flux of source and its statistical 
significance. Define on-source (source+background) 
and off-source (background) channels.
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From: Berge, Funk, Hinton
A&A 466, 1219–1229 (2007)

http://adsabs.harvard.edu/abs/2007A%2526A...466.1219B
http://adsabs.harvard.edu/abs/2007A%2526A...466.1219B
http://adsabs.harvard.edu/abs/2007A%2526A...466.1219B
http://adsabs.harvard.edu/abs/2007A%2526A...466.1219B


On/Off problems

• Line searches - DM with Fermi, or Higgs with ATLAS.

• Problem - detect line signal on top of spectrum of 
background events. Define “on-source” and “off-
source” regions. Must assume that spectrum of 
background is known or calculable.
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From: Aad et al.
PRL 108, 111803 (2012)

From: Weniger
JCAP 1208, 7 (2012)

http://adsabs.harvard.edu/abs/2012PhRvL.108k1803A
http://adsabs.harvard.edu/abs/2012PhRvL.108k1803A
http://adsabs.harvard.edu/abs/2012PhRvL.108k1803A
http://adsabs.harvard.edu/abs/2012PhRvL.108k1803A
http://adsabs.harvard.edu/abs/2012JCAP...08..007W
http://adsabs.harvard.edu/abs/2012JCAP...08..007W
http://adsabs.harvard.edu/abs/2012JCAP...08..007W
http://adsabs.harvard.edu/abs/2012JCAP...08..007W


On/Off problems

• General set of problems where:

• and where these are assumed to be known:
" - on to off-source background ratio
" - observation time (or other detector
"   factors)
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MLE for On/Off problems

• Then:

• MLE & (co)variances of S and B are:

24

This is what you 
would expect!



TS for On/Off problems
• Test statistic for source detection in On/Off 

problems is:

• Significance is:

• This is the famous “Li & Ma” formula from:
ApJ 272, 317 (1983) - 493 citations on ADS

• Probably, you wouldn’t arrive at this formula 
using ad hoc estimation methods

• P-values: scipy.stats.chi2.sf(TS,1)
25



Eg: 1ES1218+304 w/VERITAS
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Acciari, et al., ApJ, 709, 163 (2010)

Ratio of value to error - used as “significance” before Li&Ma

http://adsabs.harvard.edu/abs/2010ApJ...709L.163A
http://adsabs.harvard.edu/abs/2010ApJ...709L.163A


Eg: 1ES1218+304 w/VERITAS
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Acciari, et al., ApJ, 709, 163 (2010)

Ratio of value to error - used as “significance” before Li&Ma

# lima.py - 2013-05-15 SJF
# Example of Li & Ma significance calculation
import math, scipy.stats

def ts_lima(non,noff,alpha):
    opa  = 1.0+alpha
    ntot = non+noff
    return 2.0*(non*math.log(opa*non/alpha/ntot) \
                + noff*math.log(opa*noff/ntot))

non    = 2808
noff   = 4959
alpha  = 1.0/3
T      = 27.2

S_hat  = (non - noff*alpha)/T
sig2_S = (non + noff*alpha**2)/T**2
ts     = ts_lima(non,noff,alpha)
signif = math.sqrt(ts)
Pval   = scipy.stats.chi2.sf(ts,1)

print S, math.sqrt(sig2_S), ts, signif, Pval



Confidence regions
• Saw earlier that we can calculate “asymmetric 

errors” by finding points where 2lnL decreases 
by 1.0: 2-sided 1σ confidence interval (68%)

• Actually this comes from LRT (Wilks’ theorem). 
This is region where null hypothesis that 
parameter value has some value cannot be 
rejected at given confidence level.

• But what to do if likelihood depends on more 
than our parameter of interest?

• It depends...
28

In problems with multiple parameters.



Profile likelihood

• Often we are either concerned only with the 
one parameter, or wish to treat the multiple 
parameters separately (ignore covariance).

• Produce “profile log-likelihood” curve, a 
function of only one parameter (at a time), 
maximized over all others.

• LRT says this should behave as χ2(1).

• Define confidence region using this function 
exactly as before.
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Confidence regions with nuisance parameters 
Rolke, et al., NIM A, 551, 493 (2005)

http://adsabs.harvard.edu/abs/2005NIMPA.551..493R
http://adsabs.harvard.edu/abs/2005NIMPA.551..493R


• Our 1ES1218 example 
isn’t very enlightening 
here, so take:

• Giving:
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Example of profile likelihood

This is not a significant result, so we 
would usually not claim a detection. 

Provide an upper limit instead.



