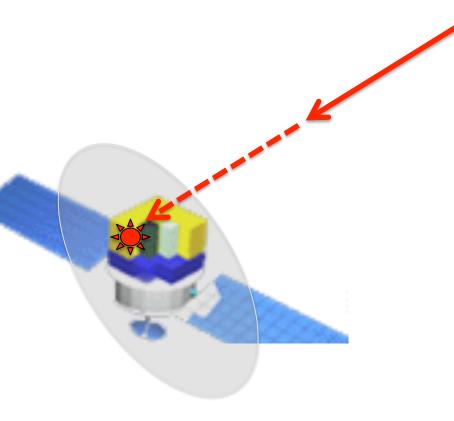


Generating the Instrument Response Functions


- We generate IRFs starting from MC simulations and then applying corrections as need based on flight-data
- Simulations details:
 - Full GEANT simulation of particle interactions with the LAT
 - Detailed detector geometry
 - Detailed particle interaction models
 - Calibrated instrument response to particles
- For IRFs, we only need to simulate γ-ray sample

The "allGamma" Monte Carlo sample

Steps to generating allGamma MC simulation:

- 1) Randomly select a direction (v)
- 2) Make a circle with area 6m² normal to that direction
- 3) Pick a point on that circle
- 4) Back away by about 10 m in (v)
- 5) Throw the particle at the LAT along (v)

Considerations for making the A_{eff} Tables

- Parameterization: what variables do we tabulate A_{eff} for?
- Binning: how many values of the A_{eff} will we need?
- Computation: how do we calculate A_{eff} for a particular bin?

Extra Columns in Monte Carlo "photon" Files.

- format = 'E', name = 'MC_DIRERR'
 - Angular separation between true and recon. directions.
- format = 'E', name = 'MC_ENERGY'
 - True γ-ray energy
- format = 'E', name = 'MC DEC'
- format = 'E', name = 'MC RA'
- format = 'E', name = 'MC_XDIR'
- format = 'E', name = 'MC_YDIR'
- format = 'E', name = 'MC_ZDIR'

Arbitrary PointingTrue direction inLAT Frame