Ground Based Gamma-Ray Astronomy II

Petra Huentemeyer Michigan Tech petra@mtu.edu

What are we trying to measure?

- Directions
 - Maps
 - Extensions
 - Spatial distribution

18

16

06h40m

What are we trying to measure?

- Directions
 - Map
 - Extensions
 - Spatial distribution
- Energy
 - Spectral Energy Distributions (SED)

What are we trying to measure?

- Directions
 - Map
 - Extensions
 - Spatial distribution
- Energy
 - Spectral Energy Distributions (SED)
 - Time dependent behavior
 - Periodic behavior
 - Temporary flux enhancements (e.g. flares etc.)

Ground-Based Technologies: 2 Classes

Atmospheric Cherenkov Telescopes (VERITAS/H.E.S.S./MAGIC)

50 GeV - 100 TeV Large Area Excellent background rejection Good angular resolution Small Aperture/Low Duty Cycle

Study known sources Deep surveys of limited regions Source morphology (SNRs) Fast transients (AGN flares) High resolution spectra EAS Arrays Milagro/Tibet/ARGO/HAWC

100 GeV - 100 TeV Large Area Good background rejection Improving angular resolution Large Aperture & Duty Cycle

Partial sky survey & monitoring Large scale diffuse emission and anisotropy Extended Sources Transients (GRBs, AGN flares) Highest Energies (>10 TeV)

Different Types of Ground Array Detectors

Tibet Air Shower Array (>1990)

- 4300m asl
- Scintillator array
- 497 detectors
 - $0.5m^2$ each
 - 5mm lead on each
- 5.3x10⁴ m² (phys. area)
- 3 TeV median energy
- 680 Hz trigger rate
- 0.9° resolution

		•				•				ľ				•				•				•			
•		•				•		•				•		•		•		•				•			
				•		•		•				•				•									
•		٠	2	•		•	•		•		•				•		•		•		8	٠			
- 3			÷	÷	i	i	ŝ	÷	i	ï	i	ï	i	i	i	ï	i	i	÷	ï	ï				
•		÷	i	ŝ	÷	ï	ŝ	÷	÷	;	÷	÷	÷	i	i	ï	÷	;	÷	i	÷	÷		1	
		:	;	;	;	;	;	÷	;	÷	;	i	;	;	ï	÷	;	÷	÷	;	;	÷		1	
		÷	;	÷	;	;	÷	;	÷	÷	;	÷	÷	i	÷	;	÷	;	÷	;	i	i		6	
	•	i	i	ŝ	ŝ	i	i	÷	i	i	i	i	ŝ	i	ŝ	i	ŝ	i	i	÷	i	ŝ			
• •	•	i	i	i	ŝ	ŝ	ē	i	i	Ē	i	i	ž	i	ŝ	ī	Ē	i	i	ŝ	i	ł		0	
	•	Ē	i	ŝ	Ē	Ē	Ē	Ē	ŝ	Ē	Ē	ŝ	ŝ	Ē	ž	Ē	ŝ	Ē	Ē	i	Ē	÷		þ	•
• •	•	Ē	i	ŝ	ŝ	Ē	Ē	Ē	Ē	ŝ	Ē	ŝ	Ē	Ē	ž	ž	Ē	i	i	i	Ē	÷		į,	
	•	÷	i	ŝ	ŝ	i	:	i	i	i	i	i	i	i	÷	i	i	i	÷	i	Ē	÷	٠		
•		•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•		•		3	•
				•		•		•		•		•		•		•		•		•					
•		•				•		•		•		•		•		•		•				•			•
		•				•				•				•				•				•			
1. 																						:	- 54	-	as work

Argo-YBJ (>2000)

- 4300m asl
- Single layer of RPCs (Resistive Plate Counters)
- 154 detectors
- 6500 m² (phys. area)
- Energies:
 - Gamma rays > 100 GeV,
 - GRB >10 Gev
 - CR-p 10-200 TeV
 - p/anti-p ratio 300 GeV-1 TeV
- Tens of Hz trigger rate
- 0.1°-1° resolution

			1	Ē	_		1			10		-
_					-		-			1	_	
	•											
			+		+	-		-		-		
											hanned.	
g		6 H	-		+	-	-	-	-	-	100	
90												
4			-	-	-	-			_	_		
								-				
			-		_			_	_	_		
			-		-	-		-		-		
			_				_					
									_	÷		<u> </u>
				DA	AQ Bu	ilding				1	Gas	

Milagro (2000-2008)

- 2600m asl (NM, USA)
- Water cherenkov detector
- 898 PMTs
 - 450 top/273 bottom
 - 175 outriggers
- 40,000m² area
- 1700 hz trigger rate
- 0.4°-0.9° resolution
- 2-40 TeV median energy

The Water Cherenkov Technique

- Instrument a volume of water with Photo-Multiplier Tubes
- Detect Cherenkov light from high- energy particle passage through the water.
- Technique used by Super Kamiokande, IceCube, SNO
- Why Water?
 - Clear Cherenkov medium
 - Inexpensive and abundant.
- Instrument a large flat area to see air showers.
- Reconstruct primary particle direction from PMT timing

The Photodetector

8" Hamamatsu R5912, 12 stage, 10⁷ gain, QE ~25%

The Water Cherenkov Technique

EAS Reconstruction

- Identify an 'event' through trigger conditions, e.g. require a minimum number of significant signals in your array, or a minimum charge etc.
- Reconstruct the core of the shower through a gaussian fit to the signal strengths in each of your PMTs

Curvature Correction

- The shower front is not a plane, but is curved about the shower core
- Times of individual PMTs are adjusted based on the distance to the shower core

Core Location Error vs True Core Distance from Center of Pond

Two Types of Background

Cosmic Rays (A₄)
Any isotropic background (direct integration)

Background Rejection in Milagro

мпадго васкдгоипа кејестоп

Background Rejection Parameter

$$A_4 = \frac{\left(f_{Top} + f_{Out}\right) * n_{Fit}}{mxPE}$$

mxPE: maximum # PEs in bottom layer PMT

 f_{Top} : fraction of hit PMTs in Top layer f_{Out} : fraction of hit PMTs in Outriggers

n_{Fit} : # PMTs used in the angle reconstruction

S/B increases with increasing A_4 so analysis weights events by S/B as determined by the A_4 value of the event

Improves sensitivity by ~2x

Background estimation

"Direct Integration"

- 2 hr integration time: method assumes that the detector acceptance in local coordinates is independent of the trigger rate over this time
- No. of expected background events:

$$N_{\exp}[\mathbf{R}.\mathbf{A}.,\,\delta] = \int \int E(\mathrm{ha},\,\delta)\,R(t)\,\epsilon(\mathrm{ha},\,\mathbf{R}.\mathbf{A}.,\,t)\,dt\,d\Omega$$

- Li & Ma prescription used for significance calculation
- R.O.I. around the crab nebula (+/-2 deg) and Galactic Plane (+/- 2.5 deg)

Background estimation

Milagro sees the Galactic plane from longitude $\sim 30^{\circ}$ to $\sim 220^{\circ}$

Remarks about source fitting

Diffuse Emission

A4 -weighted significance map

Diffuse Emission

The Diffuse Galactic Plane

Cygnus region

The Diffuse Flux Measured by Milagro

Energy Spectrum: Introduction of Energy Parameter

Energy Dependence of FrASOR

Energy Dependence of FrASOR

Forward folding

The Cygnus Region: MGRO J2019+37

The Cygnus Region: MGRO J2031+41

The Cygnus Region is complicated