• Our 1ES1218 example 
isn’t very enlightening 
here, so take:

• Giving:
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Example of profile likelihood

This is not a significant result, so we 
would usually not claim a detection. 

Provide an upper limit instead.

# conf_lima_1d.py - 2013-05-25 SJF
# 1-D 2-sided confidence interval in Li & Ma problem
from math import *
import scipy.stats, scipy.optimize, sys
# non, noff, alpha, T = (2808, 4959, 1.0/3, 27.2)
non, noff, alpha, T = (15, 24, 1.0/3, 10.0)
C = 0.68; # Use 1-sigma confidence region
d2logL = scipy.stats.chi2.ppf(C,1)
def logL(S,B):
    return non*log(max((S+alpha*B)*T,sys.float_info.min)) + \
    noff*log(max(B*T,sys.float_info.min))-(S+(1+alpha)*B)*T
def profileLogL(S):
    opt_fn = lambda B: -logL(S,B)
    opt_res = scipy.optimize.minimize(opt_fn, 1)
    return -opt_res.fun
S_hat    = (non-noff*alpha)/T
B_hat    = noff/T
logL_max = logL(S_hat,B_hat)
sig_S    = sqrt(non+noff*alpha**2)/T
TS       = -2.0*(profileLogL(0)-logL_max)
root_fn  = lambda S: 2.0*(profileLogL(S)-logL_max)+d2logL
S_lo     = scipy.optimize.brentq(root_fn, 1e-8, S_hat)
S_hi     = scipy.optimize.brentq(root_fn, S_hat, 1e8)
print S_hat, S_lo-S_hat, S_hi-S_hat, sig_S, TS, sqrt(TS)



Frequentist upper limits

• In two-sided interval search for two points S1,2 
where                           with 

• For one-sided interval (with C>0.5) we need 
to find single such point with             and for 
which                              (or                         )

• E.g. for C=0.95 we search
32

One-sided confidence region using profile likelihood
Rolke, et al., NIM A, 551, 493 (2005)

95% 95%

Two-sided interval One-sided interval

http://adsabs.harvard.edu/abs/2005NIMPA.551..493R
http://adsabs.harvard.edu/abs/2005NIMPA.551..493R


• Frequentist upper limit at 
95% confidence level:

• Our 1ES1218 example 
isn’t very enlightening 
here, so take:

• Giving:

33

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 0  0.5  1  1.5

2Δ
lo

g
(L

)

S [counts/hr]

Li&Ma profile likelihood
Gaussian approximation

Example of profile likelihood

Exercise: adapt 2-sided interval 
code to calculate this



Bayesian statistics
• Likelihood function has no meaning itself, 

e.g., it is not a probability. Its usefulness 
comes from theorems such as the LRT.

• MLE belongs to the class of “frequentist” 
statistical methods: talk about the results of 
repeated hypothetical experiments.

• Saw how to produce confidence intervals: 
true parameter value would lie inside the 
interval in a certain % of hypothetical expts.

• Somewhat awkward language ???
34



Bayesian statistics

• In Bayesian statistics we talk about the 
“probability” that the parameters have 
certain values.

• Bayes’ theorem:

relates probability after experiment has been 
done to probability before.

• Can think of this as refining our belief about 
the model through experimental results.

35

Prior probability density
Likelihood

Posterior
probability

density



Bayesian upper limits

• ... they are regions that contain a certain 
fraction of the posterior probability.

• Integrate over parameter from lower bound to 
find point where integral reaches C% of total.

• In case of multiple parameters, use the profile 
likelihood. Not strictly a Bayesian approach.

36

Or more correctly “Quasi-Bayesian” or “Bayesian-like”

Unphysical region
Prior is zero

Physical region
Prior = 1.0 • Bayesian confidence 

regions correspond 
to what you would 
expect...

Upper limit



• Frequentist upper limit at 
95% confidence level:

• Our 1ES1218 example 
isn’t very enlightening 
here, so take:

• Giving:
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• Bayesian 95% upper limit:



Why have two methods?

• Unphysical frequentist upper limits occur can 
occur if the peak of the likelihood is in an 
unphysical region of the parameter space.

• More complex (or ad hoc) approaches fix this.

• But Bayesian upper limits are not affected.
38

The problem of unphysical upper limits



Example of unphysical MLE
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Example of unphysical MLE
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- unphysical
- OK!

# ul_lima_bayes_1d.py - 2013-05-25 SJF
# Bayesian upper limit in Li & Ma problem
from math import *
import scipy.stats, scipy.optimize, scipy.integrate, sys
# non, noff, alpha, T = (2808, 4959, 1.0/3, 27.2)
# non, noff, alpha, T = (15, 24, 1.0/3, 10.0)
non, noff, alpha, T = (4, 36, 1.0/3, 10.0)
C = 0.95; # Use 95% confidence region (C must be >0.5)
def logL(S,B):
    return non*log(max((S+alpha*B)*T,sys.float_info.min)) + \
    noff*log(max(B*T,sys.float_info.min))-(S+(1+alpha)*B)*T
def profileLogL(S):
    opt_fn = lambda B: -logL(S,B)
    opt_res = scipy.optimize.minimize(opt_fn, 1)
    return -opt_res.fun
S_hat    = (non-noff*alpha)/T
sig_S    = sqrt(non+noff*alpha**2)/T
logL_max = profileLogL(S_hat)
def logPrior(S):
    return log(1);
def logPosterior(S):
    return logPrior(S)+profileLogL(S)-logL_max
def integralPosterior(Smax):
    integrand = lambda S: exp(logPosterior(S))
    y, err = scipy.integrate.quad(integrand,0,Smax)
    return y
total_integral = integralPosterior(S_hat+100*sig_S);
root_fn  = lambda S: integralPosterior(S) - total_integral*C
S_ul = scipy.optimize.brentq(root_fn, 0, S_hat+100*sig_S)
print S_ul, integralPosterior(S_ul)/total_integral, total_integral



Good practices
• It is always best to define all the parameters of 

an analysis before looking at the data.
- Data selection “cuts”
- Thresholds for claiming detection.

• It is tempting to adjust the analysis procedure 
to enhance some small signal, BUT THIS IS 
FRAUGHT WITH DANGER!

• Best practice is to do a blind analysis. Use MC 
or side-band data to refine analysis in advance.

• But this is not always possible...
41



Trials factors

• Often you simply don’t know enough in 
advance to fully determine the analysis, e.g.
- the mass of the DM particle (or Higgs)
- the locations of sources in the sky etc...

• So, you must look through the data and 
search for a significant excess signal ...

• ... and unfortunately you must pay a statistical 
penalty for doing so.

42

Or the “look-elsewhere effect”



• If after making     independent tests of for a 
significant event (e.g     energy channels)

• the most significant test had a P-value of:

• then to account for the number of “trials” you 
must scale the P-value as:

• For example, a 4σ event has a P-value of
                       . With 1000 trials, the post-trial 
P-value of 
which is equivalent to a 1.9σ event. 

43

Trials factors
Or the “look-elsewhere effect”



Detectability / Sensitivity
• Interested in detectability of sources, i.e. 

sensitivity of instrument for given threshold.

• Consider “no fluctuations” case where:

• Then test statistic is:

44



Detectability / Sensitivity

• Weak source case: 

• Weak background case:

45

Grows as sqrt(T)

Note what happens here when             (which corresponds to perfectly well 
determined “zero” on-source background) the significance becomes 
infinite. If you have no background then even one event is a significant.



Detectability / Sensitivity

• Weak source case: 

• Weak background case:

46

Minimum source strength to achieve detection at some threshold 

Minimum detectable flux decreases as 1/sqrt(T) and 
depends on Bt : “Background-dominated regime”

Minimum detectable flux decreases as 1/T and is 
independent of Bt : “Photon-limited regime”

Roughly this says that the number 
of detected photons must be 
larger than σ2 (times some 
constant): 
eg. must detect 25 photons for 5σ.



Detectability / Sensitivity

47

“Differential sensitivity” plots, i.e. sensitivity in logarithmic energy bands
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Systematic errors

• Assume there is no real source:

where the error in alpha is small: 

• Then:

• This looks like a real signal. Accurate 
knowledge of experimental response is 
critical. MLE is only as good as the model!

48

What if assumed value of alpha is incorrect?



Review
• ML provides “cookbook” for estimation and 

hypothesis testing:
- estimates: maximum of likelihood
- errors: curvature of log-likelihood surface

- TS and significance: is improvement in log-L 
over null hypothesis consistent with χ2?

• Significance expected to grow as sqrt(T), but 
sensitivity can improve as 1/T if photon limited.

• Systematic errors important to consider
49



Onwards to LAT analysis...
• LAT ML analysis is fundamentally the same a 

what we have seen here (but more complex).

• Channels organized by sky position and energy 
(i.e. 3-dimensions). Million channels typical.

• Model is Poisson for each channel with mean  
determined by:
- spatial-spectral model provided by user
- observational response (calculated by 

software from IRFs provided by LAT team)

• MLE by software: errors, covariances, TS, etc
50


